

Summary of Contents: Volume I
Preface .. ix

1. PHP Basics .. 1

2. Object Oriented PHP ... 23

3. PHP and MySQL ... 65

4. Files ... 111

5. Text Manipulation ... 143

6. Dates and Times .. 171

7. Images ... 209

8. Email ... 237

9. Web Page Elements .. 253

10. Error Handling ... 319

A. PHP Configuration .. 339

B. Hosting Provider Checklist ... 347

C. Security Checklist .. 351

D. Working with PEAR .. 355

Index ... 363

Summary of Contents: Volume II
Preface .. xiii

1. Access Control ... 1

2. XML .. 79

3. Alternative Content Types ... 169

4. Stats and Tracking ... 221

5. Caching ... 241

6. Development Technique .. 269

7. Design Patterns .. 311

A. PHP Configuration .. 355

B. Hosting Provider Checklist ... 363

C. Security Checklist .. 367

D. Working with PEAR .. 371

Index ... 379

The PHP Anthology

Volume I: Foundations

by Harry Fuecks

The PHP Anthology, Volume I: Foundations
by Harry Fuecks

Copyright © 2003 SitePoint Pty. Ltd.

Editor: Georgina Laidlaw

Technical Editor: Kevin Yank

Cover Design: Julian Carroll

Printing History:

First Edition: December 2003

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the

case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by

the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-

ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 0-9579218-5-3

Printed and bound in the United States of America

http://www.sitepoint.com
mailto:business@sitepoint.com

About The Author

Harry is a technical writer, programmer, and system engineer. He has worked in

corporate IT since 1994, having completed a Bachelor’s degree in Physics. He

first came across PHP in 1999, while putting together a small Intranet. Today,

he’s the lead developer of a corporate Extranet, where PHP plays an important

role in delivering a unified platform for numerous back office systems.

In his off hours he writes technical articles for SitePoint and runs phpPatterns

(http://www.phppatterns.com/), a site exploring PHP application design.

Originally from the United Kingdom, he now lives in Switzerland. In May, Harry

became the proud father of a beautiful baby girl who keeps him busy all day (and

night!)

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content

for Web Professionals. Visit http://www.sitepoint.com/ to access our books,

newsletters, articles and community forums.

http://www.phppatterns.com/
http://www.sitepoint.com/
http://www.phppatterns.com/),
http://www.sitepoint.com/

For Natalie and Masha

ii

Table of Contents
Preface ... ix

Who should read this book? ... x

What’s covered in this book? .. x

The Book’s Website ... xii

The Code Archive ... xii

Updates and Errata ... xiii

The SitePoint Forums .. xiii

The SitePoint Newsletters ... xiii

Your Feedback ... xiv

Acknowledgements .. xiv

1. PHP Basics ... 1
Where do I get help? .. 2

Reading the Manual ... 2

Section I: Getting Started ... 3

Section II: Language Reference ... 3

Section III: Features ... 4

Section IV: Function Reference .. 4

Further Help .. 7

How do I fix an error that PHP finds in my script? 8

Syntax Errors ... 9

Semantic Errors ... 10

Environment Errors .. 10

Logic Errors ... 11

How do I include one PHP script in another? 12

Mutual Inclusion ... 12

Path Finding .. 15

How do I write portable PHP code? ... 16

Keep All Configuration Central .. 17

Use the Full <?php ?> Tags ... 18

register_globals off ... 18

Magic Quotes .. 19

Call-Time Pass-By-Reference Off .. 20

Write Reusable Code ... 20

Further Reading ... 22

2. Object Oriented PHP .. 23
What are the basics of object oriented PHP? 26

Classes and Objects .. 29

Understanding Scope ... 34

A Three Liner .. 35

How do references work in PHP? ... 39

What Are References? .. 40

Using a Reference .. 42

The Importance of References .. 43

Good and Bad Practices ... 46

Performance Issues ... 47

References and PHP 5 .. 48

How do I take advantage of inheritance? 48

Overriding ... 49

Inheritance in Action ... 52

How do objects interact? .. 56

Aggregation .. 56

Composition .. 58

Spotting the Difference .. 59

Polymorphism .. 60

Further Reading ... 63

3. PHP and MySQL .. 65
How do I access a MySQL database? .. 66

A Basic Connection .. 67

Reusable Code ... 69

How do I fetch data from a table? .. 73

Fetching with Classes ... 75

How do I resolve errors in my SQL queries? 78

How do I add or modify data in my database? 79

Inserting a Row .. 80

Updating a Row ... 80

Another Class Action ... 81

How do I solve database errors caused by quotes/apo-

strophes? ... 83

The Great Escape ... 83

SQL Injection Attacks .. 86

How do I create flexible SQL statements? 87

How do I find out how many rows I’ve selected? 89

Counting Rows with PHP .. 89

Counting Rows with MySQL ... 90

Row Counting with Classes .. 92

Counting Affected Rows ... 93

After inserting a row, how do I find out its row number? 94

Class Insert ID ... 94

How do I search my table? ... 95

The PHP Anthology

iv

Select What You LIKE ... 95

FULLTEXT Searches ... 96

How do I back up my database? ... 98

How do I repair a corrupt table? ... 103

Do I really need to write SQL? ... 104

Further Reading ... 108

4. Files .. 111
How do I read a local file? .. 112

File Handles ... 115

Saving Memory .. 117

How do I modify a local file? .. 119

How do I get information about a local file? 121

How do I examine directories with PHP? 123

How do I display the PHP source code online? 125

How do I store configuration information in a file? 127

How do I access a file on a remote server? 129

How do I use FTP from PHP? .. 131

How do I manage file downloads with PHP? 135

File Distribution Strategy ... 136

How do I create compressed ZIP/TAR files with PHP? 138

Further Reading ... 141

5. Text Manipulation ... 143
How do I solve problems with text content in HTML docu-

ments? ... 143

Dynamic Link URLs .. 143

Form Fields and HTML Content 145

Line Breaks in HTML .. 146

Tag Stripping ... 147

It’s a Wrap .. 149

How do I make changes to the contents of a string? 149

Search and Replace .. 149

Demolitions ... 150

Short Back and Sides, Please .. 151

Formatting ... 152

How do I implement custom formatting code? 153

How do I implement a bad word filter? 157

How do I validate submitted data? ... 159

How do I filter out undesirable HTML code? 163

Further Reading ... 169

v

6. Dates and Times .. 171
How do I store dates in MySQL? ... 172

Unix Timestamps ... 173

MySQL Timestamps .. 174

Timestamps in Action .. 175

How do I solve common date problems? 180

Day of the Week .. 182

Week of the Year ... 183

Number of Days in a Month .. 183

Leap Years ... 185

Day of the Year .. 186

First Day in the Month .. 187

A Touch of Grammar ... 188

How do I build an online calendar? .. 190

A Roman Calendar ... 195

PHP Filofax ... 198

How do I deal with time zones? ... 202

How do I time a PHP script? .. 204

How do I schedule batch jobs with PHP? 205

Installing Pseudo-cron .. 205

Further Reading ... 207

7. Images .. 209
MIME Types ... 210

How do I create thumbnail images? .. 211

The Thumbnail Class ... 214

How do I add a watermark to an image? 223

How do I display charts and graphs with PHP? 225

Bar Graph .. 226

Pie Chart ... 228

How do I prevent “hot linking” of images? 230

Further Reading ... 234

8. Email ... 237
How do I simplify the generation of complex emails? 238

How do I add attachments to messages? 239

How do I send HTML email? ... 243

How do I mail a group of people? ... 245

How do I handle incoming mail with PHP? 247

A Solution Looking for a Problem? 251

Further Reading ... 251

The PHP Anthology

vi

9. Web Page Elements ... 253
How do I display data in a table? ... 255

PEAR Shaped Tables .. 255

How do I build a result pager? .. 259

Sliding Page Numbers .. 263

How do I handle HTML forms in PHP? 268

Guidelines for Dealing with Forms 269

Forms in Action with QuickForm 269

QuickForm Validation Rule Types 272

Sign Up Today ... 274

How do I upload files with PHP? ... 280

Using QuickForm for File Uploads 283

How do I build effective navigation with PHP and MySQL? 288

Hansel and Gretel .. 288

Lost in the Trees .. 289

A Recursive Table Structure ... 289

Feeding the Birds ... 293

Staying in Context ... 297

Drop Down Menu ... 299

Collapsing Tree Menu .. 301

Full Tree Menu .. 303

Handling Different Table Structures 305

Summary ... 306

How do I make “search engine friendly” URLs in PHP? 307

Doing Without the Query String 307

Hiding PHP Scripts with ForceType 310

Hiding PHP Scripts by Rewriting URLs 312

Designing URLs ... 314

Further Reading ... 317

10. Error Handling ... 319
How do I implement a custom error handler with PHP? 320

Error Levels .. 320

Generating Errors ... 324

Strategy for Generating Errors .. 325

Custom Error Handler .. 326

Triggered Errors vs. Conditional Execution 329

How do I log and report errors? .. 331

How do I display errors gracefully? ... 333

Further Reading ... 336

vii

A. PHP Configuration ... 339
Configuration Mechanisms ... 339

Key Security and Portability Settings 341

Includes and Execution Settings ... 343

Error-Related Settings .. 345

Miscellaneous Settings ... 346

B. Hosting Provider Checklist ... 347
General Issues .. 347

PHP-Related Issues .. 349

C. Security Checklist ... 351
The Top Security Vulnerabilities .. 351

D. Working with PEAR ... 355
Installing PEAR ... 356

The PEAR Package Manager .. 359

Installing Packages Manually .. 360

Index ... 363

The PHP Anthology

viii

Preface
One of the great things about PHP is its vibrant and active community. Developers

enjoy many online meeting points, including SitePoint Forums[1] where developers

get together to help each other out with problems they face on a daily basis, from

the basics of how PHP works, to solving design problems like “How do I validate

a form?” As a way to get help, these communities are excellent—they’re replete

with all sorts of vital fragments you’ll need to make your projects successful. But

putting all that knowledge together into a solution that applies to your particular

situation can be a problem. Often, community members assume other posters

have some degree of knowledge; frequently, you might spend a considerable

amount of time pulling together snippets from various posts, threads, and users

(each of whom has a different programming style) to gain a complete picture.

The PHP Anthology is, first and foremost, a compilation of the best solutions

provided to common PHP questions that turn up at the SitePoint Forums on a

regular basis, combined with the experiences and insights I’ve gained from my

work with PHP on a daily basis over the last four years.

What makes this book a little different from others on PHP is that it steps away

from a tutorial style, and instead focuses on the achievement of practical goals

with a minimum of effort. To that extent, you should be able to use many of the

solutions provided here in a more or less “plug and play” manner, rather than

having to read this book from cover to cover.

That said, threaded throughout these discussions is a “hidden agenda.” As well

as solutions, this book aims to introduce you to techniques that can save you

effort, and help you reduce the time it takes to complete and later maintain your

Web-based PHP applications.

Although it was originally conceived as a procedural programming language, in

recent years PHP has proven increasingly successful as a language for the devel-

opment of object oriented solutions. This was further compounded by the public

opening in January 2003 of the PHP Application and Extension Repository[2]

(PEAR), which provides a growing collection of reusable and well maintained

solutions for architectural problems (such as Web form generation and validation)

regularly encountered by PHP developers around the world.

[1] http://www.sitepointforums.com/

[2] http://pear.php.net/

http://www.sitepointforums.com/
http://pear.php.net/
http://www.sitepointforums.com/
http://pear.php.net/

The object oriented paradigm seems to scare many PHP developers, and is often

regarded as “off limits” to all but the PHP gurus. What this book will show you

is that you do not need a computer science degree to take advantage of the wealth

of class libraries available in PHP today. Wherever possible in the development

of the solutions provided in this book, I’ve made use of freely available libraries

that I’ve personally found handy, and which have saved me many hours of devel-

opment. Employing a class developed by someone else is often as easy as using

any of the built-in functions PHP provides.

The emphasis this book places on taking advantage of reusable components to

build your PHP Web applications reflects another step away from the focus of

many current PHP-related books. Although you won’t find extensive discussions

of object oriented application design, reading The PHP Anthology, Volume I:
Foundations and Volume II: Applications from cover to cover will, through a process

of osmosis, help you take your PHP coding skills to the next level, setting you

well on your way to constructing applications that can stand the test of time.

The PHP Anthology, Volume I: Foundations, will equip you with the essentials with

which you need to be confident when working the PHP engine, including a fast-

paced primer on object oriented programming with PHP (see Chapter 2). With

that preparation out of the way, the book looks at solutions that could be applied

to almost all PHP-based Web applications, the essentials of which you may

already have knowledge of, but have yet to fully grasp.

Who should read this book?
If you have already gotten your feet wet with PHP, perhaps having read Kevin

Yank’s Build Your Own Database Driven Website Using PHP & MySQL (SitePoint,

ISBN 0-9579218-1-0) and completed your first project or two with PHP, then

this is the book for you.

Readers with a greater amount of PHP experience may like to skip ahead to The
PHP Anthology, Volume II: Applications to learn how to put some of PHP’s more

advanced features to use, and refer back to Volume I: Foundations when they need

an explanation of a more basic concept.

What’s covered in this book?
Here’s what you’ll find in each of the chapters in this volume:

Preface

x

Chapter 1: PHP Basics

This chapter provides a summary of all the essentials you need in order to

get around quickly in PHP, from how to use the manual, to understanding

PHP error messages, and how includes work. There are also some tips for

writing portable code, and we’ll take a look at some of the main PHP config-

uration pitfalls.

Chapter 2: Object Oriented PHP

The second chapter includes a run-down of PHP’s class syntax, as well as a

primer that explains how all the key elements of the Object Oriented Paradigm

apply to PHP. It’s essential preparatory reading for later chapters in this an-

thology.

Chapter 3: PHP and MySQL

This chapter provides you with all the essentials of MySQL, PHP’s favorite

database. We start with the basics, covering important topics such as how

to avoid SQL injection attacks. We then delve more deeply into many lesser

known topics, such as MySQL FULLTEXT search facilities, how to repair corrupt

tables and back up your database, and how to avoid writing SQL with

PEAR::DB_DataObject. This chapter also serves as a “case study” in designing

a class to handle connecting to, and the querying of, your MySQL database.

Chapter 4: Files

This fourth chapter is a survival guide to working with files in PHP. Here,

we’ll cover everything from gaining access to the local file system, to fetching

files over a network using PHP’s FTP client. We’ll go on to learn how to

create your own zipped archives with PEAR::Archive_Tar.

Chapter 5: Text Manipulation

This chapter covers the essentials of handling content on your site. We’ll

discuss string functions you can’t live without, along with the process for

validating and filtering user-submitted content. We’ll look at how you can

implement a BBCode system, and understand the practicalities involved in

preventing cross site scripting exploits.

Chapter 6: Dates and Times

Here, you’ll learn how to store dates in your database, and how to use PHP’s

date functions. We’ll deal with the nuances of handling different time zones,

and implement an online calendar. We’ll see how easy it is to run batch jobs

on your Website without access to the command line, and learn how to per-

form simple script performance measurements.

xi

What’s covered in this book?

Chapter 7: Images

This chapter explores the creation of thumbnails, and how to “watermark”

images on your site. We’ll also discuss how you can prevent hot linking from

other sites, and produce a few professional charts and graphs with JpGraph.

Chapter 8: Email

In this chapter, we deal specifically with email-related solutions, showing you

how to take full advantage of email with PHP. We’ll learn to send successfully

HTML emails and attachments with help from PHP Mailer, and easily handle

incoming mails delivered to your Web server, using PHP.

Chapter 9: Web Page Elements

The essentials of Web pages and navigation, such as tables with

PEAR::HTML_Table, are covered here, along with the process for implementing

paged result sets. We’ll discuss the development of forms with

PEAR::HTML_QuickForm, covering in some depth the handling of file uploads,

and the construction of navigation menus. We’ll also take a look at some

tricks you can use with Apache to generate search engine friendly URLs.

Chapter 10: Error Handling

Understand PHP’s error reporting mechanism, how to take advantage of

PHP’s customer error handling features, and how to handle errors gracefully

in this action-packed chapter.

The Book’s Website
Located at http://www.sitepoint.com/books/phpant1/, the Website that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains complete code for all

the examples presented in this book.

Besides the PHP scripts themselves, the archive contains a number of shared

libraries, which are bundled in the SPLIB directory. In order for the scripts that

rely on these libraries to work as intended, you’ll need to add this directory to

PHP’s include_path (see “How do I include one PHP script in another?” in

Chapter 1 for full details on include_path). Doing this will also make it easier

to use these libraries in your own projects.

Preface

xii

http://www.sitepoint.com/books/phpant1/
http://www.sitepoint.com/books/phpant1/,

For full instructions on how to install and use the code archive, consult the

readme.txt file in the archive.

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at

least one or two mistakes before the end of this one. The Errata page on the

book’s Website will always have the latest information about known typograph-

ical and code errors, and necessary updates for new releases of PHP and the

various Web standards.

The SitePoint Forums
If you’d like to communicate with me or anyone else on the SitePoint publishing

team about this book, you should join SitePoint’s online community[4]. As I

mentioned, the PHP forums[5], in particular, can offer an abundance of inform-

ation above and beyond the solutions in this book.

In fact, you should join that community even if you don’t want to talk to us, be-

cause there are a lot of fun and experienced Web designers and developers hanging

out there. It’s a good way to learn new stuff, get questions answered in a hurry,

and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters in-

cluding The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read

about the latest news, product releases, trends, tips, and techniques for all aspects

of Web development. If nothing else, you’ll get useful PHP articles and tips, but

if you’re interested in learning other technologies, you’ll find them especially

valuable. Go ahead and sign up to one or more SitePoint newsletters at

http://www.sitepoint.com/newsletter/—I’ll wait!

[4] http://www.sitepointforums.com/

[5] http://www.sitepointforums.com/forumdisplay.php?forumid=34

xiii

Updates and Errata

http://www.sitepointforums.com/
http://www.sitepointforums.com/forumdisplay.php?forumid=34
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/newsletter/�I�ll
http://www.sitepointforums.com/
http://www.sitepointforums.com/forumdisplay.php?forumid=34

Your Feedback
If you can’t find your answer through the forums, or if you wish to contact us

for any other reason, the best place to write is <books@sitepoint.com>. We have

a well-manned email support system set up to track your inquiries, and if our

support staff is unable to answer your question, they send it straight to me.

Suggestions for improvements as well as notices of any mistakes you may find

are especially welcome.

Acknowledgements
First and foremost, I’d like to thank the SitePoint team for doing such a great

job in making this book possible, for being understanding as deadlines inevitably

slipped past, and for their personal touch, which makes it a pleasure to work with

them.

Particular thanks go to Kevin Yank, whose valuable technical insight and close

cooperation throughout the process has tied up many loose ends and helped

make The PHP Anthology both readable and accessible. Thanks also to Julian

Szemere, whose frequent feedback helped shape the content of this anthology,

and to Georgina Laidlaw, who managed to make some of my “late at night” mo-

ments more coherent.

A special thanks to the many who contribute to SitePoint Forums[7]. There’s a

long list of those who deserve praise for their selflessness in sharing their own

practical experience with PHP. It’s been fascinating to watch the PHP forums

grow over the last three years, from discussing the basics of PHP’s syntax, to,

more recently, the finer points of enterprise application architecture. As a whole,

I’m sure SitePoint’s PHP community has made a very significant contribution

to making PHP a popular and successful technology.

Finally, returning home, I’d like to thank Natalie, whose patience, love, and un-

derstanding throughout continue to amaze me. Halfway through writing this

book, our first child, Masha, was born; writing a book at the same time was not

always easy.

[7] http://www.sitepointforums.com/

Preface

xiv

http://www.sitepointforums.com/
http://www.sitepointforums.com/

PHP Basics1
PHP is a programming language that’s designed specifically for building Websites,

and is both blessed and cursed with being remarkably easy to learn and use.

Getting started is extremely simple. Before long, the typical beginner can put

together a simple Website and experiment with the wealth of open source projects

available through resources like HotScripts[1].

Unfortunately, the ease with which PHP-based sites can be developed also means

you can quickly get yourself into trouble. As traffic to your site increases, along

with the demand for more features and greater complexity, it’s important to gain

a more intimate understanding of PHP, and to research application designs and

techniques that have proved successful on large Websites. Of course, you can’t

leap into programming and expect to know it all straight away. Even if you could,

where would be the fun in that?

In this first chapter, I’ll assume you’ve had a basic grounding in PHP, such as

that provided in the first few chapters of Kevin Yank’s Build Your Own Database-
Driven Website Using PHP & MySQL (ISBN 0-9579218-1-0), and instead concen-

trate on the essentials of “getting around” in PHP.

In this chapter, you’ll find out where to get help—a defence against those that

bark “Read the manual!” at you—and how to deal with errors in your code. We’ll

[1] http://www.hotscripts.com/

http://www.hotscripts.com/
http://www.hotscripts.com/

also discuss some general tips for keeping your code portable, and provide other

essential roughage for your PHP diet. Not everything here fits under the heading

of “basic”—there may also be a few surprises in store for the more experienced

PHP developers, so keep your eyes peeled!

Be warned, though, that the discussion of PHP syntax is not the most invigorating

of subjects—although it is essential to prepare for later chapters. If you start to

struggle, remember the line from The Karate Kid: you must learn “wax on, wax

off” before you can perform the flying kick.

Where do I get help?
PHP is the most widely-used Web scripting language, running on over ten million

domains around the world[2]. For an open source technology that lacks any cor-

porate funding whatsoever, its popularity may seem inexplicable. Yet PHP’s

success is no mystery; it has one of the most active and helpful online communities

of any technology. Recent estimates place the number of PHP developers

worldwide at around 500,000 and given the nature of the medium, it’s fair to

assume that a large proportion are active online. In other words, for developers

of PHP-based Websites, help is only ever a few clicks away.

Reading the Manual
There’s a well known four letter abbreviation, RTFM (I don’t think it needs ex-

plaining here), which tends to be used to harass beginners in all areas of comput-

ing. While I can understand veterans might be unwilling to repeat endlessly the

same, well documented instructions, I think the basic assumption should be that

we all know how to read the manual in the first place.

The documentation for PHP is excellent, and is maintained by volunteers who

make it their sole purpose to keep it up to date, understandable and relevant.

The online version[3] is extremely easy to navigate and contains further know-

how in the form of annotations from developers across the globe. The manual is

one of the areas in which PHP is truly exceptional; software houses like Sun and

Microsoft still have a long way to go to provide this quality of material to de-

velopers working on their platforms.

[2] http://www.php.net/usage.php

[3] http://www.php.net/manual/en/

Chapter 1: PHP Basics

2

http://www.php.net/usage.php
http://www.php.net/usage.php
http://www.php.net/manual/en/
http://www.php.net/usage.php
http://www.php.net/manual/en/

The manual is also available in twenty-four different languages[4] but as you’re

reading this book I’ll assume you’re happy with the English version of the

manual. It’s broken down into five main sections plus appendices. It’s worth

knowing what kind of information can be found, and where—at least within the

first four sections, which are the most relevant to the typical PHP developer.

Section I: Getting Started
http://www.php.net/getting-started

This section provides a short introduction to PHP with some basic examples. It

then explains how to install PHP (describing all sorts of operating system-Web

server combinations), and how to configure it in terms of modifying your php.ini
file.

Not to be overlooked is the section on security, which covers the areas in which

PHP developers often make mistakes that leave their applications open to abuse.

Once again, the “price” of PHP’s ease of use is that it won’t always protect you

from your worst mistakes, so it’s worth getting started on security as early as

possible in your PHP career. You’ll find a summary of key security issues in Ap-

pendix C, as well as in discussions throughout this book, where appropriate.

Section II: Language Reference
http://www.php.net/langref

This section covers the fundamentals of PHP as a programming language. Some

of these are essential to your being able to achieve anything with PHP, while

others become useful as you look for ways to improve your technique. Reading

the whole lot in one sitting may well be like reading a dictionary. Fortunately,

it’s possible to absorb much of the information contained in the language reference

by reading the wealth of tutorials available online, and examining the code that’s

used in open source PHP applications. Certainly, as you read this book, I hope

you’ll pick up a thing or two about getting the most out of PHP. However, it is

worth familiarizing yourself with the subjects contained in this section of the

manual, and keeping them in the back of your mind for future reference.

[4] http://www.php.net/docs.php

3

Section I: Getting Started

http://www.php.net/docs.php
http://www.php.net/getting-started
http://www.php.net/langref
http://www.php.net/getting-started
http://www.php.net/langref
http://www.php.net/docs.php

Section III: Features
http://www.php.net/features

Covered here are the core elements of PHP that are generally focused on solving

specific Web-related problems. Much of the Features section reads like an “exec-

utive summary” and, from a developers point of view, the information contained

here may be better understood when you see it in action—for instance, in the

examples we’ll see throughout this book.

Section IV: Function Reference
http://www.php.net/manual/en/funcref.php

This section makes up the real body of the manual, covering all aspects of the

functionality available within PHP. This is where you’ll spend most of your time

as you progress with PHP, so you’ll be glad to hear the PHP group has made a

concerted effort to make this section easy to get around. It’s even fun, in an idle

moment, just to trawl the manual and be amazed by all the things you can do

with PHP. Yes, I did just describe reading a manual as “fun”!

The function reference is broken down into subsections that cover various cat-

egories of functions, each category corresponding to a PHP extension.

PHP Extensions

The notion of an extension can be a little confusing to start with, as many are distributed

with the standard PHP installation. The String functions, which we’d be pretty hard-

pressed to live without, are a case in point. In general, the PHP group distributes, as part

of the default PHP installation, all the extensions they regard as being essential to de-

velopers.

Extensions regarded as “non-essential” functionality (i.e. they will be required by some,

but not all developers) must be added separately. The important information appears

under the heading “Installation” on the main page for each extension. Core extensions

are described with the sentence “There is no installation needed to use these functions;

they are part of the PHP core.” Nonstandard extensions are examined in Appendix B.

Access to information within the Function Reference is available through the

search field (top right) and searching within the “Function List”. Note that

searching within the function list examines only the Function Reference section

Chapter 1: PHP Basics

4

http://www.php.net/features
http://www.php.net/manual/en/funcref.php
http://www.php.net/features
http://www.php.net/manual/en/funcref.php

of the manual. To search the entire manual you need to search within “Online

Documentation.”

Another handy way to get around is to “short cut” to functions by passing the

name of the topic you’re interested in via the URL. For example, try entering the

following in your browser’s address field: http://www.php.net/strings. This will

take you to http://www.php.net/manual/en/ref.strings.php, which is the main page

for the Strings extension. Looking at this page, you’ll see a list of all the functions

made available by the extension; the same list is available in the menu on the

left hand side.

Taking the strpos function as an example, enter the URL

ht tp : / /www.php .ne t / s t rpos (wh i ch t ake s you to

http://www.php.net/manual/en/function.strpos.php). You will see the following

information about the strpos function:

strpos

(PHP 3, PHP 4)

strpos -- Find position of first occurrence of a string

Description

int strpos (string haystack, string needle [, int offset])

Returns the numeric position of the first occurrence of needle in the haystack string.

Unlike the strrpos(), this function can take a full string as the needle parameter and

the entire string will be used.

If needle is not found, returns FALSE.

Line one contains the name of the function and line two lists the PHP versions

in which the function is available. The third line tells you what the function ac-

tually does. In this case, it’s a fairly terse explanation, but strpos really isn’t a

subject you can get excited about.

Under the Description heading is perhaps the most important line of all—the

function’s signature. This describes the arguments this function accepts and

the value it returns in response. Reading from left to right, you have int, which

tells you that the value returned by the function is an integer (in this case, the

position of one piece of text within another). Next comes the name of the function

itself, and then, in parentheses, the arguments this function takes, separated by

commas.

5

Section IV: Function Reference

http://www.php.net/strings
http://www.php.net/manual/en/ref.strings.php
http://www.php.net/strpos
http://www.php.net/manual/en/function.strpos.php
http://www.php.net/strings
http://www.php.net/manual/en/ref.strings.php,
http://www.php.net/strpos
http://www.php.net/manual/en/function.strpos.php).

Let’s look at the argument string haystack. This says the first argument should

be a string value, while haystack simply names the argument so that it can be

referred to in the detailed description. Note that the third argument is placed

inside square brackets, which means it’s optional (i.e. you don’t have to supply

this argument).

Here’s how you could use strpos:

File: 1.php

<?php
$haystack = 'Hello World!';
$needle = 'orld';

// Use the strpos() function
$position = strpos($haystack, $needle);

echo 'The substring "' . $needle . '" in "' .
 $haystack . '" begins at character ' . $position;
?>

Notice that I’ve used strpos similarly to the way it appears in the manual. I used

the variable names $haystack and $needle to make clear the way each relates

to the explanation in the manual, but you can use whatever variable names you

like.

The function signature convention is used consistently throughout the manual,

so once you’re used to it, you’ll be able to grasp quickly how to use functions

you haven’t tried before.

Get Help When Problems Arise

If you make a mistake using an in-built function in PHP 4.3.0, the default

error reporting mechanism of PHP will display an error message with a link

that takes you directly to the manual.

If you’re ever in doubt, be sure to read through the comments submitted by

other PHP developers, which appear at the bottom of every page in the manual.

Usually, you will at least see an example of how the function is used, which may

solve the particular dilemma you’ve run into. In many cases you’ll also find al-

ternative explanations and uses for a function, which help broaden your under-

standing.

Chapter 1: PHP Basics

6

Further Help
Outside the manual, there are literally thousands of online resources from which

you can get further help. I would dare to say that 99% of all the common problems

you’ll encounter with PHP have already been answered somewhere, and are

available online. That means the most obvious (but sometimes forgotten) place

to begin is Google, where a quick search for “PHP strpos problem” will give you

an idea of what I mean.

There are also some excellent sites where you can get answers directly from other

PHP developers (for free, of course—it’s part of the PHP ethic). Perhaps the three

biggest in the English language are:

� SitePoint Forums: http://www.sitepointforums.com/

� Dev Shed Forums: http://forums.devshed.com/

� phpBuilder: http://www.phpbuilder.com/board/

Each of these uses vBulletin[16] to host an online discussion and, as such, have

very friendly and easy-to-use interfaces. All have very active memberships and

you should find most questions answered within twenty-four hours.

Note that when you ask for help on forums, the principle of “helping others to

help yourself” is important. Don’t post a message that says, “This script has a

problem” and paste in your entire PHP script. Narrow the problem

down–identify the area where you’re having problems and post this code snippet

along with other relevant information, such as error messages, the purpose of the

code, your operating system, and so on. People offering to help generally don’t

want to spend more than a few minutes on your problem (they’re doing it for

free, after all), so saving them time will improve your chance of getting a helpful

answer.

Less convenient, but perhaps the most effective last resorts are the PHP mailing

lists[17], where beginners are encouraged to use the PHP General list. The lists

are available for limited browsing[18], though it’s possible to search some of them

using the search field from the PHP Website[19] and selecting the list of your

choice.

[16] http://www.vbulletin.com/

[17] http://www.php.net/mailing-lists.php

[18] http://news.php.net/

[19] http://www.php.net/

7

Further Help

http://www.sitepointforums.com/
http://forums.devshed.com/
http://www.phpbuilder.com/board/
http://www.vbulletin.com/
http://www.php.net/mailing-lists.php
http://www.php.net/mailing-lists.php
http://news.php.net/
http://www.php.net/
http://www.sitepointforums.com/
http://forums.devshed.com/
http://www.phpbuilder.com/board/
http://www.vbulletin.com/
http://www.php.net/mailing-lists.php
http://news.php.net/
http://www.php.net/

Zend, the company developing the core of the PHP engine, also hosts a fairly

active forum[20] for general PHP questions.

If you want to be guaranteed an answer, it’s worth investigating PHP Help-

desk[21], a service run by Tap Internet[22], who have partnered with Zend to

offer PHP training.

How do I fix an error that PHP finds in
my script?

There you are, half way through your latest and greatest script, and all of a sudden

a test execution delivers this error:

Parse error: parse error, unexpected T_ECHO, expecting ',' or ';'
in c:\htdocs\sitepoint\phpbasics\2.php on line 5

The offending code here is as follows:

File: 2.php

<?php
echo 'This is some code
';
echo 'Somewhere in here I\'ve got a ';
echo 'parse error!
'
echo 'But where is it?
';
?>

What you’re dealing with here is known as a syntax error, and while you’re new

to PHP you may find yourself spending a lot of time hunting down such problems.

As you get more experienced with PHP, tracking down syntax errors will become

easier. You’ll even come to know your own bad habits and probably be able to

guess the error you made before you start the hunt (my own typical failings are

forgetting the final quote when building SQL statements in a PHP string and

leaving out commas when building arrays). Being familiar with PHP’s error

messages is a good idea, though.

In general terms, there are four basic types of errors you’ll encounter in your PHP

applications:

[20] http://www.zend.com/phorum/list.php?num=3

[21] http://www.phphelpdesk.com/

[22] http://www.tapinternet.com/

Chapter 1: PHP Basics

8

http://www.zend.com/phorum/list.php?num=3
http://www.phphelpdesk.com/
http://www.phphelpdesk.com/
http://www.tapinternet.com/
http://www.zend.com/phorum/list.php?num=3
http://www.phphelpdesk.com/
http://www.tapinternet.com/

Syntax Errors
As in the example above, syntax errors occur when you break the rules of PHP’s

syntax. Syntax errors will usually result in a Parse Error message from PHP.

In the example above, the problem itself occurs on line 4:

echo 'parse error!
'

I forgot to add at the end of the line the semicolon (;) that’s required to mark

the termination of every statement. The PHP parser only noticed the problem

on line five when it encountered another echo statement, as instructions may

legally span more than one line. This is worth being aware of, as it sometimes

makes errors hard to find—an error might actually have occurred prior to the

line on which PHP noticed a problem.

Syntax errors can get particularly confusing in the case of large if-else or while
statements where, for example, you’ve forgotten a closing parenthesis. Perhaps

you have a long listing that’s interspersed by blocks of HTML; finding that

missing curly brace may be extremely difficult. However, as your coding technique

improves and you start to take advantage of classes, breaking your code up into

discrete blocks within which the code is short and easy to read, you’ll find locating

syntax errors much easier.

One further thing to be aware of is PHP’s use of tokens. In the above error

message, PHP complained about an “unexpected T_ECHO.” A T_ECHO is a

token representing an echo statement in your PHP script. The PHP parser breaks

your code up into tokens so that it can analyze and process the script. Some of

the tokens you’ll see reported in parse errors are less obvious than others, so if

you’re unsure, it’s worth looking at the manual on tokens[23].

If you’re using PHP 4.3.0, you’ll find it includes the so-called tokenizer exten-

sion[24], which allows you to see your script the way the PHP parser views it.

For the sake of interest, here’s how you could view the tokenizer’s output:

File: 3.php

<?php
/* Note: This script will only work with PHP 4.3.0 or later */

// Read a PHP script as a string

[23] http://www.php.net/tokens

[24] http://www.php.net/tokenizer

9

Syntax Errors

http://www.php.net/tokens
http://www.php.net/tokenizer
http://www.php.net/tokenizer
http://www.php.net/tokens
http://www.php.net/tokenizer

$script = file_get_contents('2.php');

// Fetch the tokens into an array
$tokens = token_get_all($script);

// Display
echo '<pre>';
print_r($tokens);
echo '</pre>';
?>

Semantic Errors
Semantic errors occur when you write code that obeys the rules of PHP’s syntax,

but which, when executed, breaks the “runtime rules” of PHP. For example, the

foreach statement expects you to give it an array:

File: 4.php

<?php
$variable = 'This is not an array';

foreach ($variable as $key => $value) {
 echo $key . ' : ' . $value;
}
?>

Because $variable was not an array, this script produces the following error

message:

Warning: Invalid argument supplied for foreach() in
c:\htdocs\sitepoint\phpbasics\3.php on line 4

Semantic errors usually result in a Warning error message like this one.

Environment Errors
Environment errors occur when a system that’s external to a PHP script causes

a problem. For example, your MySQL server might have been down at the point

at which your PHP script tried to connect to it. Perhaps you specified an incorrect

path to a file you wanted to open, so PHP was unable to find the file.

These errors also occur when we take a PHP script that has been written on one

system, and execute it on another system with a different environment. The

Chapter 1: PHP Basics

10

problem may simply be that the underlying directory structure or domain name

of the Web server is different. It’s common to deal with these types of issues by

creating a central configuration script that stores all these environment variables.

PHP also has a number of settings in php.ini that can cause a script to fail on

another system where the settings are different. I’ll be looking at these in “How

do I write portable PHP code?”; there’s also summary information in Appendix A.

Logic Errors
Logic errors occur when an application runs perfectly as far as the PHP engine

is concerned, but the code does something other than what you had intended.

For example, imagine you have a mailing script that you want to use to send the

same message to a few of the members of your online forum. To your horror, you

discover upon executing the script that you’ve mailed the entire forum membership

… twenty times!

These kinds of problems are the most difficult to find; users of Windows XP will

be well acquainted with Windows updates—even big companies struggle with

logic errors.

Critical to finding logic errors is your ability to test rigorously your code in a safe

environment that’s separate from your “live” Web server. Thankfully, PHP and

related technologies like Apache and MySQL (if you’re using them) are cross

platform, which makes putting together an effective development environment

easy even if the underlying operating systems are different.

You should also investigate unit testing, a facet of Extreme Programming (XP),

to which you’ll find an introduction in Volume II, Chapter 6. I’ve also suggested

further reading at the end of this chapter.

In Chapter 10, I’ll be taking a look at strategies for handling errors themselves,

particularly environment errors. In particular, we’ll discuss how you can record

(or trap) errors for your analysis without displaying ugly messages to your applic-

ations users.

11

Logic Errors

How do I include one PHP script in
another?

Having discovered that writing thousand-line scripts may not be the best way to

stay organized, you’re probably looking for ways to break your code into separate

files. Perhaps, while using someone else’s Open Source application, you find

yourself struggling to eliminate error messages like the one below:

Fatal error: Failed opening required 'script.php'

Mutual Inclusion
PHP provides four commands that allow you to add the contents of one PHP

script to another, namely include, require, include_once and require_once.

In each case, PHP fetches the file named in the command, then executes its

contents. The difference between include and require is the way they behave

should they be unable to find the script they were told to fetch.

include will generate a PHP warning message like this:

Warning: Failed opening 'script.php' for inclusion

This will allow the script that called the include command to continue execution.

By contrast, require results in a fatal error like the one shown above, which

means the calling script will terminate, bringing everything to a halt. If the file

that was required is critical to your application, having the script terminate is a

very good thing.

The include_once and require_once commands behave similarly to their re-

spective cousins, but if the script has already been included or required anywhere

else (by any of the four commands), the statement will be ignored. At first glance,

it may not be obvious how these commands can be used; surely you’ll know how

many times you’ve used an include command, right? Where the _once commands

become extremely handy is in more complex applications in which you have PHP

scripts that include other PHP scripts, which in turn include yet more PHP scripts.

This is particularly important when you use libraries of classes (which we’ll explore

in Chapter 2), and those classes are being reused repeatedly by many scripts. One

class may depend on another being available; using a require_once to include

Chapter 1: PHP Basics

12

the required class ensures it will always be available, yet causes no problem if the

class happens to have been used elsewhere.

To see all this in action, let’s make a script called include_me.php:

File: include_me.php

<?php
// include_me.php

echo 'I\'ve been included!
';
?>

Every time this script is included it will display the message “I’ve been included!”

so we know it’s worked.

Now, let’s test the various ways we can include this file in another script:

File: 5.php

<?php
// This works fine
echo '
Requiring Once: ';
require_once 'include_me.php';

// This works fine as well
echo '
Including: ';
include 'include_me.php';

// Nothing happens as file is already included
echo '
Including Once: ';
include_once 'include_me.php';

// This is fine
echo '
Requiring: ';
require 'include_me.php';

// Again nothing happens - the file is included
echo '
Requiring Once again: ';
require_once 'include_me.php';

// Produces a warning message as the file doesn't exist
echo '
Include the wrong file: ';
include 'include_wrong.php';

// Produces a fatal error and script execution halts
echo '
Requiring the wrong file: ';

13

Mutual Inclusion

require 'include_wrong.php';

// This will never be executed as we have a fatal error
echo '
Including again: ';
include 'include_me.php';
?>

Here’s the output this generates (note that I’ve simplified the error messages at

the end):

Requiring Once: I've been included!

Including: I've been included!

Including Once:

Requiring: I've been included!

Requiring Once again:

Include the wrong file:
Warning: Failed opening 'include_wrong.php' for inclusion

Requiring the wrong file:Fatal error: Failed opening required
'include_wrong.php'

Notice here that the first use of include_once does nothing (the file has already

been included), as does the later use of require_once. Later on, when I try to

include the wrong file (in this case, a file that doesn’t exist), I get a warning

message. However, execution continues to the next line where I try to require a

file that doesn’t exist. This time, PHP produces a fatal error and execution of the

script halts, meaning the final attempt to include the file will never happen.

Be aware that the files you include needn’t contain only PHP. The included file

could simply contain HTML without any PHP.

Which Command to Use?

As a general practice, unless you have a special circumstance where some

other behavior is needed, always use the require_once command to include

one file in another. This is particularly important when you’re placing PHP

classes in separate files, and one class may depend on another. For the full

story on classes, see Chapter 2.

Chapter 1: PHP Basics

14

PHP’s four include commands should not be confused with the various file-related

functions (discussed in Chapter 4); these are intended for fetching files without

parsing them immediately as PHP scripts, thereby allowing you to work on their

contents.

Note that throughout this book I’ll be talking about “including” a file even when

I’m using one of the require commands. This is a common convention for talking

about PHP that stems from older programming languages used by the first PHP

pioneers.

Path Finding
So far, I’ve only looked at including files in the same directory as the script that

contains the include command. In practice, you’ll usually want to organize files

into subdirectories based on the job they do. This can be a source of much con-

fusion, particularly when you’re using third party code, as there are numerous

alternative approaches to dealing with includes in other directories.

The first thing to be aware of is that all includes are calculated relative to the

directory in which the main script (where execution began) resides. For example,

imagine we have three files in the following locations:

/home/username/www/index.php
/home/username/www/includes/script.php
/home/username/www/another.php

First, let’s consider index.php. The command include 'includes/script.php';
will correctly include script.php, assuming index.php is the actual file requested.

But what if we use the following command in script.php:

include '../another.php'; // ???

If script.php is the page we’re viewing, this command will correctly include

another.php. However, if index.php is the page we’re viewing, and it includes

script.php, this command will fail, because the location of another.php is cal-

culated relative to the location of index.php, not relative to script.php.

We have two choices. We can modify script.php so that it includes another.php
as follows:

include 'another.php';

15

Path Finding

Alternatively, we can enter the full path to another.php, like this:

include '/home/username/www/another.php';

This leaves no doubt as to where another.php is located.

The PHP configuration file php.ini also contains the directive include_path.

This allows you to specify directories from which files can be included, without

the need to specify their locations when using one of the include commands.

This approach needs to be used with caution, as it may lead to strange results if

an included file of the same name exists in more than one directory, yet it can

be an effective means to solve include-related headaches. PHP’s PEAR[25] class

library, for example, relies on your adding the directory that contains PEAR’s

include files to the include path. Note also that it’s not a good idea to specify

too many locations in your include path, as this will slow PHP down when it

tries to find the scripts you’ve included in your code.

If you’re using Apache in a shared hosting environment, you may be able to

override the value of include_path using a .htaccess file. Placed in the directory

to which you want it to apply (it will also apply to all subdirectories), the file

should contain something like this:

php_value include_path ".:/usr/local/lib/php:/home/user/phplib/"

The same can also be accomplished with the PHP function ini_set, for example:

ini_set('include_path', 'C:/phplib/');

This allows changes to be made at runtime from within a PHP script.

You’ll find a reference to php.ini values in Appendix A.

How do I write portable PHP code?
Not all PHP installations are the same. Depending on version and configuration

settings in php.ini, your script may or may not run correctly on another server

where PHP is installed. However, there are some general good practices you can

adopt to make life easier and minimize the need to rewrite code for other servers.

[25] http://pear.php.net/

Chapter 1: PHP Basics

16

http://pear.php.net/
http://pear.php.net/

Keep All Configuration Central
For most PHP applications, it will be necessary to provide information describing

the environment in which the script will run, including database user names and

passwords, directory locations, and so on. As a general rule, try to keep the ma-

jority of this information in a single place—maybe even a single file—so that

when the information needs to be modified, you can do it all in the one place.

That said, when building modular applications, you may want to store elements

of the configuration that are local to a specific “module” with the module itself,

rather than centrally.

How exactly you choose to store this information is a matter of personal choice.

In some cases, it may be worth considering an XML file or storing some of the

information in a database. It’s also worth being aware of the parse_ini_file
function, which I’ll explore in Chapter 4.

A simple but effective mechanism is to place all the settings in a single file as

PHP constants, which makes them available from any function or class in your

application. For example:

File: 6.php

<?php
// Configuration settings
define('DOMAIN', 'sitepoint.com');

// In another script
echo 'The domain is ' . DOMAIN;
?>

Constants need to be used with caution, though. To make your functions and

classes reusable in other applications, they shouldn’t depend on constants of a

fixed name; rather, they should accept configuration information as arguments.

In such cases, it’s best to use PHP variables in your central configuration file,

which you can then pass to functions and classes as required. If you look at

Chapter 3, when connecting to MySQL we can identify a number of variables

we need to have in a central location: the server host name, the user name, the

password, and the name of the selected database.

Using the require_once command we looked at in the previous solution, we can

create a file called, for instance, config.php, and place it outside the public Web

directories. This helps ensure that no one accidentally browses to the file contain-

ing this critical information, which would place the site’s security at risk.

17

Keep All Configuration Central

http://www.sitepoint.com');

Use the Full <?php ?> Tags
PHP supports a variety of tag styles to mark up sections of PHP code, including

the short tags (<? ?>), and ASP-style tags (<% %>). These are controlled from

php.ini with the settings short_open_tag and asp_tags. While you have these

settings set to On, other people may not. The short tag style, for example, causes

a problem when the PHP is mixed with XML documents, which use processing

instructions like this:

<?xml version="1.0"?>

If we have a document which contains PHP and XML, and we have the

short_open_tag turned on, PHP will mistake the XML processing instruction

<?xml for a PHP opening tag.

It’s possible that your code will need to run in environments where

short_open_tags and asp_tags are both off. The best way to be sure that they

are is to get into the habit of always using the <?php ?> tag style, otherwise there

may be a lot of code rewriting to do in some dark future.

register_globals off
PHP is capable of turning incoming data into native PHP variables. This feature

is controlled by the register_globals setting in php.ini. With register_glob-
als switched on, if I point my browser at an address like http://www.mysite.com/in-

dex.php?logged_in=1, PHP will automatically create a variable $logged_in and

assign it the value of 1. The PHP group now recommends this setting be disabled

because it presents a risk to security, as the previous example suggests.

So, in php.ini make sure the following code is in place:

register_globals = Off

This will force you to access incoming data via the special predefined superglobal

variables (e.g. $_GET['username']), which means they won’t conflict with

variables you’ve created in your script.

Using a .htaccess file with Apache, the same result can be achieved with the

following code:

php_flag register_globals off

Chapter 1: PHP Basics

18

http://www.mysite.com/in-dex

Further information can be found in the PHP manual[26], and in Kevin Yank’s

article, Write Secure Scripts with PHP 4.2![27] on SitePoint.

Magic Quotes
Magic quotes is a feature intended to help prevent security breaches in sites

developed by PHP beginners.

It adds escape characters (see Chapter 5 for more information) to incoming

URL query strings, form posts, and cookie data automatically, before your script

is able to access any of these values. Should you insert the data directly into your

database, there’s no risk of someone being able to tamper with the database

provided magic quotes functionality is switched on.

For beginners, this is certainly a useful way to prevent disasters. However, once

you understand what SQL injection attacks are, and have developed the habit

of dealing with them in your code, the magic quote functionality can become

more of a problem than it’s worth.

Magic quotes functionality is controlled by a PHP configuration setting, ma-
gic_quotes_gpc, which can be either on or off.

My own preference is to always have magic quotes switched off, and deal with

escaping data for SQL statements myself. Unfortunately, this means the code I

write won’t port well to PHP installations where magic quotes is switched on (I’ll

end up with backslashes in my content). Thankfully, to deal with this problem,

PHP provides the function get_magic_quotes_gpc, which can be used to find

out whether magic quotes are switched on. To keep the code in this book portable,

we’ll use a simple file that strips out magic quotes, should the functionality be

enabled:

File: MagicQuotes/strip_quotes.php (in SPLIB)

<?php
/**
 * Checks for magic_quotes_gpc = On and strips them from incoming
 * requests if necessary
 */
if (get_magic_quotes_gpc()) {
 $_GET = array_map('stripslashes', $_GET);
 $_POST = array_map('stripslashes', $_POST);

[26] http://www.php.net/registerglobals

[27] http://www.sitepoint.com/article/758

19

Magic Quotes

http://www.php.net/registerglobals
http://www.sitepoint.com/article/758
http://www.php.net/registerglobals
http://www.sitepoint.com/article/758

 $_COOKIE = array_map('stripslashes', $_COOKIE);
}
?>

If we include this at the start of any file in which we accept data from a query

string, a form post, or a cookie, we’ll remove any slashes added by magic quotes,

should this functionality be switched on. This effectively gives us back what we

started with.

The subject of SQL injection attacks is discussed in detail in “How do I solve

database errors caused by quotes/apostrophes?” in Chapter 3. If you’re not yet

confident that you can protect yourself against SQL Injection attacks, use magic

quotes. Once you’re happy you have a full grasp of all the issues, switch the magic

quotes functionality off and save yourself many headaches. Note that magic

quotes can only be switched on or off using the php.ini file or one of Apache’s

.htaccess files. For more information, see Appendix A.

Call-Time Pass-By-Reference Off
A reference is like a “short cut” to the value of a variable. References are often

required when we use PHP functions and classes, a subject we’ll discuss further

in Chapter 2. When you use a reference to a variable in calling a function or class

method, it’s defined as a call-time pass-by-reference Consider this example:

$result = myFunction(&$myVariable);

Here the & operator tells PHP to use a reference to the variable $myVariable as

the argument, rather than creating a copy of its value. This is now generally re-

garded as bad practice, as it can make the job of understanding someone else’s

code extremely difficult.

Switch this off in php.ini using the following command:

allow_call_time_pass_reference = Off

Alternatively, switch it off in a .htaccess file as follows:

php_flag allow_call_time_pass_reference off

Write Reusable Code
It’s easy to say, I know, but if you find yourself writing any more than one PHP

script, you need to start thinking about ways to make your code reusable, before

Chapter 1: PHP Basics

20

you suffer premature hair loss. Technically, this isn’t exactly an issue of portability

as such, but if you end up working on other sites or applications, you’ll appreciate

having ready code that you can simply plug into your new project. Also, if you’re

writing code that other people will integrate with existing applications on their

Websites, you need to package it in a form that doesn’t place requirements on

the code they’re already using.

For example, if your application has some kind of user authentication system,

will it integrate with the one they’re already using—a system that already has a

large database of users associated with it?

The best approach is to write object oriented code (the focus of Chapter 2) with

a mind to creating reusable “components.” Some people argue that writing object

oriented code in PHP slows down the application’s performance and should

therefore be avoided at all costs. What they forget to mention is the drastic in-

crease in your performance that object oriented programming delivers. After all,

fast programmers cost more than fast microprocessors!

Some things to consider when measuring the potential of your code for reuse are:

� What happens when requirements change?

� How easy is it to add new features to your code?

� Are you still able to understand the code after a long period of time?

� Can your code be integrated easily with other applications?

� Will assumptions made in your code apply to your work on other sites?

You’ll find throughout this book many hints and suggestions to encourage you

to write reusable code, although an in-depth analysis of PHP applications design

as a whole is beyond its scope. As you read this book, you should get a feeling

for some of the critical factors as subjects for further investigation. You have one

main responsibility to yourself as an experienced PHP developer: to keep expand-

ing your general knowledge of the more esoteric aspects of software development,

such as design patterns and enterprise application architecture, as a means

to improve your development technique and, more importantly, save yourself

time. The broader your knowledge, the lower the risk of failure when you land

that big project.

21

Write Reusable Code

Further Reading
� Write Secure Scripts with PHP 4.2!: http://www.sitepoint.com/article/758

A tutorial that explains the importance of writing scripts with register_glob-
als switched off.

� Effortless (or Better!) Bug Detection with PHP Assertions:
http://www.sitepoint.com/article/1008

� Using Strings: http://www.zend.com/zend/tut/using-strings.php

Zend provides a walk-through of the main functions available for working

with strings.

� String Theory: http://www.devshed.com/Server_Side/PHP/StringTheory/

DevShed offers an in depth look at strings, going as far as Posix extended

regular expressions.

Chapter 1: PHP Basics

22

http://www.sitepoint.com/article/758
http://www.sitepoint.com/article/1008
http://www.zend.com/zend/tut/using-strings.php
http://www.devshed.com/Server_Side/PHP/StringTheory/
http://www.sitepoint.com/article/758
http://www.sitepoint.com/article/1008
http://www.zend.com/zend/tut/using-strings.php
http://www.devshed.com/Server_Side/PHP/StringTheory/

Object Oriented PHP2
The object oriented paradigm is an approach to programming that’s intended to

encourage the development of maintainable and well structured applications.

Many PHP coders regard object oriented programming (OOP) as some kind

of mystic art, given that frequently, examples of PHP look only at procedural1

approaches to problem solving. This is a shame, as there is much to be gained

from adopting an object oriented approach to developing PHP applications,

perhaps the most important being code reuse. A well written piece of object ori-

ented code can easily be employed to solve the same problem in other projects;

we can simply slot it in whenever we need it. There is a growing number of object

oriented code repositories, such as PEAR[1] and PHP Classes[2], which can save

you from hours of work spent solving well charted problems, and leave you free

to focus on the specifics of your application.

In this chapter, you’ll gain a practical grounding in writing object oriented

PHP—and there’ll be plenty of opportunities to get your hands dirty. There are

many ways to teach OOP, and the topic provides endless room for discussion.

In my opinion, the best approach is to dive in head first, seeing how procedural

tasks can be accomplished with classes in PHP, and adding the theory as we go.

This is the approach we’ll take in this chapter. Throughout both volumes of The

1Procedural programming is the name given to non-object oriented programming. All the code we’ve

seen in this book so far has been procedural in nature.

[1] http://pear.php.net/

[2] http://www.phpclasses.org/

http://pear.php.net/
http://www.phpclasses.org/
http://pear.php.net/
http://www.phpclasses.org/

PHP Anthology, I’ll be using OOP, where appropriate, which should give you

further examples to study. In particular, Volume II, Chapter 7 should provide

some insight into why OOP is an effective way to structure your applications.

In practice, learning to use the object model provided by PHP requires us to

achieve two goals, which usually have to be undertaken simultaneously:

� You’ll need to learn the PHP class syntax and object oriented terminology.

� You must make the “mental leap” from procedural to object oriented code.

The first step is easy. It’s the subject of the next solution, and further examples

appear in later solutions that look at more advanced subjects.

The second step, the “mental leap”, is both easy and challenging. Once you

achieve it, you will no longer think about long lists of tasks that a single script

should accomplish; instead, you’ll see programming as the putting together of a

set of tools to which your script will delegate work.

Jumping ahead a little—to give you a taste of things to come—here’s a simple

example that should be familiar to anyone who’s worked with PHP for more than

a week: connecting to MySQL and fetching some data. A common procedural

approach looks like this:

<?php
// Procedural Example

// Connect to MySQL
$connection = mysql_connect('localhost', 'harryf', 'secret');

// Select desired database
mysql_select_db('sitepoint', $connection);

// Perform a query selecting five articles
$sql = 'SELECT * FROM articles LIMIT 0,5';
$result = mysql_query($sql, $connection);

// Display the results
while ($row = mysql_fetch_array($result)) {
 // Display results here
}
?>

Chapter 2: Object Oriented PHP

24

In the above script, we’ve called directly PHP’s MySQL functions, which act on

the variables we pass to them. This generally results in our getting back a new

variable with which we can perform further work.

An object oriented approach to solving the same problem might look like this:

<?php
// OOP Example

// Include MySQL class
require_once 'Database/MySQL.php';

// Instantiate MySQL class, connect to MySQL and select database
$db = new MySQL('localhost', 'harryf', 'secret', 'sitepoint');

// Perform a query selecting five articles
$sql = 'SELECT * FROM articles LIMIT 0,5';
$result = $db->query($sql); // Creates a MySQLResult object

// Display the results
while ($row = $result->fetch()) {
 // Display results here
}
?>

The detail of dealing with MySQL using PHP’s MySQL functions has now been

delegated to an object that’s created from the MySQL class (which we’ll use fre-

quently throughout this book, and which is constructed in Chapter 3). Although

this example may not make entirely clear the advantages of OOP, given that, in

terms of the amount of code, it’s very similar to the first example, what it does
show is that some of the original script’s complexity is now being taken care of

by the MySQL class.

For example, we now no longer need to perform two steps to connect to the

MySQL server, and then select a database; rather, we can handle both steps in

one when we create the MySQL object. Also, should we later wish to have the script

fetch the results from a different database, such as PostgreSQL, we could use the

relevant class that provided the same application programming interface (API)

as the MySQL class—and, to do so, we’d only need to change a single line of the

above example. We’ll do exactly that in Volume II, Chapter 7.

The object oriented approach really shows its worth in situations in which objects

interact with each other. I’ll leave further discussion of that to the solutions in

this chapter, but it’s an important concept. As you become fluent in object ori-

25

ented programming, you’ll find that writing complex applications becomes as

easy as putting together blocks of Lego.

I’ll introduce the occasional Unified Modelling Language (UML) class diagram

in this discussion. UML is a standard for describing object oriented programs

with images. Don’t worry if you haven’t come across UML before; the relationship

between the diagrams and the code will speak for itself.

What are the basics of object oriented
PHP?

Assuming you have no knowledge of OOP, the best place to start is with the basic

PHP syntax for classes. You can think of a class simply as a collection of functions

and variables.

Read The Fine Manual

The PHP manual contains a wealth of information on OOP:

http://www.php.net/oop

Here, we’ll develop a simple example that could help us generate HTML, which

will demonstrate the basics of classes and objects in PHP. This isn’t intended to

be an example of great design; it’s simply a primer in PHP syntax. Let’s begin

with a procedural script that builds a Web page. Then we’ll gradually turn it into

a PHP class:

File: 1.php

<?php
// Generates the top of the page
function addHeader($page, $title)
{
 $page .= <<<EOD
<html>
<head>
<title>$title</title>
</head>
<body>
<h1 align="center">$title</h1>
EOD;
 return $page;

Chapter 2: Object Oriented PHP

26

http://www.php.net/oop
http://www.php.net/oop

}

// Generates the bottom of the page
function addFooter($page, $year, $copyright)
{
 $page .= <<<EOD
<div align="center">© $year $copyright</div>
</body>
</html>
EOD;
 return $page;
}

// Initialize the page variable
$page = '';

// Add the header to the page
$page = addHeader($page, 'A Prodecural Script');

// Add something to the body of the page
$page .= <<<EOD
<p align="center">This page was generated with a procedural
script</p>
EOD;

// Add the footer to the page
$page = addFooter($page, date('Y'), 'Procedural Designs Inc.');

// Display the page
echo $page;
?>

Of note in this example is our first look at heredoc syntax, which is an alternative

method of writing PHP strings. Instead of surrounding the text with quotes, you

begin it with <<<EOD and a new line, and end it with a new line and then EOD.

The PHP Manual[4] can offer more detail on this if you're curious.

This procedural example uses two functions, addHeader and addFooter, along

with a single global variable, $page. Perhaps this isn’t a far cry from procedural

scripts you’ve written yourself; maybe you’ve included in every page a file that

contains functions such as addHeader and addFooter.

[4] http://www.php.net/types.string#language.types.string.syntax.heredoc

27

What are the basics of object oriented PHP?

http://www.php.net/types.string#language.types.string.syntax.heredoc
http://www.php.net/types.string#language.types.string.syntax.heredoc

But how do we refactor2 the above code to take on an object oriented form?

First, we need a class into which we can place the two functions, addHeader and

addFooter:

File: 2.php (excerpt)

<?php
// Page class
class Page {
 // Generates the top of the page
 function addHeader($page, $title)
 {
 $page .= <<<EOD
<html>
<head>
<title>$title</title>
</head>
<body>
<h1 align="center">$title</h1>
EOD;
 return $page;
 }

 // Generates the bottom of the page
 function addFooter($page, $year, $copyright)
 {
 $page .= <<<EOD
<div align="center">© $year $copyright</div>
</body>
</html>
EOD;
 return $page;
 }
}

Using the PHP keyword class, we can group the two functions, addHeader and

addFooter, within the class. Functions placed inside a class are known as member

functions, or, more commonly, methods. Unlike normal functions, methods

must be called as part of the class:

2Refactoring is the process of restructuring code without actually changing what it does. This is usually

done to ease future maintenance and expansion of the code that would be hindered by its current

structure.

Chapter 2: Object Oriented PHP

28

File: 2.php (excerpt)

// Initialize the page variable
$page = '';

// Add the header to the page
$page = Page::addHeader($page, 'A Script Using Static Methods');

// Add something to the body of the page
$page .= <<<EOD
<p align="center">This page was generated with static class
methods</p>
EOD;

// Add the footer to the page
$page = Page::addFooter($page, date('Y'), 'Static Designs Inc.');

// Display the page
echo $page;
?>

Here, we’ve called the class methods addHeader and addFooter using the ::
operator. The script is practically the same as before; however, instead of calling

our functions directly, we need to call them as shown here:

$page = Page::addHeader($page, 'A Script Using Static Methods');

Although this isn’t a big improvement, it does let us collect our functions together

by their job description. This allows us to call different functions by the same

name, each nested separately inside a different class.

Static methods

So far, we’ve only used a class as a container for related functions. In object oriented

parlance, functions that are designed to work this way are called static methods.

Actually, compared to most methods, static methods are about as boring as they sound.

In the sections below, we’ll see how you can really flex your object oriented muscles with

some fully-fledged methods.

Classes and Objects
A class is a “blueprint” for an object. That is, unlike a function that you’d declare

and use, a class merely describes a type of object. Before you can do useful work

with it, you need to create an object—an instance of the class—using a process

29

Classes and Objects

called instantiation. Once you have an object, you can call the methods that

are defined in the class.

Classes don’t contain only functions—they can also contain variables. To make

the Page class we developed above more useful, we might want to group some

variables with the methods, then instantiate the class into an object. Here’s the

code for the revamped Page class; join me below for the explanation:

File: 3.php (excerpt)

<?php
// Page class
class Page {

 // Declare a class member variable
 var $page;

 // The constructor function
 function Page()
 {
 $this->page = '';
 }

 // Generates the top of the page
 function addHeader($title)
 {
 $this->page .= <<<EOD
<html>
<head>
<title>$title</title>
</head>
<body>
<h1 align="center">$title</h1>
EOD;
 }

 // Adds some more text to the page
 function addContent($content)
 {
 $this->page .= $content;
 }

 // Generates the bottom of the page
 function addFooter($year, $copyright)
 {
 $this->page .= <<<EOD

Chapter 2: Object Oriented PHP

30

<div align="center">© $year $copyright</div>
</body>
</html>
EOD;
 }

 // Gets the contents of the page
 function get()
 {
 return $this->page;
 }
}

The Page class has become a lot more useful in this version of the example. First

of all, we’ve added a member variable (also called a field), in which to store the

HTML:

 // Declare a class member variable
 var $page;

The PHP keyword var is used to declare variables in classes. We can also assign

values to variables as we declare them, but we cannot place function calls in the

declaration. For example:

 // This is allowed
 var $page = '';

 // This is NOT allowed
 var $page = strtolower('HELLO WORLD');

After the variable declaration, we have a special method called the constructor.

This method is automatically executed when the class is instantiated. The con-

structor function must always have the same name as the class.

Constructors have no return value

A constructor cannot return any value. It is used purely to set up the object

in some way as the class is instantiated. If it helps, think of the constructor

as a function that automatically returns the object once it has been set up,

so there’s no need for you to supply a return value yourself.

That said, you may still use the return command with no specified value

to terminate the constructor immediately, if needed.

Inside the constructor we’ve used a special variable, $this:

31

Classes and Objects

 // The constructor function
 function Page()
 {

$this->page = '';
 }

Within any method (including the constructor) $this points to the object in

which the method is running. It allows the method to access the other methods

and variables that belong to that particular object. The -> (arrow) operator that

follows $this is used to point at a property or method that’s named within the

object.

In the example above, the constructor assigns an empty string value to the $page
member variable we declared at the start. The idea of the $this variable may

seem awkward and confusing to start with, but it’s a common strategy employed

by other programming languages, such as Java[5], to allow class members to in-

teract with each other. You’ll get used to it very quickly once you start writing

object oriented PHP code, as it will likely be required for almost every method

your class contains.

Of the other class methods, addHeader and addFooter are almost the same as

before; however, notice that they no longer return values. Instead, they update

the object’s $page member variable, which, as you’ll see, helps simplify the code

that will use this class. We’ve also used the addContent method here; with this,

we can add further content to the page (e.g. HTML that we’ve formatted ourselves,

outside the object). Finally, we have the get method, which is the only method

that returns a value. Once we’ve finished building the page, we’ll use this to create

the HTML.

All these methods access the $page member variable, and this is no coincidence.

The ability to tie PHP code (the methods) to the data (the variables) that it works

on is the most fundamental feature of object oriented programming.

Here’s the class in action:

File: 3.php (excerpt)

// Instantiate the Page class
$webPage = new Page();

// Add the header to the page
$webPage->addHeader('A Page Built with an Object');

[5] http://java.sun.com/

Chapter 2: Object Oriented PHP

32

http://java.sun.com/
http://java.sun.com/

// Add something to the body of the page
$webPage->addContent("<p> align=\"center\">This page was " .
 "generated using an object</p>\n");

// Add the footer to the page
$webPage->addFooter(date('Y'), 'Object Designs Inc.');

// Display the page
echo $webPage->get();
?>

To use the class, we’ve instantiated it with the new keyword. The object created

from the class is placed in the $webPage variable. Through this variable, we have

access to all the members of the object as we did with the $this variable above.

The first call to the addHeader method demonstrates the point:

$webPage->addHeader('A Page Built with an Object');

Only at the end, upon calling the get method, do we actually get anything back

from the class. No longer do we need to worry about passing around a variable

that contains the contents of the page—the class takes care of that.

Avoid output in classes

Instead of get, we could have endowed the Page class with a method called

write to send the page code to the browser immediately. This would have

made the code above slightly simpler, as the main script would not have had

to get the code from the object and echo it itself. We avoided this for a

reason.

It’s usually a bad idea to output directly from inside a class (with statements

and functions such as echo and printf); doing so will reduce the flexibility

of your classes. Allowing the value to be retrieved from the class gives you

the option of performing additional transformations on it before you send

it to the browser, or use it for some other purpose entirely (like putting it in

an email!).

Notice also that the number of lines of code we have to write to use the class is

fewer than were required in the earlier examples. Although it’s impossible to de-

termine good application design by counting the number of lines of code, it is

clear that the class has made the procedural code that uses it much simpler. From

the point of view of people reading the code, it’s already fairly clear what’s going

on, even without them having to look at the code for the Page class.

33

Classes and Objects

Understanding Scope
Write more than a few hundred lines of procedural PHP code and, no doubt,

you’ll run into a parser error or, worse still, a mysterious bug caused by your ac-

cidentally having used a function or variable name more than once. When you’re

including numerous files and your code grows increasingly complex, you may

find yourself becoming more paranoid about this issue. How do you stop such

naming conflicts from occurring? One approach that can help solve this problem

is to take advantage of scope to hide variables and functions from code that

doesn’t need them.

A scope is a context within which the variables or functions you define are isolated

from other scopes. PHP has three available scopes: the global scope, the function

scope, and the class scope. Functions and variables defined in any of these

scopes are hidden from any other scope. The function and class scopes are local
scopes, meaning that function X’s scope is hidden from function Y’s scope, and

vice versa.

The big advantage of classes is that they let you define variables and the functions

that use them together in one place, while keeping the functions hidden from

unrelated code. This highlights one of the key theoretical points about the object

oriented paradigm. The procedural paradigm places most emphasis on functions,

variables being treated as little more than a place to store data between function

calls. The object oriented paradigm shifts the emphasis to variables; the functions

“back” the variables and are used to access or modify them.

Let’s explore this through an example:

<?php
// A global variable
$myVariable = 'Going global';

// A function declared in the global scope
function myFunction()
{
 // A variable in function scope
$myVariable = 'Very functional';

}

// A class declared in the global scope
class MyClass {
 // A variable declared in the class scope
 var $myVariable = 'A class act';

Chapter 2: Object Oriented PHP

34

 // A function declared in the class scope
 function myFunction()
 {
 // A variable in the function (method) scope

$myVariable = 'Methodical';
 }
}
?>

In the above example, each of the $myVariable declarations is actually a separate

variable. They can live together happily without interfering with each other, as

each resides in a separate scope. Similarly, the two myFunction declarations are

two separate functions, which exist in separate scopes. Thus PHP will keep all

of their values separate for you.

Scope becomes important when you start to use object oriented programming in

a significant way in your PHP applications. As many classes can have methods

of the same name, you can design separate classes to deliver the same application

programming interface (API). The scripts that use the classes can then use the

same method calls, irrespective of which class was used to instantiate the object

they’re working with. This can be a very powerful technique in writing maintain-

able code. We’ll look at this point more when we discuss polymorphism later in

this chapter.

A Three Liner
Here’s how we could make the class even easier to use:

File: 4.php (excerpt)

<?php
// Page class
class Page {

 // Declare a class member variable
 var $page;
 var $title;
 var $year;
 var $copyright;

 // The constructor function
 function Page($title, $year, $copyright)
 {
 // Assign values to member variables

35

A Three Liner

 $this->page = '';
 $this->title = $title;
 $this->year = $year;
 $this->copyright = $copyright;

 // Call the addHeader() method
 $this->addHeader();
 }

 // Generates the top of the page
 function addHeader()
 {
 $this->page .= <<<EOD
<html>
<head>
<title>$this->title</title>
</head>
<body>
<h1 align="center">$this->title</h1>
EOD;
 }

 // Adds some more text to the page
 function addContent($content)
 {
 $this->page .= $content;
 }

 // Generates the bottom of the page
 function addFooter()
 {
 $this->page .= <<<EOD
<div align="center">© $this->year $this->copyright</div>
</body>
</html>
EOD;
 }

 // Gets the contents of the page
 function get()
 {
 // Keep a copy of $page with no footer
 $temp = $this->page;

 // Call the addFooter() method
 $this->addFooter();

Chapter 2: Object Oriented PHP

36

 // Restore $page for the next call to get
 $page = $this->page;
 $this->page = $temp;

 return $page;
 }
}

This time, we’ve modified the constructor to accept all the variables needed for

both the header and the footer of the page. Once the values are assigned to the

object’s member variables, the constructor calls the addHeader method, which

builds the header of the page automatically:

 // The constructor function
 function Page($title, $year, $copyright)
 {
 // Assign values to member variables
 $this->page = '';
 $this->title = $title;
 $this->year = $year;
 $this->copyright = $copyright;

 // Call the addHeader() method
 $this->addHeader();
 }

As you can see, like member variables, methods can be called with the $this
variable.

The addHeader method itself now fetches the data it needs from the member

variables. For example:

<title>$this->title</title>

We’ve also updated the get method so that it calls the addFooter method before

returning the contents of the $page member variable. This means that when we

come to fetch the finished page, the footer is added automatically.

 // Gets the contents of the page
 function get()
 {
 // Keep a copy of $page with no footer
 $temp = $this->page;

 // Call the addFooter() method

37

A Three Liner

 $this->addFooter();

 // Restore $page for the next call to get
 $page = $this->page;
 $this->page = $temp;

 return $page;
 }

It took a little work to make sure we could call get more than once, without

adding extra footers to the page, but this complexity is neatly hidden within the

class.

Using the class externally is now even easier:

File: 4.php (excerpt)

// Instantiate the page class
$webPage = new Page('As Easy as it Gets', date('Y'),
 'Easy Systems Inc.');

// Add something to the body of the page
$webPage->addContent(
 "<p align=\"center\">It's so easy to use!</p>\n");

// Display the page
echo $webPage->get();
?>

Essentially, the page is now built using only three lines of code; I can also reuse

this class to generate other pages. Represented as a UML diagram, the Page class

is shown in Figure 2.1.

Figure 2.1. Page Class as UML

Chapter 2: Object Oriented PHP

38

The member variables appear in the middle area, while methods appear in the

bottom box. Also, the plus and minus signs are there to indicate to other de-

velopers which elements of the class are public (+) and which are private (-).

Unlike languages such as Java, PHP does not enforce privacy on objects;3 in the

examples above, we could have accessed the $page member variable directly in

our main script. Because we want the object to handle its own data without

outside interference, we indicate in the UML diagram that only those members

that have a + against them are available for public use. Those with a - are purely

for internal use within the class.

That covers the basics of the class syntax in PHP, and should give you an idea

of how classes compare with procedural code. With the syntax you’ve learnt, you

should be able to write standalone classes containing the variables and functions

you use frequently—a task that can really help tidy up your code and make it

easier to maintain. This is a great start, but the real power of object oriented

programming comes from using multiple objects and classes together. The rest

of this chapter will look at some of the more advanced facets of the PHP object

model, including references, inheritance, aggregation, and composition.

How do references work in PHP?
Most discussions of references in PHP begin with an opener like “references are

confusing,” which may add to the myth that surrounds them. In fact, references

are a very simple concept to grasp, yet they’re a concept that self-taught PHP

developers only really need to consider once they begin writing object oriented

applications. Until then, you’re probably oblivious to the way PHP handles

variables behind the scenes. Much of the confusion that exists around references

has more to do with developers who are experienced with other languages like

C++ or Java trying to work with PHP: Java, in particular, handles object refer-

ences in almost the opposite way to the approach PHP takes in version 4.

References vs. Pointers

Developers who are familiar with compiled languages such as C++ or Java

should note that references in PHP are not analogous to pointers in other

languages.

A pointer contains an address in memory that points to a variable, and must

be dereferenced in order to retrieve the variable’s contents.

3Enforced privacy constraints on class members will be added in PHP 5.0.

39

How do references work in PHP?

In PHP, all variable names are linked with values in memory automatically.

Using a reference allows us to link two variable names to the same value in

memory, as if the variable names were the same. You can then substitute

one for the other.

What Are References?
To understand references, we have to begin by understanding how PHP handles

variables under normal circumstances (i.e. without references).

By default, when a variable is passed to anything else, PHP creates a copy of that

variable. When I say “passed,” I mean any of the following:

� Passing a variable to another variable:

<?php
 $color = 'blue';
 $settings['color'] = $color;
?>

$settings['color'] now contains a copy of $color.

� Passing a variable as an argument to a function:

<?php
function isPrimaryColor($color)
{
 // $color is a copy
 switch ($color) {
 case 'red':
 case 'blue':
 case 'green':
 return true;
 break;
 default:
 return false;
 }
}

$color = 'blue';
if (isPrimaryColor($color)) {
 echo $color . ' is a primary color';
} else {
 echo $color . ' is not a primary color';

Chapter 2: Object Oriented PHP

40

}
?>

When $color is passed to the function isPrimaryColor, PHP works with a

copy of the original $color variable inside the function.

� The same applies when passing variables to class methods:

<?php
class ColorFilter {
 var $color;
 function ColorFilter($color)
 {
 // $color is a copy
 $this->color = $color;
 // $this->color is a copy of a copy
 }
 function isPrimaryColor()
 {
 switch ($this->color) {
 case 'red':
 case 'blue':
 case 'green':
 return true;
 break;
 default:
 return false;
 }
 }
}

$color = 'blue';
$filter = new ColorFilter($color);
if ($filter->isPrimaryColor()) {
 echo ($color.' is a primary color');
} else {
 echo ($color.' is not a primary color');
}
?>

The original $color outside the class is passed to ColorFilter’s constructor.

The $color variable inside the constructor is a copy of the version that was

passed to it. It’s then assigned to $this->color, which makes that version a

copy of a copy.

41

What Are References?

All of these means of passing a variable create a copy of that variable’s value; this

is called passing by value.

Using a Reference
To pass using a reference, you need to use the reference operator & (ampersand).

For example:

<?php
$color = 'blue';
$settings['color'] = &$color;
?>

$settings['color'] now contains a reference to the original $color variable.

Compare the following examples, the first using PHP’s default copying behavior:

<?php
$color = 'blue';
$settings['color'] = $color; // Makes a copy
$color = 'red'; // $color changes
echo $settings['color']; // Displays "blue"
?>

The second involves passing by reference:

<?php
$color = 'blue';
$settings['color'] = &$color; // Makes a reference
$color = 'red'; // $color changes
echo $settings['color']; // Displays "red"
?>

Passing by reference allows us to keep the new variable “linked” to the original

source variable. Changes to either the new variable or the old variable will be re-

flected in the value of both.

So far, so good. You’re probably wondering, “What’s the big deal here? What

difference does it make whether PHP copies or makes a reference to a variable,

as long as we get what we expected?” For variables passed around a procedural

program, you hardly ever need to worry about references. However, when it comes

to objects interacting with one another, if you don’t pass an object by reference,

you may well get results you weren’t expecting.

Chapter 2: Object Oriented PHP

42

The Importance of References
Imagine you have a mechanism on your site that allows visitors to change the

look and feel of the site—a user “control panel.” It’s likely that, to implement

this sort of functionality, you’d have code that acts on a set of variables containing

“look and feel” data, to modify them independently of the rest of the application’s

logic.

Representing this simply with classes, first, let’s see the class that will store data-

related to look and feel:

File: 5.php (excerpt)

<?php
// Look and feel contains $color and $size
class LookAndFeel {
 var $color;
 var $size;
 function LookAndFeel()
 {
 $this->color = 'white';
 $this->size = 'medium';
 }
 function getColor()
 {
 return $this->color;
 }
 function getSize()
 {
 return $this->size;
 }
 function setColor($color)
 {
 $this->color = $color;
 }
 function setSize($size)
 {
 $this->size = $size;
 }
}

Next, we have a class that deals with rendering output:

43

The Importance of References

File: 5.php (excerpt)

// Output deals with building content for display
class Output {
 var $lookandfeel;
 var $output;

 // Constructor takes LookAndFeel as its argument
 function Output($lookandfeel)
 {
 $this->lookandfeel = $lookandfeel;
 }
 function buildOutput()
 {
 $this->output = 'Color is ' . $this->lookandfeel->getColor() .
 ' and size is ' . $this->lookandfeel->getSize();
 }
 function display()
 {
 $this->buildOutput();
 return $this->output;
 }
}

Notice the constructor for the Output class. It takes an instance of LookAndFeel
as its argument so that, later, it can use this to help build the output for the page.

We’ll talk more about the ways classes interact with each other later in this

chapter.

Here’s how we use the classes:

File: 5.php (excerpt)

// Create an instance of LookAndFeel
$lookandfeel = new LookAndFeel();

// Pass it to an instance of Output
$output = new Output($lookandfeel);

// Display the output
echo $output->display();
?>

This displays the following message:

Color is white and size is medium

Chapter 2: Object Oriented PHP

44

Now, let’s say that, in response to one of the options on your user control panel,

you want to make some changes to the look and feel of the site. Let’s put this

into action:

File: 6.php (excerpt)

$lookandfeel = new LookAndFeel(); // Create a LookAndFeel
$output = new Output($lookandfeel); // Pass it to an Output

// Modify some settings
$lookandfeel->setColor('red');
$lookandfeel->setSize('large');

// Display the output
echo $output->display();

Using the setColor and setSize methods, we change the color to “red” and the

size to “large,” right? Well, in fact, no. The output display still says:

Color is white and size is medium

Why is that? The problem is that we’ve only passed a copy of the LookAndFeel
object to $output. So the changes we make to $lookandfeel have no effect on

the copy that $output uses to generate the display.

To fix this we have to modify the Output class so that it uses a reference to the

LookAndFeel object it is given. We do this by altering the constructor:

File: 7.php (excerpt)

 function Output(&$lookandfeel)
 {
 $this->lookandfeel = &$lookandfeel;
 }

Notice that we have to use the reference operation twice here. This is because

the variable is being passed twice—first to the constructor function, then again,

to place it in a member variable.

Once we’ve made these changes, the display looks like this:

Color is red and size is large

In summary, passing by reference keeps the target variable “linked” to the source

variable, so that if one changes, so does the other.

45

The Importance of References

Good and Bad Practices
When working with classes and objects, it’s a good idea to use references

whenever an object is involved. Occasionally, you may have to do the same with

an array, such as when you want to sort the array in a different section of code.

But, for the most part, normal variables will not need this treatment, simply be-

cause, when your code reaches the level of complexity where you’d need to do

so, you will (I hope!) be storing variables inside objects and passing the complete

object by reference.

Let’s look at some other situations in which you might need to use references…

// Make sure $myObject is a reference to
// the variable created by the new keyword
$myObject = &new MyClass();

This looks odd at first, but remember, a variable created by the new keyword is

being passed here—even if you can’t see it. The reference operator saves PHP

from having to create a copy of the newly-created object to store in $myObject.

class Bar {
}

class Foo {
 // Return by reference
 function &getBar()
 {
 return new Bar();
 }
}

// Instantiate Foo
$foo = &new Foo();

// Get an instance of Bar from Foo
$bar = &$foo->getBar();

In the above example, you’ll notice the getBar method in the Foo class. By pre-

ceding the function name with the reference operator, the value the function re-

turns is passed by reference. Note that we also had to use a reference operator

when assigning the return value of getBar to $bar. This technique is commonly

used when a class method will return objects.

What’s bad practice is the following:

Chapter 2: Object Oriented PHP

46

function display($message) {
 echo $message;
}

$myMessage = 'Hello World!';

// Call time pass by reference - bad practice!
display(&$message);

That’s known as a call-time pass-by-reference, which PHP controls with the

following setting in php.ini:

allow_call_time_pass_reference = Off

By default, in recent PHP releases the above setting should be switched to Off;

turning it on is “frowned upon” by PHP’s makers. Switched off, PHP will generate

warning errors every time a function call specifies an argument should be passed

by reference. As such, it’s good practice to leave this setting off.

The reason why call time pass by reference is a “bad thing” is that call time passing

by reference can make code extremely difficult to follow. I’ve occasionally seen

PHP XML parsers written using a call-time pass-by-reference—it’s nearly im-

possible to gain any idea of what’s going on.

The “decision” as to whether a variable is passed by reference or not is one that

belongs to the function being called, not the code that calls it. The above code

written correctly would look like this:

// Accept by reference - good practice
function display(&$message)
{
 echo $message;
}

$myMessage = 'Hello World!';

display($message);

Performance Issues
Depending on the scale of your application, there are some performance issues

you might need to consider when using references.

47

Performance Issues

In simple cases of copying one variable to another PHP's internal reference

counting feature prevents unnecessary memory usage. For example,

$a = 'the quick brown fox';
$b = $a;

In the above example, the value of $b would not take up any extra memory, as

PHP’s internal reference counting will implicitly reference $b and $a to the same

location in memory, until their values become different. This is an internal feature

of PHP and affects performance without affecting behavior. We don’t need to

worry about it much.

In some cases, however, using a reference is faster, especially with large arrays

and objects, where PHP's internal reference counting can’t be used. and the

contents must therefore be copied.

So, for best performance, you should do the following:

� With simple values such as integers and strings, avoid references whenever

possible.

� With complex values such as arrays and objects, use references whenever

possible.

References and PHP 5
With PHP 5, references will cease to be an issue because the default behavior of

PHP, when passing objects, will be to pass by reference. If you ever need a copy

of an object, you can use the special __clone method to create copies.

Essentially, the change brings PHP in line with the majority of object oriented

programming languages like Java, and will certainly do a lot to reduce the confu-

sion surrounding the subject. For now, though, and until PHP 5 has been widely

adopted, knowing how references work is important.

How do I take advantage of inheritance?
Inheritance is one of the fundamental pieces of the object oriented paradigm

and is an important part of its power. Inheritance is a relationship between dif-

ferent classes in which one class is defined as being a child or subclass of another.

The child inherits the methods and member variables defined in the parent class,

allowing it to “add value” to the parent.

Chapter 2: Object Oriented PHP

48

The easiest way to see how inheritance works in PHP is by example. Let’s say we

have this simple class:

File: 8.php (excerpt)

<?php
class Hello {
 function sayHello()
 {
 return 'Hello World!';
 }
}

Using the extends keyword, we can make a class that’s a child of Hello:

File: 8.php (excerpt)

class Goodbye extends Hello {
 function sayGoodbye()
 {
 return 'Goodbye World!';
 }
}

Goodbye is now a child of Hello. Expressed the other way around, Hello is the

parent or superclass of Goodbye. Now, we can simply instantiate the child class

and have access to the sayHello and the sayGoodbye methods using a single

object:

File: 8.php (excerpt)

$msg = &new Goodbye();

echo $msg->sayHello() . '
';
echo $msg->sayGoodbye() . '
';
?>

That example shows the basics of how inheritance works, but doesn’t demonstrate

its real power… This comes with the addition of overriding.

Overriding
What happens when we give a function in the child the same name as a function

in the parent? An example:

49

Overriding

File: 9.php (excerpt)

<?php
class Hello {
 function getMessage()
 {
 return 'Hello World!';
 }
}

class Goodbye extends Hello {
 function getMessage()
 {
 return 'Goodbye World!';
 }
}

Both classes have the same method name, getMethod. This is perfectly acceptable

to PHP—it makes no complaints about a method being declared twice.

Here’s what happens when we use the classes:

File: 9.php (excerpt)

$hello = &new Hello();
echo $hello->getMessage() . '
';

$goodbye = &new Goodbye();
echo $goodbye->getMessage() . '
';
?>

And the output is as follows:

Hello World!
Goodbye World!

Calling getMessage via the $goodbye object displays “Goodbye World!” The

method in the child class is overrides the method in the parent class.

You can also have the child class make use of the parent class’s method internally,

while overriding it. For example:

File: 10.php

<?php
class Hello {
 function getMessage()
 {

Chapter 2: Object Oriented PHP

50

 return 'Hello World!';
 }
}

class Goodbye extends Hello {
 function getMessage()
 {
 $parentMsg = parent::getMessage();
 return $parentMsg . '
Goodbye World!';
 }
}

$goodbye = &new Goodbye();
echo $goodbye->getMessage() .'
';
?>

Using the parent keyword, we can call the parent class’s method.

Note that we can also call the parent class by name to achieve exactly the same

result:

class Goodbye extends Hello {
 function getMessage() {
 $parentMsg = Hello::getMessage();
 return $parentMsg . '
Goodbye World!';
 }
}

Notice that we’ve replaced the parent keyword with the name of the Hello class.

The output is exactly the same. Using parent, however, saves you from having

to remember the name of the parent class while working in the child, and is the

recommended syntax.

A call such as parent::getMessage() or Hello::getMessage() from a non-static
method is not the same as calling a static function. This is a special case where

inheritance is concerned. The called function in the parent class retains access

to the instance data, and is therefore not static. This may be demonstrated as

follows:

File: 11.php

<?php
class A {
 var $a = 1;
 function printA()
 {

51

Overriding

 echo $this->a;
 }
}

class B extends A {
 var $a = 2;
 function printA()
 {
 parent::printA();
 echo "\nWasn't that great?";
 }
}

$b = new B();
$b->printA();
?>

The output generated from the above is as follows:

2
Wasn't that great?

PHP does not cascade constructors

Most object oriented languages, like Java, will run the constructor of the

parent class automatically, before running an overriding constructor in the

child class. This is called cascading constructors—it’s a feature that PHP

does not have.

If you create a constructor in a child class, be aware that you are completely

overriding the parent class’s constructor, and that you must call it explicitly

from your new constructor if you still want the parent class to handle its

share of the object initialization.

Overriding declared member variables is achieved in exactly the same way as

methods, although you’re unlikely to use this feature frequently.

Inheritance in Action
Now that you have a rough idea of how inheritance is used in PHP, it’s time to

look at an example that should give you a better idea of how inheritance can be

applied.

The following example implements a simple navigation system for a Web page,

generating the HTML that appears at the top of the page. By having one class

Chapter 2: Object Oriented PHP

52

inherit from another, it becomes possible to add “crumb trail” navigation to the

page when it’s needed.

First up, the StandardHeader class deals with generating the HTML for the top

of the page, as well as supplying the setHeader and getHeader methods to access

the variable where the HTML is stored.

File: 12.php (excerpt)

<?php
/**
 * A standard header for a Web page
 */
class StandardHeader {
 /**
 * The header HTML is stored here
 */
 var $header = '';

 /**
 * The constructor, taking the name of the page
 */
 function StandardHeader($title)
 {
 $html = <<<EOD
<html>
<head>
<title> $title </title>
</head>
<body>
<h1>$title</h1>
EOD;
 $this->setHeader($html);
 }

 /**
 * General method for adding to the header
 */
 function setHeader($string)
 {
 if (!empty($this->header)) {
 $this->header .= $string;
 } else {
 $this->header = $string;
 }
 }

53

Inheritance in Action

 /**
 * Fetch the header
 */
 function getHeader()
 {
 return $this->header;
 }
}

Now, the subclass CategoryHeader brings extra functionality to its parent, adding

the “bread crumb” links to the HTML that was generated. We don’t need to re-

create the setHeader and getHeader methods, as these are inherited from

StandardHeader when CategoryHeader is instantiated.

File: 12.php (excerpt)

/**
 * Subclass for dealing with Categories, building a breadcrumb
 * menu
 */
class CategoryHeader extends StandardHeader {
 /**
 * Constructor, taking the category name and the pages base URL
 */
 function CategoryHeader($category, $baseUrl)
 {
 // Call the parent constructor
 parent::StandardHeader($category);

 // Build the breadcrumbs
 $html = <<<EOD
<p>Home >
$category</p>
EOD;
 // Call the parent setHeader() method
 $this->setHeader($html);
 }
}

Let’s now put these two classes to use:

File: 12.php (excerpt)

// Set the base URL
$baseUrl = '12.php';

// An array of valid categories

Chapter 2: Object Oriented PHP

54

$categories = array('PHP', 'MySQL', 'CSS');

// Check to see if we're viewing a valid category
if (isset($_GET['category']) &&
 in_array($_GET['category'], $categories)) {

 // Instantiate the subclass
 $header = new CategoryHeader($_GET['category'], $baseUrl);
} else {

 // Otherwise it's the home page. Instantiate the Parent class
 $header = new StandardHeader('Home');
}

// Display the header
echo $header->getHeader();
?>
<h2>Categories</h2>
<p><a href="<?php echo $baseUrl; ?>?category=PHP">PHP</p>
<p><a href="<?php echo $baseUrl; ?>?category=MySQL">MySQL</p>
<p><a href="<?php echo $baseUrl; ?>?category=CSS">CSS</p>
</body>
</html>

As you can see, the controlling logic above looks for a $_GET['category'] vari-

able. If it exists, it creates an instance of CategoryHeader, displaying the naviga-

tion to allow users to find their way back to the home page. But if it doesn’t exist,

it creates an instance of the parent StandardHeader instead, which applies when

users view the home page (and therefore does not require bread crumbs to find

their way back).

In other words, inheritance allows us to add the extra functionality we need

without having to reproduce the logic that already resides within the parent class;

the existing methods and logic can be reused via the child subclass.

Inheritance provides a powerful mechanism to make classes that are modular,

addressing a specific problem, while still making available shared methods and

variables that can be used irrespective of the specific object we’re dealing with.

Avoid Deep Inheritance Structures

As a general rule of thumb, when using inheritance to build class hierarchies,

avoid going deeper than two generations.

55

Inheritance in Action

Doing so is often a sign of a bad design, in which opportunities for classes

to interact in different ways (see the next solution) were missed. In practice,

having more than two generations of classes often leads to all sorts of debug-

ging problems and makes the code difficult to maintain. For example, it can

become hard to keep track of variable names you’ve used higher up in the

hierarchy.

How do objects interact?
Aside from inheritance, there are other ways for objects to interact; for example,

one object uses another object. In many ways, such interactions are more important

than inheritance, and this is where the object oriented paradigm shows its real

power.

There are two ways in which one object can use another: aggregation and com-

position.

Aggregation
Aggregation occurs when one object is given another object on “temporary loan.”

The second object will usually be passed to the first through one of the first’s

member functions. The first object is then able to call methods in the second,

allowing it to use the functionality stored in the second object for its own pur-

poses.

A common example of aggregation in action involves a database connection class.

Imagine you pass a database connection class to some other class, which then

uses the database connection class to perform a query. The class performing the

query aggregates the database connection class.

Here’s a simple example using the MySQL class, which we’ll create in Chapter 3:

File: 13.php

<?php
// Include the MySQL database connection class
require_once 'Database/MySQL.php';

// A class which aggregates the MySQL class
class Articles {
 var $db;
 var $result;
 // Accept an instance of the MySQL class

Chapter 2: Object Oriented PHP

56

 function Articles(&$db)
 {
 // Assign the object to a local member variable
 $this->db = &$db;
 $this->readArticles();
 }
 function readArticles()
 {
 // Perform a query using the MySQL class
 $sql = "SELECT * FROM articles LIMIT 0,5";
 $this->result = &$this->db->query($sql);
 }
 function fetch()
 {
 return $this->result->fetch();
 }
}

// Create an instance of the MySQL class
$db = &new MySQL('localhost', 'harryf', 'secret', 'sitepoint');

// Create an instance of the Article class, passing it the MySQL
// object
$articles = &new Articles($db);

while ($row = $articles->fetch()) {
 echo '<pre>';
 print_r($row);
 echo '</pre>';
}
?>

In the above example, we instantiate the MySQL class outside the Articles class,

then pass it to the Articles constructor as Articles is instantiated. Articles
is then able to use the MySQL object to perform a specific query. In this case,

Articles aggregates the MySQL object. Figure 2.2 illustrates this relationship with

UML.

57

Aggregation

Figure 2.2. Aggregation

Composition
Composition occurs when one object “completely owns” another object. That is,

the first object was responsible for creating (instantiating) the second object.

There are many cases in which this can be useful, although, typically, composition

is used when it’s likely that the first object will be the only one that needs to use

the second object.

One example from Volume II, Chapter 1 is the Auth class, which composes an

instance of the Session class, creating it in the constructor:

class Auth {
 …

 /**
 * Instance of Session class
 * @var Session
 */
 var $session;

 …

 function Auth (&$dbConn, $redirect, $md5 = true)
 {
 $this->dbConn = &$dbConn;
 $this->redirect = $redirect;
 $this->md5 = $md5;

$this->session = &new Session();
 $this->checkAddress();
 $this->login();
 }

Chapter 2: Object Oriented PHP

58

Because the Auth class needs to read and write to session variables, and only a

limited number of other, unrelated classes in an application are likely also to

need to use Session, it’s logical that it gets to create its own Session object.

Figure 2.3 illustrates the composition in this example with UML.

Figure 2.3. Composition

Spotting the Difference
The general “thought test” to spot whether object A aggregates or composes object

B is to ask, “What happens if object A dies? Will object B still be alive?” If object

B outlives the death of object A, object A is said to aggregate object B. But if

object B dies when object A dies, then object A is said to compose object B.

In terms of practical development, knowing when to apply aggregation or com-

position is important.

Aggregation has the advantage of lower overhead, because a single object will be

shared by many other objects. Certainly, aggregating your database connection

class is a good idea; composing it with every object that wants to make a query

may require you to have multiple connections to your database, which will quickly

halt your application when your site attracts high levels of traffic.

Composition has the advantage of making classes easier to work with from the

outside. The code that uses the class doesn’t have to worry about passing it the

other objects it needs, which, in a complex application, can often become tricky

and result in a design “work around.” Composition also has the advantage that

you know exactly which class has access to the composed object. With aggregation,

another object sharing the aggregated object may do something to its state that

“breaks” the object as far as the other classes that use it are concerned.

59

Spotting the Difference

Polymorphism
Another powerful aspect of object oriented programming is polymorphism—the

ability of different classes to share an interface.

An interface is one or more methods that let you use a class for a particular pur-

pose. For example, you could have two database connection classes—one for

MySQL and one for PostgreSQL. As long as they both offered a query method,

you could use them interchangeably for running queries on different databases.

The query method is a simple interface that the two classes share.

The classes sharing the same interface are often inherited from a parent class that

makes the common methods available. Again, this is best understood by example.

First, we define an abstract base class, Message, which provides the common

method getMessage. Beneath the Message class, we define concrete classes, each

of which creates a specific message.

The terms “abstract” and “concrete” refer to class usage, in particular, whether

a class is intended to be used directly or not. An abstract class is one in which

some functionality or structure is to be shared by all subclasses, but is not intended

to be used directly; typically, it has one or more empty methods that don’t do

anything useful. In other words, you’re not supposed to create objects from an

abstract class. A concrete class is a subclass of the abstract class from which you

can create objects. Some languages, like Java, provide support for abstract classes

within the language syntax—something PHP 4 doesn’t offer. You can still use

the concept of abstract classes when designing applications, though you might

consider adding documentation to tell other developers working with the code

that the class is abstract.

File: 14.php (excerpt)

<?php
class Message {
 var $message;
 function setMessage($message)
 {
 $this->message = $message;
 }
 function getMessage()
 {
 return $this->message;
 }
}

Chapter 2: Object Oriented PHP

60

class PoliteMessage extends Message {
 function PoliteMessage()
 {
 $this->setMessage('How are you today?');
 }
}

class TerseMessage extends Message {
 function TerseMessage()
 {
 $this->setMessage('Howzit?');
 }
}

class RudeMessage extends Message {
 function RudeMessage()
 {
 $this->setMessage('You look like *%&* today!');
 }
}

Now, we define the MessageReader class, which takes an array of Message objects

through its constructor.

File: 14.php (excerpt)

class MessageReader {
 var $messages;
 function MessageReader(&$messages) {
 $this->messages = &$messages;
 $this->readMessages();
 }
 function readMessages() {
 foreach ($this->messages as $message) {
 echo $message->getMessage() . '
';
 }
 }
}

The important thing to note here is that, as far as MessageReader is concerned,

a “Message object” is any object that was instantiated from the Message class or
one of its subclasses. Did you see how, inside the readMessages method, we call

the getMessage method? This code will work on any object that has a getMessage
method—including any subclass of Message.

61

Polymorphism

Now, to prove the point, let’s create some Message objects using our three sub-

classes at random:

File: 14.php (excerpt)

$classNames =
 array('PoliteMessage', 'TerseMessage', 'RudeMessage');
$messages = array();
srand((float)microtime() * 1000000); // Prepares random shuffle
for ($i = 0; $i < 10; $i++) {
 shuffle($classNames);
 $messages[] = new $classNames[0]();
}
$messageReader = new MessageReader($messages);
?>

By creating the array $classNames and then repeatedly shuffling it, we can take

the first element of the array and use it to create a new object:

 $messages[] = new $classNames[0]();

This is an example of a variable function. The expression $classNames[0] is

evaluated to determine the name of the constructor (PoliteMessage,

TerseMessage, or RudeMessage) to call.

Finally, the $messages array contains ten messages, randomly selected, and is

passed to the constructor of MessageReader on instantiation.

Here’s a sample result:

You look like *%&* today!
Howzit?
How are you today?
How are you today?
How are you today?
You look like *%&* today!
How are you today?
How are you today?
Howzit?
How are you today?

Each time we execute the script, the list is different.

Because all the concrete message classes share the same getMethod function (i.e.

they implement the same interface), the MessageReader class is able to extract

the data without knowing which particular type of message it’s dealing with. The

Chapter 2: Object Oriented PHP

62

ability for a group of related classes to work interchangeably is called polymorph-

ism, and is illustrated in the UML diagram in Figure 2.4.

Figure 2.4. Polymorphism

This aspect of object oriented programming can be very powerful once you realize

its worth. You might have a collection of objects representing HTML tags, for

example, each being a subclass of a parent HTMLTag class, from which they all

inherit a render method. Another class that handles the rendering of a page could

take a collection of HTMLTag objects and create the page by calling each object’s

render method.

Further Reading
� Object Oriented PHP: Paging Result Sets: http://www.sitepoint.com/article/662

� PHP References Explained: http://www.zez.org/article/articleview/77/

� PHP References

Part 1: http://www.onlamp.com/pub/a/php/2002/08/15/php_foundations.html

Part 2: http://www.onlamp.com/pub/a/php/2002/09/12/php_foundations.html

� PHP Reference Counting and Aliasing:
http://www.zend.com/zend/art/ref-count.php

63

Further Reading

http://www.sitepoint.com/article/662
http://www.zez.org/article/articleview/77/
http://www.onlamp.com/pub/a/php/2002/08/15/php_foundations.html
http://www.onlamp.com/pub/a/php/2002/09/12/php_foundations.html
http://www.zend.com/zend/art/ref-count.php
http://www.sitepoint.com/article/662
http://www.zez.org/article/articleview/77/
http://www.onlamp.com/pub/a/php/2002/08/15/php_foundations.html
http://www.onlamp.com/pub/a/php/2002/09/12/php_foundations.html
http://www.zend.com/zend/art/ref-count.php

64

PHP and MySQL3
“On the Web today, content is king.”
—Kevin Yank

In the “old days” of the Internet, most Web pages were nothing more than text

files containing HTML. When people surfed to your site, your Web server simply

made the file available to their browser, which parsed the contents and rendered

something a human being could read. This approach was fine to start with, but

as Websites grew and issues such as design and navigation became more import-

ant, developers realized that maintaining hundreds of HTML files was going to

be a massive headache. To solve this problem, it became popular to separate

variable content (articles, news items, etc.) from the static elements of the site—its

design and layout.

Using a database as a repository to store variable content, a server side language

such as PHP performs the task of fetching the data and placing it within a uniform

“framework,” the design and layout elements being reused. This means that

modifying the overall look and feel of a site can be handled as a separate task

from the addition or maintenance of content. Suddenly, running a Website is

no longer a task that consumes a developer’s every waking hour.

PHP supports all relational databases worth mentioning, including those com-

monly used in large companies, such as Oracle, IBM’s DB2 and Microsoft’s SQL

Server. The two most noteworthy open source alternatives are PostgreSQL and

MySQL. Although PostgreSQL is arguably the better database, in that it supports

more of the features that are common to relational databases, MySQL is better

supported on Windows, and is a popular choice among Web hosts that provide

support for PHP. These factors combine to make PHP and MySQL a very popular

combination. This book is geared to the use of MySQL with PHP but it’s import-

ant to remember that there are alternatives with full support for features such as

stored procedures, triggers and constraints, many of which become important for

applications with complex data structures.

This chapter covers all the common operations PHP developers have to perform

when working with MySQL, from retrieving and modifying data, to searching

and backing up a database. The examples focus on using a single table, so no

discussion is made of table relationships here. For a full discussion of table rela-

tionships, see Kevin Yank’s Build Your Own Database Driven Website Using PHP
& MySQL (ISBN 0-9579218-1-0), or see an example of them in practice when

we deal with user groups in Volume II, Chapter 1.

The examples used here work with a sample database called sitepoint, which

contains the following single table:

File: articles.sql

CREATE TABLE articles (
 article_id INT(11) NOT NULL AUTO_INCREMENT,
 title VARCHAR(255) NOT NULL DEFAULT '',
 intro TEXT NOT NULL,
 body TEXT NOT NULL,
 author VARCHAR(255) NOT NULL DEFAULT '',
 published VARCHAR(11) DEFAULT NULL,
 public ENUM('0','1') NOT NULL DEFAULT '0',
 PRIMARY KEY (article_id),
 FULLTEXT KEY art_search (title, body, author)
)

A query to construct this table along with some sample data is available in the

code archive, contained in the file sql/articles.sql. The table will be used for

examples in later chapters of the book.

How do I access a MySQL database?
Connecting to MySQL with PHP couldn’t be easier. It’s essentially a two–step

process; first connect to the MySQL database server itself, then inform MySQL

of the database you want to connect to.

Chapter 3: PHP and MySQL

66

A Basic Connection
Here is a MySQL database connection in its simplest form:

File: 1.php

<?php
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Make connection to MySQL server
if (!$dbConn = mysql_connect($host, $dbUser, $dbPass)) {
 die('Could not connect to server');
}

// Select the database
if (!mysql_select_db($dbName, $dbConn)) {
 die('Could not select database');
}

echo 'Connection successful!';
// ... some code here using MySQL

// Close the connection when finished
mysql_close($dbConn);
?>

It’s important to remember that MySQL is a separate server program, much like

Apache. Both servers may run on the same physical computer (hence our use of

$host = 'localhost'; in the above example) but it’s also possible to connect

to MySQL on a remote computer, for example $host = 'anothercom-
puter.com';. To make matters a little more interesting, MySQL also has its own

port number, which by default is 3306. PHP assumes that 3306 will be the port

number but should you need to use a different one, all you need is $host =
'anothercomputer.com:4321';.

The other conceptual hurdle lies in understanding that a single MySQL server

may provide access to many databases, which is why you need to select your

database in PHP after connecting to the server.

Returning to the code above, there are a few things to note. First, I’ve placed in

variables the values I need in order to connect to MySQL. This simply makes

our lives easier; it’s common to store this kind of information in separate files

67

A Basic Connection

http://www.anothercomputer.com:

that are included in every PHP script, making it possible to change many scripts

at one time. We’ll be looking at further tricks we can employ to make life easier

in a moment.

The mysql_connect function does the work of connecting to a MySQL server.

The value it returns is either a link identifier (a value supplied by PHP to

identify the connection), or FALSE, meaning the connection failed.

if (!$dbConn = mysql_connect($host, $dbUser, $dbPass)) {
 die('Could not connect to server');
}

This if statement asks the question “Did I successfully connect to the MySQL

server?” If not, it uses die to terminate the script.

Next, we’ve selected the database we want with mysql_select_db, using the

same if statement technique:

if (!mysql_select_db($dbName, $dbConn)) {

Note that we provided the variable containing the link identifier as the second

argument to mysql_select_db. We wouldn’t usually need to do this (the argu-

ment is optional), but when a complex script juggles multiple database connec-

tions, this method can help ensure PHP knows which you’re referring to.

Finally, we’ve used mysql_close to disconnect from the server again:

mysql_close($dbConn);

This occurs at the bottom of the script, once we’ve run some imaginary PHP

code that used the connection. Closing the connection is generally optional—PHP

automatically closes any connections after the script finishes1.

1Connections made with mysql_pconnect are different. This function establishes a persistent

connection to the database to be reused by multiple PHP scripts. Using a persistent connection makes

your scripts slightly faster, as PHP no longer has to reconnect each time, but speed comes at a price:

if your Website runs on a shared server, persistent connections may monopolize that server, resulting

in other sites being unable to connect at times. In such environments, it’s typical to either avoid

mysql_pconnect, or configure MySQL so that connections are terminated the moment they stop

doing anything, using a short connection timeout value.

Chapter 3: PHP and MySQL

68

Reusable Code
You’ve just seen the most simplistic way to connect to MySQL. It’s often more

useful, however, to “package” the above code in a function or a class so it can be

reused.

As a function we could have:

File: 2.php

<?php
function &connectToDb($host, $dbUser, $dbPass, $dbName)
{
 // Make connection to MySQL server
 if (!$dbConn = @mysql_connect($host, $dbUser, $dbPass)) {
 return false;
 }

 // Select the database
 if (!@mysql_select_db($dbName)) {
 return false;
 }

 return $dbConn;
}

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

$dbConn = &connectToDb($host, $dbUser, $dbPass, $dbName);
?>

This reduces the process of connecting to MySQL and selecting a database to a

single line (two if you count the include statement, which would point to a

separate file containing the connectToDb function):

$dbConn = &connectToDb($host, $dbUser, $dbPass, $dbName);

Note that we’ve used the reference operator &. This operator and the role it plays

were covered in detail in Chapter 2.

69

Reusable Code

Be Lazy: Write Good Code

Scientists have now conclusively proven that knowledge of PHP is inversely

proportional to free time but directly proportional to hair loss. The only way

to prevent these effects is to learn how to write scalable, maintainable, and

reusable code as early as possible. Taking advantage of classes and object

orientation in PHP is a big step in the right direction. As a PHP developer,

laziness is a virtue.

Going a step further, we can wrap this code in a class:

File: Database/MySQL.php (in SPLIB) (excerpt)

/**
 * MySQL Database Connection Class
 * @access public
 * @package SPLIB
 */
class MySQL {
 /**
 * MySQL server hostname
 * @access private
 * @var string
 */
 var $host;

 /**
 * MySQL username
 * @access private
 * @var string
 */
 var $dbUser;

 /**
 * MySQL user's password
 * @access private
 * @var string
 */
 var $dbPass;

 /**
 * Name of database to use
 * @access private
 * @var string
 */
 var $dbName;

Chapter 3: PHP and MySQL

70

 /**
 * MySQL Resource link identifier stored here
 * @access private
 * @var string
 */
 var $dbConn;

 /**
 * Stores error messages for connection errors
 * @access private
 * @var string
 */
 var $connectError;

 /**
 * MySQL constructor
 * @param string host (MySQL server hostname)
 * @param string dbUser (MySQL User Name)
 * @param string dbPass (MySQL User Password)
 * @param string dbName (Database to select)
 * @access public
 */
 function MySQL($host, $dbUser, $dbPass, $dbName)
 {
 $this->host = $host;
 $this->dbUser = $dbUser;
 $this->dbPass = $dbPass;
 $this->dbName = $dbName;
 $this->connectToDb();
 }

 /**
 * Establishes connection to MySQL and selects a database
 * @return void
 * @access private
 */
 function connectToDb()
 {
 // Make connection to MySQL server
 if (!$this->dbConn = @mysql_connect($this->host,
 $this->dbUser, $this->dbPass)) {
 trigger_error('Could not connect to server');
 $this->connectError = true;
 // Select database
 } else if (!@mysql_select_db($this->dbName,$this->dbConn)) {
 trigger_error('Could not select database');

71

Reusable Code

 $this->connectError = true;
 }
 }

 /**
 * Checks for MySQL errors
 * @return boolean
 * @access public
 */
 function isError()
 {
 if ($this->connectError) {
 return true;
 }
 $error = mysql_error($this->dbConn);
 if (empty($error)) {
 return false;
 } else {
 return true;
 }
 }

Now that may seem pretty overwhelming, but what’s most important is not how

the class itself is coded2, but how you use it.

What’s most important is that the task of connecting to MySQL is now reduced

to the following:

File: 3.php

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Connect to MySQL
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);
?>

2In particular, the trigger_error function will be discussed in “How do I resolve errors in my

SQL queries?” later in this chapter.

Chapter 3: PHP and MySQL

72

The point of using a class here is to get some practice using PHP’s object model

to deal with common tasks. If you’re new to object oriented programming with

PHP, the most important thing to remember at this stage is that you don’t need

to understand all the code you find in a class to be able to use it in your code.

We’ll be making use of this class and others throughout the book to illustrate

how object oriented programming aids the reuse of code and can save time when

you’re developing applications.

How do I fetch data from a table?
Being connected to a database is nice, sure. But what good is it if we can’t get

anything from it?

There are a number of ways to fetch data from MySQL, but the most widely used

is probably mysql_fetch_array in conjunction with mysql_query.

We just need to add a little more to the connectToDb function we saw in “How

do I access a MySQL database?” to fetch data from this table:

File: 4.php

// Connect to MySQL
$dbConn = &connectToDb($host, $dbUser, $dbPass, $dbName);

// A query to select all articles
$sql = "SELECT * FROM articles ORDER BY title";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch rows from MySQL one at a time
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';
 echo 'Body: ' . $row['body'] . '
';
}

Essentially, there are three steps to getting to your data:

1. First, place the necessary SQL query3 in a string:

3If you are unfamiliar with Structured Query Language (SQL), I’ll cover the basics throughout this

chapter. For a more complete treatment, however, refer to Build Your Own Database Driven Website
Using PHP & MySQL, 2nd Edition (ISBN 0–9579218–1–0).

73

How do I fetch data from a table?

$sql = "SELECT * FROM articles ORDER BY title";

It’s handy to keep it in a separate variable, as when we get into writing more

complex queries and something goes wrong, we can double-check our query

with this one-liner:

echo $sql;

2. Next, tell MySQL to perform the query:

$queryResource = mysql_query($sql, $dbConn);

This can be confusing at first. When you tell MySQL to perform a query, it

doesn’t immediately give you back the results. Instead, it holds the results

in memory until you tell it what to do next. PHP keeps track of the results

with a resource identifier, which is what you get back from the mysql_query
function. In the code above, we’ve stored the identifier in $queryResource.

3. Finally, use mysql_fetch_array to fetch one row at time from the set of

results:

while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC))

This places each row of the results in turn in the variable $row. Each of these

rows will be represented by an array. By using the additional argument

MYSQL_ASSOC with mysql_fetch_array, we’ve told the function to give us

an array in which the keys correspond to column names in the table. If you

omit the MYSQL_ASSOC argument, each column will appear twice in the array:

once with a numerical index (i.e. $row[0], $row[1], etc.), and once with a

string index (i.e. $row['title'], $row['author'], etc.). While this doesn’t

usually cause a problem, specifying the type of array value you want will

speed things up slightly.

Using a while loop, as shown above, is a common way to process each row of

the result set in turn. The loop effectively says, “Keep fetching rows from MySQL

until I can’t get any more”, with the body of the loop processing the rows as

they’re fetched.

Forego Buffering on Large Queries

For large queries (that is, queries that produce large result sets), you can

improve performance dramatically by telling PHP not to buffer the results

of the query. When a query is buffered, the entire result set is retrieved from

MySQL and stored in memory before your script is allowed to proceed. An

Chapter 3: PHP and MySQL

74

unbuffered query, on the other hand, lets MySQL hold onto the results

until you request them, one row at a time (e.g. with mysql_fetch_array).

Not only does this allow your script to continue running while MySQL per-

forms the query, it also saves PHP from having to store all of the rows in

memory at once.

PHP lets you perform unbuffered queries with mysql_unbuffered_query:

$queryResource = mysql_unbuffered_query($sql, $dbConn);

Of course, all good things come at a price—with unbuffered queries you can

no longer use the mysql_num_rows function to count the number of rows.

Obviously, as PHP doesn’t keep a copy of the complete result set, it is unable

to count the rows it contains! You also must fetch all rows in the result set

from MySQL before you can make another query.

Although other functions exist for getting rows and cells from query results, like

mysql_fetch_object and mysql_result, you can achieve more or less the same

things with just mysql_fetch_array, and the consistency may help keep your

code simple.

Fetching with Classes
Now that you’re happy with the basics of fetching data from MySQL, it’s time

to build some more on the MySQL class from the last solution.

First, let’s add a method to run queries from the class:

File: Database/MySQL.php (in SPLIB) (excerpt)

 /**
 * Returns an instance of MySQLResult to fetch rows with
 * @param $sql string the database query to run
 * @return MySQLResult
 * @access public
 */
 function &query($sql)
 {
 if (!$queryResource = mysql_query($sql, $this->dbConn)) {
 trigger_error('Query failed: ' . mysql_error($this->dbConn)
 . ' SQL: ' . $sql);
 }
 return new MySQLResult($this, $queryResource);
 }

75

Fetching with Classes

What this new method does is accept a variable containing an SQL statement,

run it, then build a new object from another class, MySQLResult (described below).

It then returns this object to the point where query was called.

Here’s the code for that new class, MySQLResult:

File: Database/MySQL.php (in SPLIB) (excerpt)

/**
 * MySQLResult Data Fetching Class
 * @access public
 * @package SPLIB
 */
class MySQLResult {
 /**
 * Instance of MySQL providing database connection
 * @access private
 * @var MySQL
 */
 var $mysql;

 /**
 * Query resource
 * @access private
 * @var resource
 */
 var $query;

 /**
 * MySQLResult constructor
 * @param object mysql (instance of MySQL class)
 * @param resource query (MySQL query resource)
 * @access public
 */
 function MySQLResult(&$mysql, $query)
 {
 $this->mysql = &$mysql;
 $this->query = $query;
 }

 /**
 * Fetches a row from the result
 * @return array
 * @access public
 */
 function fetch()
 {

Chapter 3: PHP and MySQL

76

 if ($row = mysql_fetch_array($this->query, MYSQL_ASSOC)) {
 return $row;
 } else if ($this->size() > 0) {
 mysql_data_seek($this->query, 0);
 return false;
 } else {
 return false;
 }
 }

 /**
 * Checks for MySQL errors
 * @return boolean
 * @access public
 */
 function isError()
 {
 return $this->mysql->isError();
 }
}

Now, hold your breath just a little longer until you’ve seen what using these

classes is like:

File: 5.php

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Connect to MySQL
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

$sql = "SELECT * FROM articles ORDER BY title";

// Perform a query getting back a MySQLResult object
$result = $db->query($sql);

// Iterate through the results
while ($row = $result->fetch()) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';

77

Fetching with Classes

 echo 'Body: ' . $row['body'] . '
';
}
?>

If you’re not used to object oriented programming, this may seem very confusing,

but what’s most important is to concentrate on how you can use the classes, rather

than the detail hidden inside them. That’s one of the joys of object oriented

programming, once you get used to it. The code can get very complex behind the

scenes, but all you need to concern yourself with is the simple “interface” (API)

with which your code uses the class.

About APIs

It’s common to hear the term API mentioned around classes. API stands for

Application Programming Interface. What it refers to is the set of methods that act as

“doors” to the functionality contained within a class. A well-designed API will allow the

developer of the class to make radical changes behind the scenes without breaking any of

the code that uses the class.

Compare using the MySQL classes with the earlier procedural code; it should be

easy to see the similarities. Given that it’s so similar, you may ask, “Why not

stick to plain, procedural PHP?” Well, in this case, it hides many of the details

associated with performing the query. Tasks like managing the connection,

catching errors, and deciding what format to get the query results in are all handled

behind the scenes by the class. Classes also make the implementation of global

modifications (such as switching from MySQL to PostgreSQL) relatively painless

(i.e. you could just switch to a PostgreSQL class that provided the same API).

How do I resolve errors in my SQL
queries?

If something goes wrong when you try to deal with PHP and SQL together, it’s

often difficult to find the cause. The trick is to get PHP to tell you where the

problem is, bearing in mind that you must be able to hide this information from

visitors when the site goes live.

PHP provides the mysql_error function, which returns a detailed error message

from the last MySQL operation performed.

Chapter 3: PHP and MySQL

78

It’s best used in conjunction with the trigger_error function (which will be

discussed in more detail in Chapter 10), which allows you to control the output

of the error message. Let’s modify the basic connection code we saw earlier:

File: 6.php (excerpt)

// Make connection to MySQL server
if (!$dbConn = mysql_connect($host, $dbUser, $dbPass)) {
 trigger_error('Could not connect to server: ' . mysql_error());
 die();
}

// Select the database
if (!mysql_select_db($dbName)) {
 trigger_error('Could not select database: ' . mysql_error());
 die();
}

The same approach can be used with queries:

File: 6.php (excerpt)

// A query to select all articles
$sql = "SELECT * FROM articles ORDER BY title";

// Run the query, identifying the connection
if (!$queryResource = mysql_query($sql, $dbConn)) {
 trigger_error('Query error ' . mysql_error() . ' SQL: ' . $sql);
}

It can be a good idea to return the complete query itself, as we’ve done in the

above example, particularly when you’ve built it using PHP variables. This allows

you to see exactly what query was performed and, if necessary, execute it directly

against MySQL to identify exactly where it went wrong.

The MySQL class discussed above will automatically use mysql_error and

trigger_error should it encounter a problem.

How do I add or modify data in my
database?

Being able to fetch data from the database is a start, but how can you put it there

in the first place?

79

How do I add or modify data in my database?

Again, the answer is simple with PHP: use the mysql_query function combined

with SQL commands INSERT and UPDATE. INSERT is used to create new rows in

a table, while UPDATE is used to modify existing rows.

Inserting a Row
A simple INSERT, using the articles table defined at the start of this chapter,

looks like this:

File: 7.php (excerpt)

// A query to INSERT data
$sql = "INSERT INTO
 articles
 SET
 title = '$title',
 body = '$body',
 author = '$author'";

// Run the query, identifying the connection
if (!$queryResource = mysql_query($sql, $dbConn)) {
 trigger_error('Query error ' . mysql_error() . ' SQL: ' . $sql);
}

Updating a Row
Before you can use an UPDATE query, you need to be able to identify which row(s)

of the table to update. In this example, I’ve used a SELECT query to obtain the

unique article_id value for the article entitled “How to insert data”:

File: 8.php (excerpt)

// A query to select an article
$sql = "SELECT article_id FROM articles
 WHERE title='How to insert data'";

if (!$queryResource = mysql_query($sql, $dbConn)) {
 trigger_error('Query error ' . mysql_error() . ' SQL: ' . $sql);
}

// Fetch a single row from the result
$row = mysql_fetch_array($queryResource, MYSQL_ASSOC);

// A new title
$title = 'How to update data';

Chapter 3: PHP and MySQL

80

$sql = "UPDATE
 articles
 SET
 title='$title'
 WHERE
 article_id='" . $row['article_id'] . "'";

if (!$queryResource = mysql_query($sql, $dbConn)) {
 trigger_error('Query error ' . mysql_error() . ' SQL: ' . $sql);
}

In the above example, we used the SELECT query to find the ID for the row we

wanted to update.

In practical Web applications, the UPDATE might occur on a page which relies on

input from the Web browser, after the user has entered the value(s) using an

HTML form, for example. It is possible that strings in this data might contain

apostrophes, which would break the SQL, and impact upon security. In light of

this, make sure you read “How do I solve database errors caused by quotes/apo-

strophes?”, which covers SQL injection attacks.

Beware Global Updates

Be careful with UPDATE and remember to use a WHERE clause to indicate

which rows to change.

For example, consider this query:

UPDATE articles SET title = 'How NOT to update data'

This will update every row of the table!

Another Class Action
Using the MySQL class last seen in “How do I fetch data from a table?”, we can

perform INSERT and UPDATE queries without any further modifications. Repeating

the above examples using the class, we can first INSERT like this:

File: 9.php (excerpt)

// Connect to MySQL
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

$title = 'How to insert data';
$body = 'This is the body of the article';

81

Another Class Action

$author = 'HarryF';

// A query to INSERT data
$sql = "INSERT INTO
 articles
 SET
 title = '$title',
 body = '$body',
 author = '$author'";

$db->query($sql);

if (!$db->isError()) {
 echo 'INSERT successful';
} else {
 echo 'INSERT failed';
}

We can UPDATE as follows:

File: 10.php (excerpt)

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// A query to select an article
$sql = "SELECT article_id FROM articles
 WHERE title='How to insert data'";

$result = $db->query($sql);

$row = $result->fetch();

// A new title
$title = 'How to update data';

$sql = "UPDATE
 articles
 SET
 title='" . $title. "'
 WHERE
 article_id='" . $row['article_id'] . "'";

$db->query($sql);

if (!$db->isError()) {
 echo 'UPDATE successful';
} else {

Chapter 3: PHP and MySQL

82

 echo 'UPDATE failed';
}

How do I solve database errors caused
by quotes/apostrophes?

Consider the following SQL statement:

INSERT INTO articles SET title='The PHP Anthology';

Perhaps the PHP script that made this query contained something like this:

<?php
$title = "The PHP Anthology";

$sql = "INSERT INTO articles SET title='$title';";

$result = mysql_query($sql, $dbConn);
?>

No problem so far, but look what happens if we change the title:

$title = "PHP's Greatest Hits";

Notice the apostrophe in the title? When we place this in the SQL statement,

the query MySQL receives will be as follows:

INSERT INTO articles SET title='PHP's Greatest Hits';

See the problem? When MySQL reads that statement, it will only get as far as

this:

INSERT INTO articles SET title='PHP'

The rest of the statement will cause a syntax error and the query will fail. It’s

easy enough to avoid this problem when you write the title yourself, but what

happens when your script gets the value from user input?

The Great Escape
The solution is to escape the apostrophe character by adding a backslash before

the apostrophe. The following query, for example, will work:

83

How do I solve database errors caused by quotes/apostrophes?

INSERT INTO articles SET title='PHP\'s Greatest Hits';

Backslashes and the ANSI SQL Standard

Note that using the backslash as an escape character is not standard ANSI SQL. If MySQL

is the only database you’ll ever use, the backslash may be acceptable, but the same SQL

statement run on another database may well fail. According to ANSI SQL we should escape

apostrophes with another single apostrophe:

INSERT INTO articles SET title='PHP''s Greatest Hits';

The question is, how do we make sure all our apostrophes are escaped when we

build a query on the fly in PHP? Dealing with this situation has become rather

confusing due to the number of alternative solutions:

� First we have the php.ini setting magic_quotes_gpc. Magic quotes is a

feature of PHP which, when turned on, automatically escapes single and

double quotes, as well as backslashes and null characters found in incoming

GET, POST and cookie variables, by adding backslashes to the strings. This

may sound great, but in practice it quickly makes for trouble, typically where

forms are involved.

Say you have a form which is used for editing articles. Your script takes the

text the user enters and inserts it into MySQL. Now, if the user fails to com-

plete some important field, you might want to re-display the details that have

been entered in the form so far. With magic quotes on you’d have to strip

out all the slashes it added to the values (with PHP’s stripslashes function)!

Then, what if you wanted to run the code on a server where magic_quotes_gpc
is disabled? Your code would then have to check to see if magic quotes is

switched on and bypass the use of stripslashes. Headaches are inevitable,

and if you make a mistake and end up with spurious backslashes stored in

your database4, you may have a painful cleanup process ahead of you.

Magic quotes is discussed in some detail in Chapter 1. If you do switch off

magic_quotes_gpc as I advise, you should be aware of the potential risks to

security. See the section called “SQL Injection Attacks” below and Appendix C.

4It continually amazes me how many professionally designed sites fail to handle character escaping

properly! Keep an eye out for unexpected backslashes in your own Web travels. See Chapter 1 for

my advice on how best to avoid this on your own sites.

Chapter 3: PHP and MySQL

84

� Next, we have the PHP function addslashes. Applied to any string,

addslashes will use backslashes to escape single quotes, double quotes,

backslashes and null characters. This makes it an effective means to escape

strings for use in queries.

If magic quotes is on, of course, you must not use addslashes, or characters

would be escaped twice! To solve this conflict, you can check if magic quotes

is enabled with the function get_magic_quotes_gpc, which returns TRUE if

magic quotes is enabled and FALSE if it isn’t. You can bundle up this test with

a function as follows:

<?php
function safeAddSlashes($string)
{
 if (get_magic_quotes_gpc()) {
 return $string;
 } else {
 return addslashes($string);
 }
}
?>

� The third way, which is very similar to addslashes, uses the function

mysql_escape_string or mysql_real_escape_string (the latter was added

in PHP 4.3.0). These functions use the underlying MySQL C++ API (provided

by the developers of MySQL, rather than the developers of PHP) to escape

special characters.

These functions escape null characters, line feeds, carriage returns, backslashes,

single quotes, double quotes, and end-of-file characters. Since PHP 4.3.0,

both functions have used the current character set for the connection between

PHP and MySQL. There is, therefore, no difference between these two func-

tions in the latest PHP versions, so feel free to stick with the shorter of the

two, mysql_escape_string, if your server is up-to-date.

As this method is, in effect, the built-in mechanism provided by MySQL for

escaping strings, I recommend it over addslashes or magic_quotes_gpc. Of

course, if you want your SQL to port well to other databases, you may want

to consider “hiding” the function call within a class method, which allows you

to swap out the class—including the escape mechanism—when moving to a

different database.

85

The Great Escape

Again, if you do not otherwise handle the magic quotes issue, you’ll have to

check whether magic_quotes_gpc is on:

<?php
function safeEscapeString($string)
{
 if (get_magic_quotes_gpc()) {
 return $string;
 } else {
 return mysql_real_escape_string($string);
 }
}
?>

The scripts in this book make use of the MagicQuotes/strip_quotes.php
include file introduced in Chapter 1 and included in the code archive to ef-

fectively switch off magic quotes on servers where it is enabled, so the solutions

that follow will use mysql_real_escape_string freely. I’d encourage you to

do the same in your own scripts if you feel confident escaping quotes and

other special characters yourself.

SQL Injection Attacks
An SQL injection attack occurs when an attacker exploits a legitimate user input

mechanism on your site to send SQL code that your unsuspecting script will pass

on to the database to execute. The golden rule: escape all data from external sources
before letting it near your database. That rule doesn’t just apply to INSERT and

UPDATE queries, but also to SELECT queries.

No doubt many PHP developers have been saved from the worst SQL injection

attacks by the limitations of MySQL, which will only allow a single SQL statement

to be performed with each call to mysql_query. On other databases, the effect

of an SQL injection can be disastrous, as an attacker can send a second query

that, for example, deletes the entire contents of a table. With MySQL, however,

problems can still occur, as the following code demonstrates:

$sql = "SELECT * FROM users
 WHERE username='" . $_POST['username'] . "'
 AND password='" . $_POST['password'] . "'";

echo 'Query: ' . $sql . '
';

$result = mysql_query($sql);

Chapter 3: PHP and MySQL

86

$rows = mysql_num_rows($result);

if ($rows > 0) {
 echo 'You are logged in!
';
} else {
 echo 'You are not allowed here!
';
}
?>
<form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
<input type="text" name="username" />

<input type="text" name="password" />

<input type="submit" />
</form>

A savvy attacker could simply enter the following in the form’s password field:

' OR username LIKE '%

Assuming magic quotes is disabled on your server, and you have no other measures

in place to prevent it, this clever attack alters the meaning of the query:

SELECT * FROM users
WHERE username='' AND password='' OR username LIKE '%'

The modified query will select all records in the user table! When the script checks

whether any users matched the supplied user name and password combination,

it will see this big result set and grant access to the site!

This can be prevented if we escape the incoming variables:

$sql = "SELECT * FROM users
 WHERE username='" . safeEscapeString($_POST['username']) . "'
 AND password='" . safeEscapeString($_POST['password']) . "'";

In some cases, depending on the circumstances, this may not be necessary. But

if you value your sleep, remember that golden rule: escape all data from external
sources.

How do I create flexible SQL statements?
SQL is a powerful language for manipulating data. Using PHP, we can construct

SQL statements out of variables, which can be useful for sorting a table by a

single column or displaying a large result set across multiple pages.

87

How do I create flexible SQL statements?

Here is a simple example that lets us sort the results of a query by a table column:

File: 11.php (excerpt)

// A query to select all articles
$sql = "SELECT * FROM articles";

// Initialize $_GET['order'] if it doesn't exist
if (!isset($_GET['order']))
 $_GET['order'] = FALSE;

// Use a conditional switch to determine the order
switch ($_GET['order']) {
 case 'author':
 // Add to the $sql string
 $sql .= " ORDER BY author";
 break;
 default:
 // Default sort by title
 $sql .= " ORDER BY title";
 break;
}

// Run the query, identifying the connection
if (!$queryResource = mysql_query($sql, $dbConn)) {
 trigger_error('Query error ' . mysql_error() . ' SQL: ' . $sql);
}
?>
<table>
<tr>
<th><a href="<?php echo $_SERVER['PHP_SELF']; ?>?order=title"
 >Title</th>
<th><a href="<?php echo $_SERVER['PHP_SELF']; ?>?order=author"
 >Author</th>
</tr>
<?php
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo "<tr>\n";
 echo "<td>" . $row['title'] . "</td>";
 echo "<td>" . $row['author'] . "</td>";
 echo "</tr>\n";
}
?>
</table>

Within the switch statement, I’ve generated part of the SQL statement “on the

fly,” depending on a GET variable the script receives from the browser.

Chapter 3: PHP and MySQL

88

This general approach can be extended to WHERE clauses, LIMIT clauses, and

anything else you care to consider with SQL. We’ll look at this in more detail

when we construct a paged result set in Chapter 9.

Persistence Layers: Database Interaction Without SQL

Persistence layers are becoming popular, and are well supported in PHP today. A persistence

layer is a collection of classes that represents the tables in your database, providing you

with an API through which all data exchanged between the database and the PHP applic-

ation passes. This generally takes away the need for you to write SQL statements by hand,

as the queries are generated and executed automatically by the PHP classes that represent

the data.

Because SQL is a fairly well defined standard, it also becomes possible to have a persistence

layer generated automatically. A program can examine your database schema and produce

the classes that will automatically read and update it. This can be a very significant time

saver; simply design your database, run the code generation tool, and the rest is “just” a

matter of formatting a little (X)HTML.

A prime example of a persistence layer is PEAR::DB_DataObject[1], which builds on top

of the PEAR::DB database abstraction library, and automatically generates a layer of

classes with which to access your tables.

Persistence layers in general and PEAR::DB_DataObject in particular are discussed in

“Do I really need to write SQL?”.

How do I find out how many rows I’ve
selected?

It’s often useful to be able to count the number of rows returned by a query before

you do anything with them, such as when you’re splitting results across pages or

producing statistical information. When selecting results, you can use either PHP

or MySQL to count the number of rows for you.

Counting Rows with PHP
With PHP, the function mysql_num_rows returns the number of rows selected,

but its application can be limited when you use unbuffered queries (see “How

[1] http://pear.php.net/package-info.php?package=DB_DataObject

89

How do I find out how many rows I’ve selected?

http://pear.php.net/package-info.php?package=DB_DataObject
http://pear.php.net/package-info.php?package=DB_DataObject

do I fetch data from a table?”). The following code illustrates the use of

mysql_num_rows:

File: 12.php (excerpt)

// A query to select all articles
$sql = "SELECT * FROM articles ORDER BY title";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch the number of rows selected
$numRows = mysql_num_rows($queryResource);

echo $numRows . ' rows selected
';

// Fetch rows from MySQL one at a time
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';
 echo 'Body: ' . $row['body'] . '
';
}

The mysql_num_rows function, demonstrated in the above example, takes a result

set resource identifier and returns the number of rows in that result set.

Note that the related function, mysql_num_fields, can be used to find out how

many columns were selected. This can be handy when you’re using queries like

SELECT * FROM table, but you don’t know how many columns you’ve selected.

Counting Rows with MySQL
The alternative approach is to use MySQL’s COUNT function within the query.

This requires that you perform two queries—one to count the results and one to

actually get the results—which will cost you a little in terms of performance.

Here’s how you could use the MySQL COUNT function:

File: 13.php (excerpt)

// A query to select all articles
$sql = "SELECT COUNT(*) AS numrows FROM articles";

// Query to count the rows returned
$queryResource = mysql_query($sql, $dbConn);

Chapter 3: PHP and MySQL

90

$row = mysql_fetch_array($queryResource, MYSQL_ASSOC);

echo $row['numrows'] . " rows selected
";

// A query to select all articles
$sql = "SELECT * FROM articles ORDER BY title";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch rows from MySQL one at a time
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';
 echo 'Body: ' . $row['body'] . '
';
}

Notice we used an alias to place the result of the COUNT function?

SELECT COUNT(*) AS numrows FROM articles

We do this so that the number of rows can be identified later using

$row['numrows']. The alternative would have been to omit the alias:

SELECT COUNT(*) FROM articles

This would require that we access the information as $row['COUNT(*)'], which

can make the code confusing to read.

When we use the COUNT function, it becomes important to construct queries on

the fly as we saw in “How do I create flexible SQL statements?”. You need to

make sure your COUNT query contains the same WHERE or LIMIT clauses you used

in the “real” query. For example, if the query we’re actually using to fetch data

is:

SELECT * FROM articles WHERE author='HarryF'

In PHP, we’ll probably want something like this:

File: 14.php (excerpt)

// Define reusable "chunks" of SQL
$table = " FROM articles";
$where = " WHERE author='HarryF'";
$order = " ORDER BY title";

// Query to count the rows returned

91

Counting Rows with MySQL

$sql = "SELECT COUNT(*) as numrows" . $table . $where;

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

$row = mysql_fetch_array($queryResource, MYSQL_ASSOC);

echo $row['numrows'] . " rows selected
";

// A query to fetch the rows
$sql = "SELECT * " . $table . $where . $order;

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch rows from MySQL one at a time
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';
 echo 'Body: ' . $row['body'] . '
';
}

Row Counting with Classes
Let’s look again at the classes we’ve been developing throughout this section. We

can add the ability to find out the number of rows selected by introducing the

following method to the MySQLResult class:

File: Database/MySQL.php (in SPLIB) (excerpt)

 /**
 * Returns the number of rows selected
 * @return int
 * @access public
 */
 function size()
 {
 return mysql_num_rows($this->query);
 }

Here’s how to use it:

File: 15.php (excerpt)

// Connect to MySQL
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

Chapter 3: PHP and MySQL

92

// Select all results for a particular author
$sql = "SELECT * FROM articles WHERE author='HarryF'";

$result = $db->query($sql);

echo "Found " . $result->size() . " rows";

Counting Affected Rows
It’s also possible to find out how many rows were affected by an UPDATE, INSERT
or DELETE query, using the PHP function mysql_affected_rows. Use of

mysql_affected_rows is not common in typical PHP applications, but it could

be a good way to inform users that, “You’ve just deleted 1854 records from the

Customers table. Have a nice day!”

Unlike mysql_num_rows, which takes a result set resource identifier as its argu-

ment, mysql_affected_rows takes the database connection identifier. It returns

the number of rows affected by the last query that modified the database, for the

specified connection.

Here’s how mysql_affected_rows can be used:

File: 16.php (excerpt)

// Connect to MySQL
$dbConn = &connectToDb($host, $dbUser, $dbPass, $dbName);

// A query which updates the database
$sql = "UPDATE
 articles
 SET
 author='The Artist Formerly Known as...'
 WHERE
 author='HarryF'";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch the number of rows affected
$changedRows = mysql_affected_rows($dbConn);

echo $changedRows . ' rows changed
';

As situations in which mysql_affected_rows is needed are uncommon, I’ll omit

this from the MySQLResult class in the interests of keeping things simple.

93

Counting Affected Rows

After inserting a row, how do I find out
its row number?

When you’re dealing with AUTO_INCREMENT columns in database tables, it’s often

useful to be able to find out the ID of a row you’ve just inserted, so that other

tables can be updated with this information. That, after all, is how relationships

between tables are built. PHP provides the function mysql_insert_id, which,

when given a link identifier, returns the ID generated by the last INSERT performed

with that connection. Here’s how mysql_insert_id can be used:

File: 17.php (excerpt)

// A query to insert a row
$sql = "INSERT INTO
 articles
 SET
 title='How to use mysql_insert_id()',
 body='This is an example',
 author='HarryF'";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch the inserted ID
$insertID = mysql_insert_id($dbConn);

echo 'The new row has ID: ' . $insertID;

Class Insert ID
To use this functionality in our MySQLResult class, add the following method:

File: Database/MySQL.php (in SPLIB) (excerpt)

 /**
 * Returns the ID of the last row inserted
 * @return int
 * @access public
 */
 function insertID()
 {
 return mysql_insert_id($this->mysql->dbConn);
 }

Chapter 3: PHP and MySQL

94

As you might guess, using this method is quite straightforward:

File: 18.php (excerpt)

// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// A query to insert a row
$sql="INSERT INTO
 articles
 SET
 title='How to use mysql_insert_id()',
 body='This is an example',
 author='HarryF'";

$result = $db->query($sql);

echo 'The new row as ID: ' . $result->insertID();

How do I search my table?
Some people are just impatient; rather than trawling your site with the friendly

navigation system you’ve provided, they demand information now! Hence PHP

developers like you and I are required to implement search features to provide

visitors a “short cut” to find the information they want. In the days of storing

all content in the form of HTML files, this could be quite a problem, but now

that you’re using a database to store content, searching becomes much easier.

Select What You LIKE
The most basic form of search occurs against a single column, with the LIKE op-

erator:

SELECT * FROM articles WHERE title LIKE 'How %'

The % is a wildcard character. The above statement will select all articles in which

the title begins with the word “How.” MySQL also has support for POSIX regular

95

How do I search my table?

expressions (the same as PHP’s ereg functions). Using the RLIKE operator, we

can compare a column using a regular expression:

SELECT * FROM articles WHERE title RLIKE '^How '

The above statement also selects every article in which the title begins with “How”

followed by a space.

With some work, these operators provide everything needed to explore your data.

Where the above approach becomes a burden is in performing a search against

multiple columns. For example,

SELECT * FROM articles
WHERE title LIKE '%how%' OR body LIKE '%how%'

For larger tables, this can require you to write some very complicated and unpleas-

ant queries.

FULLTEXT Searches
MySQL provides an alternative that does most of the work for you—the FULLTEXT
index. Indexes in a database are much like the index of a book; they provide a

means to locate information within the database quickly from an organized list.

A FULLTEXT index allows you to search a table for particular words.

FULLTEXT indexes were introduced to MySQL with version 3.23. The implement-

ation at this point was fairly limited but still useful for basic searching, which is

what I’ll demonstrate here. In MySQL version 4.0.1, this functionality was exten-

ded to provide a full Boolean search mechanism that gives you the ability to build

something like Google™’s advanced search features. FULLTEXT indexes also allow

each result to be returned with a “relevance” value so that, for example, the results

of multiple word searches can be displayed in terms of how well each result

matches that user’s particular search.

To take advantage of FULLTEXT indexes, you first need to instruct MySQL to

begin building an index of the columns you want to search:

ALTER TABLE articles ADD FULLTEXT art_search (title, body, author)

Once you’ve done that, you need to INSERT a new record (or modify an existing

one) to get MySQL to build the index. You also need at least three records in

the database for FULLTEXT searches to work, because non-Boolean searches will

only return results if the search string occurred in less than 50% of the rows in

Chapter 3: PHP and MySQL

96

the table (if there are only two rows in the table, and your search matches one

row, that makes 50%). One final thing to be aware of is that FULLTEXT searches

will only match searches of more than three letters; the indexing mechanism ig-

nores words of three characters or less, to avoid having to build a massive index.

This is much like the index of a book; you’d be pretty surprised to discover in a

book’s index exactly which pages the word “the” appeared on!

Here’s a basic FULLTEXT search:

SELECT * FROM articles
WHERE MATCH (title,body,author) AGAINST ('MySQL');

This search will return all rows where either the title, body or author contained

the word “MySQL.”

Another use for FULLTEXT indexes is in a search which returns the relevance for

each result. For example:

File: 19.php (excerpt)

// Select all rows but display relvance
$sql = "SELECT
 *, MATCH (title, body, author)
 AGAINST
 ('The PHP Anthology Released Long Word Matching')
 AS
 score
 FROM
 articles
 ORDER BY score DESC";

// Run the query, identifying the connection
$queryResource = mysql_query($sql, $dbConn);

// Fetch rows from MySQL one at a time
while ($row = mysql_fetch_array($queryResource, MYSQL_ASSOC)) {
 echo 'Title: ' . $row['title'] . '
';
 echo 'Author: ' . $row['author'] . '
';
 echo 'Body: ' . $row['body'] . '
';
 echo 'Score: ' . $row['score'] . '
';
}

The alias score now contains a value that identifies how relevant the row is to

the search. The value is not a percentage, but simply a measure; 0 means no

match was made at all. Matching a single word will produce a value around 1.

The more words that match, the bigger the number gets, so a five word match

97

FULLTEXT Searches

ranking will produce a relevance score around 13. MySQL’s relevance algorithm

is designed for large tables, so the more data you have, the more useful the relev-

ance value becomes.

Overall, MySQL’s FULLTEXT search capabilities provide a mechanism that’s easy

to implement and delivers useful results.

How do I back up my database?
The bigger a database becomes, the more nerve wracking it can be not to have a

backup of the data it contains. What if your server crashes and everything is lost?

Thankfully, MySQL comes with two alternatives: a command line utility called

mysqldump, and a query syntax for backing up tables.

Here’s how you can export the contents of a database from the command line

with mysqldump:

mysqldump -uharryf -psecret sitepoint > sitepoint.sql

This command will log in to MySQL as user “harryf” (-uharryf) with the pass-

word “secret” (-psecret) and output the contents of the sitepoint database to

a file called sitepoint.sql. The contents of sitepoint.sql will be a series of

queries that can be run against MySQL, perhaps using the mysql utility to perform

the reverse operation from the command line:

mysql -uharryf -psecret sitepoint < sitepoint.sql

Using the PHP function system, you can execute the above command from

within a PHP script (this requires you to be logged in and able to execute PHP

scripts from the command line). The following class puts all this together in a

handy PHP form that you can use to keep regular backups of your site.

File: Database/MySQLDump.php (in SPLIB)

/**
 * MySQLDump Class

 * Backs up a database, creating a file for each day of the week,
 * using the mysqldump utility.

 * Can compress backup file with gzip of bzip2

 * Intended for command line execution in conjunction with
 * cron

 * Requires the user executing the script has permission to execute
 * mysqldump.
 * <code>

Chapter 3: PHP and MySQL

98

 * $mysqlDump = new MySQLDump('harryf', 'secret', 'sitepoint',
 * '/backups');
 * $mysqlDump->backup();
 * </code>
 * @access public
 * @package SPLIB
 */
class MySQLDump {
 /**
 * The backup command to execute
 * @private
 * @var string
 */
 var $cmd;

 /**
 * MySQLDump constructor
 * @param string dbUser (MySQL User Name)
 * @param string dbPass (MySQL User Password)
 * @param string dbName (Database to select)
 * @param string dest (Full dest. directory for backup file)
 * @param string zip (Zip type; gz - gzip [default], bz2 - bzip)
 * @access public
 */
 function MySQLDump($dbUser, $dbPass, $dbName, $dest,
 $zip = 'gz')
 {
 $zip_util = array('gz'=>'gzip','bz2'=>'bzip2');
 if (array_key_exists($zip, $zip_util)) {
 $fname = $dbName . '.' . date("w") . '.sql.' . $zip;
 $this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .
 ' ' . $dbName . '| ' . $zip_util[$zip] . ' >' .
 $dest . '/' . $fname;
 } else {
 $fname = $dbName . '.' . date("w") . '.sql';
 $this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .
 ' ' . $dbName . ' >' . $dest . '/' . $fname;
 }
 }

 /**
 * Runs the constructed command
 * @access public
 * @return void
 */
 function backup()

99

How do I back up my database?

 {
 system($this->cmd, $error);
 if ($error) {
 trigger_error('Backup failed: ' . $error);
 }
 }
}

The MySQLDump class makes some assumptions about your operating system

configuration. It assumes the mysqldump utility is available in the path of

the user that executes this script. If the gzip or bzip2 utilities are used,

they also need to be present in the path of the user who executes this script.

bzip2 provides better compression than gzip, helping save disk space.

The following code demonstrates how this class can be used:

File: 20.php

<?php
// Include the MySQLDump class
require_once 'Database/MySQLDump.php';

$dbUser = 'harryf'; // db User
$dbPass = 'secret'; // db User Password
$dbName = 'sitepoint'; // db name
$dest = '/home/harryf/backups'; // Path to directory
$zip = 'bz2'; // ZIP utility to compress with

// Instantiate MySQLDump
$mysqlDump = new MySQLDump($dbUser, $dbPass, $dbName, $dest,
 $zip);

// Perform the backup
$mysqlDump->backup();
?>

The $dest variable specifies the path to the directory in which the backup file

should be placed. The filename that’s created will be in this format:

databaseName.dayOfWeek.sql.zipExtension

For example:

sitepoint.1.sql.bz2

The dayOfWeek element can be any number from 0 to 6 (0 being Sunday and 6

being Saturday). This provides a weekly “rolling” backup, the files for the following

Chapter 3: PHP and MySQL

100

http://databaseName.dayOfWeek.sql.zipExtension
http://sitepoint.1.sql.bz2

week overwriting those from the previous week. This should provide adequate

backups, giving you a week to discover any serious problems, and without requir-

ing excessive disk space to store the files.

The use of a ZIP utility is optional. If the value of the $zip variable is not one

of gz or bz2, then no compression will be made, although for large databases it’s

obviously a good idea to use a compression tool to minimize the amount of disk

space required.

This class is intended for use with the crontab utility, which is a Unix feature

that allows you to execute scripts on a regular (for example, daily) basis.

MySQL also provides the SQL statements BACKUP TABLE and RESTORE TABLE,

which allow you to copy the contents of a table to another location on your file

system. Unlike the mysqldump utility, tables backed up in this way preserve their

original format (which is not human-readable) but this mechanism does not re-

quire access to a command line utility, so it could be executed via a Web page.

The general syntax for these statements is as follows:

BACKUP TABLE tbl_name[, tbl_name ...]
TO '/path/to/backup/directory'

RESTORE TABLE tbl_name[, tbl_name ...]
FROM '/path/to/backup/directory'

Note that on Windows systems it’s best to specify paths using forward slashes

(e.g. C:/backups).

By combining these with some of the “introspection” statements MySQL provides,

we can backup our database using the MySQL class we built in this chapter. To

start with, we need to get a list of tables in the database, which is quickly achieved

using the SHOW TABLES query syntax:

File: 21.php (excerpt)

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

101

How do I back up my database?

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// A query to show the tables in the database
$sql = "SHOW TABLES FROM sitepoint";

// Execute query
$result = $db->query($sql);

We also store the number of rows returned by this query to help us format the

string we’ll use to build the BACKUP query:

File: 21.php (excerpt)

// Get the number of tables found
$numTables = $result->size();

Next, we loop through the results, building a comma-separated list of tables to

back up:

File: 21.php (excerpt)

// Build a string of table names
$tables = '';
$i = 1;
while ($table = $result->fetch()) {
 $tables .= $table['Tables_in_sitepoint'];
 if ($i < $numTables) {
 $tables .= ', ';
 }
 $i++;
}

Finally, we use the BACKUP TABLE query syntax to copy the tables to a directory

of our choice (to which, of course, the script that executes this query needs per-

mission to write):

File: 21.php (excerpt)

// Build the backup query
$sql = "BACKUP TABLE $tables TO '/home/harryf/backup'";

// Perform the query
$db->query($sql);

if (!$db->isError()) {
 echo 'Backup succeeded';
} else {
 echo 'Backup failed';

Chapter 3: PHP and MySQL

102

}
?>

How do I repair a corrupt table?
Although it shouldn’t happen, occasionally data stored in MySQL becomes cor-

rupted. The are a number of (rare) circumstances where this can happen; Windows

is particularly susceptible as it doesn’t have the robust file locking mechanism of

Unix-based systems. Servers with heavy loads, on which INSERT and UPDATE
queries are common alongside SELECTs are also likely to suffer occasional corrup-

tion. Assuming you’re using the MyISAM table type (you’ll be using this unless

you’ve specified otherwise), there’s good news; in general , you should be able to

recover all the data in a corrupt table.

Note that the information provided here represents a quick reference for those

times when you need help fast. It’s well worth reading the MySQL manual on

Disaster Prevention and Recovery[2] so that you know exactly what you’re doing.

MySQL provides two important utilities to deal with corrupt tables, as well as a

handy SQL syntax for those who can get to the MySQL command line.

First, the perror utility can be run from the command line to give you a rough

idea of what MySQL error codes mean. The utility should be available from the

bin subdirectory of your MySQL installation. Typing perror 145, for example,

will tell you:

145 = Table was marked as crashed and should be repaired

From the command line, you can then use the utility myisamchk to check the

database files themselves:

myisamchk /path/to/mysql/data/table_name

To repair a corrupt table with myisamchk, the syntax is as follows:

myisamchk -r /path/to/mysql/data/table_name

Using SQL, you can also check and fix tables using a query like this:

CHECK TABLE articles

And this:

[2] http://www.mysql.com/doc/en/Disaster_Prevention.html

103

How do I repair a corrupt table?

http://www.mysql.com/doc/en/Disaster_Prevention.html
http://www.mysql.com/doc/en/Disaster_Prevention.html

REPAIR TABLE articles

With luck, you’ll need to use these commands only once or twice, but it’s worth

being prepared in advance so you can react effectively (without even a hint of

panic creeping into your actions).

Do I really need to write SQL?
A good quality to posses as a programmer is laziness—the desire to do as much

as possible with the minimum amount of effort. Although you may not want to

cite it as one of your strong points in a job interview, being motivated to make

life easier for yourself is a significant boon in developing a well designed applica-

tion.

Now that you’ve read this chapter on PHP and MySQL, I think it’s a good time

to reveal that I hate SQL not because there’s anything wrong with it, as such,

but because it always causes me grief. If there’s a syntax error in my PHP, for

example, PHP will find it for me. But PHP won’t find errors in SQL statements,

and MySQL error messages can be less than revealing. If I’m hand coding SQL

in an application, I’ll spend a fair amount of time debugging it—time I could

have spent taking it easy!

What if you could avoid having to write SQL statements altogether? If you think

back to “How do I create flexible SQL statements?”, where we constructed SQL

strings “on the fly” based on incoming variables, you may have had an inkling

that there would be some kind of generic solution to make generating SQL even

easier. Well, there is! It’s called PEAR::DB_DataObject[3].

DB_DataObject is a class that encapsulates the process of writing SQL statements

in a simple API. It takes advantage of the native “grammar” of SQL and presents

you with a mechanism that removes almost any need to write any SQL yourself.

As an approach to dealing with databases, it’s usually described as a database

persistence layer, or, alternatively, as using the Data Access Objects (DAO)

design pattern. You’ll find further discussion of the general techniques used by

DB_DataObject at the end of this chapter.

Here, I’ll provide a short introduction to DB_DataObject to get you started, as

it’s a subject that could easily absorb a whole chapter if examined in depth. The

DB_DataObject documentation[4] on the PEAR Website should provide you

[3] http://pear.php.net/DB_DataObject

[4] http://pear.php.net/manual/en/package.database.db-dataobject.php

Chapter 3: PHP and MySQL

104

http://pear.php.net/DB_DataObject
http://pear.php.net/manual/en/package.database.db-dataobject.php
http://pear.php.net/DB_DataObject
http://pear.php.net/manual/en/package.database.db-dataobject.php

with plenty of further help. The version we used here was 1.1; note that it requires

that you have the PEAR::DB database abstraction library installed (see Appendix D

for more information on installing PEAR libraries).

The first step in getting started with DB_DataObject is to point it at your database

and tell it to generate the DataObject classes that will constitute your interface

with the tables. DB_DataObject automatically examines your database, using

MySQL’s introspection functionality, and generates a class for each table in the

database, as well as a configuration file containing the details of the columns

defined by the table. To let DB_DataObject know where your database can be

found, you need to provide it a configuration file like this one:

File: db_dataobject.ini

[DB_DataObject]
; PEAR::DB DSN
database = mysql://harryf:secret@localhost/sitepoint
; Location where sitepoint.ini schema file should be created
schema_location = /htdocs/phpanth/SPLIB/ExampleApps/DataObject
; Location where DataObject classes should be created
class_location = /htdocs/phpanth/SPLIB/ExampleApps/DataObject
; Prefix for including files from your code
require_prefix = ExampleApps/DataObject
; Classes should be prefixed with this string e.g. DataObject_User
class_prefix = DataObject_
; Debugging information: 0=off, 1=display sql, 2=display results,
; 3=everything
debug = 0
; Prevent SQL INSERT, UPDATE or DELETE from being performed
debug_ignore_updates = false
; Whether to die of error with a PEAR_ERROR_DIE or not
dont_die = false

The above ini file obeys the same formatting rules as php.ini. Most important

is the first line, which is a PEAR::DB DSN string that defines the variables needed

to connect to the database. This file is used both to generate the DataObject
classes, and to use them in performing queries.

With that in place, we can use this script (which must be run from the command

line) to generate the classes:

File: 22.php

<?php
// Builds the DataObjects classes
$_SERVER['argv'][1] = 'db_dataobject.ini';

105

Do I really need to write SQL?

require_once 'DB/DataObject/createTables.php';
?>

This script automatically creates the class files we need in order to access the

database. Here’s an example developed for the articles table:

File: ExampleApps/DataObject/Articles.php (in SPLIB)

<?php
/**
 * Table Definition for articles
 */
require_once 'DB/DataObject.php';

class DataObject_Articles extends DB_DataObject
{

 ###START_AUTOCODE
 /* the code below is auto generated do not remove the above tag
*/

 var $__table = 'articles'; // table name
 var $article_id; // int(11) not_null primary_key auto_increment
 var $title; // string(255) not_null multiple_key
 var $intro; // blob(65535) not_null blob
 var $body; // blob(65535) not_null blob
 var $author; // string(255) not_null
 var $published; // string(11)
 var $public; // string(1) not_null enum

 /* ZE2 compatibility trick*/
 function __clone() { return $this;}

 /* Static get */
 function staticGet($k,$v=NULL) {
 return DB_DataObject::staticGet('DataObject_Articles',$k,$v); }

 /* the code above is auto generated do not remove the tag below */
 ###END_AUTOCODE
}
?>

Let’s now use this class to access the articles table:

File: 23.php

<?php
// Include the DataObjects_Articles class

Chapter 3: PHP and MySQL

106

require_once 'ExampleApps/DataObject/Articles.php';

// Parse the database ini file
$dbconfig = parse_ini_file('db_dataobject.ini', true);

// Load Database Settings
// (note main PEAR class is loaded by Articles.php)
foreach ($dbconfig as $class => $values) {
 $options = &PEAR::getStaticProperty($class, 'options');
 $options = $values;
}

// Instantiate the DataObject_Articles class
$articles = new DataObject_Articles();

// Assign a value to use to search the 'Author' column
$articles->author = 'Kevin Yank';

// Perform the query
$articles->find();

echo 'Kevin has written the following articles:
';

// Loop through the articles
while ($articles->fetch()) {
 echo ' - ' . $articles->title . ', published: ' .
 date('jS M Y', $articles->published) . '
';
}
?>

First of all, where’s the SQL? There isn’t any—great! The parse_ini_file
function is provided by PHP (see Chapter 4 for details) and deals with getting

the variables from our db_dataobject.ini configuration file. The foreach loop

makes the required variables available to DB_DataObject when we instantiate its

auto-generated subclass DataObject_Articles. By assigning a value to the author

property of the $articles object, we prepare a WHERE condition that

DataObject_Articles should use when it queries the database. The query is

actually performed by calling the find method (see the DB_DataObject document-

ation for full details), which in turn executes the following query:

SELECT * FROM articles WHERE articles.author = 'Kevin Yank'

To loop through the results, we use the fetch method. When it’s called, fetch
populates the properties of the $articles object with the current row result.

107

Do I really need to write SQL?

This allows us to access them again via the property names, as with

$articles->title.

Further methods are provided to make the query more complex, for example, the

whereAdd method:

File: 24.php (excerpt)

// Instantiate the DataObject_Articles class
$articles = new DataObject_Articles();

// Assign a value to use to search the 'Author' column
$articles->author = 'Kevin Yank';

// Add a where clause
$articles->whereAdd('published > ' . mktime(0, 0, 0, 5, 1, 2002));

// Perform the query
$articles->find();

This allows us to add a further condition to the WHERE clause:

SELECT * FROM articles
WHERE published > 1020204000 AND articles.author = 'Kevin Yank'

There are other similar methods, so if these fail to provide what you need, you

can use the query method to execute a hand-coded query. Note that if you find

yourself needing to use the query method, it may be a good idea to create a

subclass of the generated DataObject class, and wrap the query in a useful

method name that describes it accurately.

DB_DataObject also deals effectively with table joins, which, although slightly

more detailed than the example above, is certainly a time saver when compared

with writing complex join queries by hand.

That concludes our short introduction to DB_DataObject, but this section should

have given you a taste of what it can do for you. The big advantage is that it

makes querying your database with SQL far less exhausting and error-prone. Also,

by centralizing access to a particular table in a single class, it helps simplify

dealing with changes to the table structure.

Further Reading
� Beginning MySQL: http://www.devshed.com/Server_Side/MySQL/Intro/

Chapter 3: PHP and MySQL

108

http://www.devshed.com/Server_Side/MySQL/Intro/
http://www.devshed.com/Server_Side/MySQL/Intro/

This article provides a solid summary of how to use SQL with MySQL.

� Give me back my MySQL Command Line!: http://www.sitepoint.com/article/627

Kevin Yank shows how to put together a PHP script which can be used to

simulate the MySQL command line via a Web page.

� Optimizing your MySQL Application: http://www.sitepoint.com/article/402

This handy tutorial discusses the use of indexes in MySQL and how they can

be used to improve performance.

� Generating PHP Database Access Layers: http://freshmeat.net/articles/view/843/

This article provides an overview of persistence layers and related code gener-

ation with pointers to some useful tools.

� Zend Tutorial on Fulltext Searches:
http://www.zend.com/zend/tut/tutorial-Ferrara.php

This tutorial provides a detailed look at FULLTEXT searches.

� Getting Started with MySQL Fulltext Searches:
http://www.devarticles.com/art/1/195

This good tutorial delivers another detailed look at FULLTEXT searching.

� Backing Up with MySQLDump: http://www.sitepoint.com/article/678

This tutorial that explores the ins and outs of the mysqldump utility.

� Generating PHP Data Access Layers: http://freshmeat.net/articles/view/843/

This tutorial looks at database persistence layers in PHP from a fairly broad

view as well as suggesting one or two open source projects which offer this

functionality.

109

Further Reading

http://www.sitepoint.com/article/627
http://www.sitepoint.com/article/402
http://freshmeat.net/articles/view/843/
http://www.zend.com/zend/tut/tutorial-Ferrara.php
http://www.devarticles.com/art/1/195
http://www.sitepoint.com/article/678
http://freshmeat.net/articles/view/843/
http://www.sitepoint.com/article/627
http://www.sitepoint.com/article/402
http://freshmeat.net/articles/view/843/
http://www.zend.com/zend/tut/tutorial-Ferrara.php
http://www.devarticles.com/art/1/195
http://www.sitepoint.com/article/678
http://freshmeat.net/articles/view/843/

110

Files4
Databases make great tools for storing information, as they’re fast and, with the

help of SQL, easy to navigate. Sometimes, though, you need to be able to access

the data stored in a file, be it an image, configuration information, or even a Web

page on a remote server. PHP makes such work easy with its powerful collection

of file functions. The only hard part is choosing the right tool for the job.

A Word on Security

Before running riot with PHP’s file functions, think carefully about what

you’re doing: you will be making files from your operating system available

on a Web page, which will be exposed to the Internet. Check and double

check the code that accesses files—look for “holes” in your logic that might

allow unwanted access to your files.

Be particularly careful when allowing files and directories to be identified

via URLs, or uploaded or downloaded from your site. This warning also ex-

tends to PHP’s include commands, which can be used to execute scripts in-

cluded from a remote Web server e.g. include 'http://www.hack-
er.com/bad_script.txt';.

I’ll be highlighting the potential dangers with each solution so that with care

you can learn to write secure code.

http://www.hack-er

For the sake of demonstration, I’ve saved a copy of the printable version of

Kevin Yank’s article Write Secure Scripts with PHP 4.2![1], which we’ll manipulate

with PHP’s file functions. The file is saved as writeSecureScripts.html.

How do I read a local file?
First up is PHP’s file function, which reads a file into an array using the new

line character to indicate where a new array element should begin. Here’s an ex-

ample:

File: 1.php

<?php
// Read file into an array
$file = file('demo/writeSecureScripts.html');

// Count the number of lines
$lines = count($file);

// Initialise $alt
$alt = '';

// Loop through the lines in the file
for ($i=0; $i<$lines; $i++) {

 // Creates alternating background color
 if ($alt == '#f5f6f6') {
 $alt = '#ffffff';
 } else {
 $alt = '#f5f6f6';
 }

 // Display the line inside a div tag
 echo '<div style="font-family: verdana;
 font-size: 12px;
 background-color: ' . $alt . ';">';
 // Use htmlspecialchars to see the raw HTML
 echo $i . ': ' . htmlspecialchars($file[$i]);
 echo "</div>\n";
}
?>

[1] http://www.sitepoint.com/print/758

Chapter 4: Files

112

http://www.sitepoint.com/print/758
http://www.sitepoint.com/print/758

Hey, presto! Up pops the file in a nicely formatted page so you can examine it

line by line, as shown in Figure 4.1.

Figure 4.1. Raw HTML

As of PHP 4.3, a new function called file_get_contents reads a file straight

into a string without breaking it up. For example:

File: 2.php

<?php
// Read file into a string
$file = file_get_contents('demo/writeSecureScripts.html');

// Strip the HTML tags from the file
$file = strip_tags($file);
?>
<form>

113

How do I read a local file?

<textarea
 style="font-family: verdana;
 font-size: 12px;
 width: 400px;
 height: 300px;">
<?php
// Display the file
echo htmlspecialchars($file);
?>
</textarea>
</form>

The content of the file is now displayed in an HTML textarea stripped of all

its HTML tags, as shown in Figure 4.2.

Figure 4.2. Raw Text

Chapter 4: Files

114

Another option is the readfile function, which fetches the content of the file

and displays it directly on screen:

File: 3.php

<?php
// Read file and display it directly
readfile('demo/writeSecureScripts.html');
?>

One line of code displays the file exactly as it was found, as shown in Figure 4.3.

Figure 4.3. Direct Output with readfile

Of course, because I only downloaded the HTML—not the associated images

and CSS files—the appearance isn’t quite the same as the original.

File Handles
The above file functions simply require that you point them at the file they have

to read, using a path relative to the PHP script that executed the function. The

majority of PHP’s file functions use a slightly different mechanism to “connect”

115

File Handles

to a file, which is very similar to connecting to a database; the process uses the

fopen function to “connect”, and fclose to “disconnect.” Using fopen, the value

returned is a PHP file pointer, known as the handle of the file. When you use

fopen to connect to a file, you must specify the path to the file and a mode in

which the file is to be accessed, such as r for read only.

// Open a file for reading
$fp = fopen($filename, 'r');

The various modes available are explained in the manual[2].

The Binary File Modifier

Unlike Linux, Windows differentiates between binary and ASCII files. An

additional modifier, b can be used to identify binary files to PHP, so that

they are dealt with correctly on Windows.

// Open a binary file for reading
$fp = fopen($filename, 'rb');

Even if the code you’re writing is currently used on a Unix-based system, it’s

worth implementing the b modifier for binary files to ensure portability.

The fread function could be used in older versions as a substitute for

file_get_contents:

File: 4.php

<?php
// Variable to store the location of the file
$location = 'demo/writeSecureScripts.html';

// Open the file handle for reading
$fp = fopen($location, 'r');

// Read the complete file into a string
$file = fread($fp, filesize($location));

// Close the file handle
fclose($fp);

echo $file;
?>

[2] http://www.php.net/fopen

Chapter 4: Files

116

http://www.php.net/fopen
http://www.php.net/fopen

This displays the entire file as we did using readfile, and produces the display

shown in Figure 4.3. This example is meant more as a simple demonstration of

file handles in action. Notice that when we use fread, the second argument is

the size in bytes from the start of the file which should be read. For this argument,

I’ve used the filesize function, which tells me the total size of the file. In gen-

eral fread is really only useful for reading a limited portion of a file; to fetch a

complete file it will usually be more efficient to work with file_get_contents
or file, depending on your needs.

Saving Memory
What you’ve seen so far is fine for small files. However, an argument that’s sim-

ilar to that applied to the use of queries like SELECT * FROM table also applies

to reading files; if you use file or file_get_contents to read a large file, PHP

will be forced to fill a lot of memory with its contents.

To solve this problem, a different approach can be used to read the contents of

a file, read the file in stages, and operate on the contents as you go. This approach

uses functions like fgets:

File: 5.php

<?php
// Open the file handle for reading
$fp = fopen('demo/writeSecureScripts.html', 'r');

// Loop until the end of the file
while (!feof($fp)) {
 // Get a chunk to the next linefeed
 $chunk = fgets($fp);
 echo $chunk;
}

// Close the file handle!
fclose($fp);
?>

The connection is opened as normal. Next, we use a while loop, which continues

so long as the feof function returns FALSE. feof returns TRUE if the end of the

file has been reached, or if there’s an error with the file handle (such as a loss of

connection, which can happen with remote files).

117

Saving Memory

Next, we use fgets to fetch a “chunk” of the file, beginning at the current location

and running to the next line feed character. We get the string back, and fgets
moves the internal PHP file pointer for the file handle forward accordingly.

There are many more functions for reading a file using a file handle. One is fgetss
(note the double ’s’), which is almost exactly the same as fgets but strips out

any HTML tags it finds, in the same way the strip_tags function would. Another

is fscanf, which formats the output from the file in the same way printf does.

It’s well worth browsing the file system functions[3] for “goodies” in an idle mo-

ment.

PHP provides fairly simple functions for handling files, but better yet is to use

PEAR::File. This provides an even simpler API for reading files and allows you

to take advantage of other PEAR classes for performing tasks like finding a file

in a file system and modifying an .htaccess file. PEAR::File can be found at the

PEAR Website[4]; the version used here was 1.0.3 (see Appendix D for instruc-

tions on how to install PEAR modules).

One particularly useful feature of PEAR::File is that it allows files to be locked

while they’re being read, which means you won’t suffer conflicts where two people

work on the same file at the same time. PEAR::File also deals with errors nicely.

Leave Databases to the Experts

Although it’s possible to store data in files in more or less the same way as

you would in a database (especially when you consider the locking mechan-

isms PHP makes available), it’s generally a good idea to leave this sort of

work to MySQL. Writing your own database in PHP is a very complex

problem so there’s no point “reinventing the wheel” unless you really have

to.

Let’s see how we might read the entire contents of a file using PEAR::File:

File: 6.php

<?php
// Include PEAR::File
require_once 'File.php';

// Read the entire file and display, using a shared read lock
echo File::readAll('demo/writeSecureScripts.html',

[3] http://www.php.net/filesystem

[4] http://pear.php.net/package-info.php?pacid=43

Chapter 4: Files

118

http://www.php.net/filesystem
http://pear.php.net/package-info.php?pacid=43
http://pear.php.net/package-info.php?pacid=43
http://www.php.net/filesystem
http://pear.php.net/package-info.php?pacid=43

 FILE_LOCK_SHARED);
?>

Currently, PEAR::File doesn’t handle the process of stepping through a file based

on line feed characters very well. I hope this is something that will improve with

future versions; see how it performs in the next solution on writing to files.

How do I modify a local file?
Now that you’ve seen how to read the contents of a file and you’re acquainted

with file handles, how about updating files? Again, it’s easy with PHP. Let’s make

a text version of the HTML file:

File: 7.php

<?php
// Fetch a file into an array
$lines = file('demo/writeSecureScripts.html');

// Open file for writing (create if doesn't exist)
$fp = fopen('demo/writeSecureScripts.txt', 'w');

// Loop through lines of original
foreach ($lines as $line) {
 // Strip out HTML
 $line = strip_tags ($line);
 // Write the line
 fwrite ($fp, $line);
}

// Display the new file
echo '<pre>';
echo file_get_contents('demo/writeSecureScripts.txt');
echo '</pre>';
?>

Notice the mode we used to open the new file with fopen. The mode w will mean

that anything written to the file starts at the top, overwriting anything that already

exists. If we’d used a instead, the new contents would have been appended to

the file, preserving the original contents. In either case, if the file doesn’t exist it

will be created.

Here’s how to achieve the same thing with PEAR::File, which provides the added

benefit of locking the file while it’s being written:

119

How do I modify a local file?

File: 8.php

<?php
// Include PEAR::File
require_once 'File.php';

// Fetch a file into an array
$htmlVersion = File::readAll('demo/writeSecureScripts.html');

// Strip out HTML
$txtVersion = strip_tags($htmlVersion);

// Write to file and lock while writing
File::write('demo/writeSecureScripts2.txt', $txtVersion,
 FILE_MODE_WRITE, LOCK_EX);

// Now unlock the file
File::unlock('demo/writeSecureScripts2.txt', FILE_MODE_WRITE);

// Display the new file
echo '<pre>';
echo File::readAll('demo/writeSecureScripts2.txt');
echo '</pre>';
?>

Be aware that on a Unix-based Web server, PHP will usually run as a user such

as www or nobody, an account that has very limited permissions and is not owned

specifically by you. Files that are created by PHP will need to be placed in a dir-

ectory to which that user has write permissions.

To make a file or directory readable and writable, use this command:

chmod o=rw <directory | file>

If you need to execute the file as well (e.g. it’s a PHP script), use the following:

chmod o=rwx <directory | file>

Protect Sensitive Files

If you use a shared server, making directories readable and writable like this

means that other people with accounts on the server will be able to read and

modify the contents of those directories. Be careful about the type of inform-

ation you place in them!

Your Web host should be able to help you address any security concerns.

Chapter 4: Files

120

How do I get information about a local
file?

PHP comes with a range of functions to help you obtain information about a

file. For example, here’s how we might check that a file exists, and ascertain its

size:

File: 9.php

<?php
// Function to convert a size to bytes to large units
function fileSizeUnit($size)
{
 if ($size >= 1073741824) {
 $size = number_format(($size / 1073741824), 2);
 $unit = 'GB';
 } else if ($size >= 1048576) {
 $size = number_format(($size / 1048576), 2);
 $unit = 'MB';
 } else if ($size >= 1024) {
 $size = number_format(($size / 1024), 2);
 $unit = 'KB';
 } else if ($size >= 0) {
 $unit = 'B';
 } else {
 $size = '0';
 $unit = 'B';
 }
 return array('size' => $size, 'unit' => $unit);
}

$file = 'demo/writeSecureScripts.html';

// Does the file exist
if (file_exists($file)) {
 echo 'Yep: ' . $file . ' exists.
';
} else {
 die('Where has: ' . $file . ' gone!
');
}

// Use a more convenient file size
$size = fileSizeUnit(filesize($file));

// Display the result

121

How do I get information about a local file?

echo 'It\'s ' . $size['size'] . ' ' . $size['unit'] .
 ' in size.
';
?>

The fileSizeUnit function we used at the start helps make the result of PHP’s

filesize function more readable.

Here’s the output:

Yep: demo/writeSecureScripts.html exists.
It's 16.28 KB in size.

PHP can provide many other morsels of file information:

File: 10.php

<?php
$file = 'demo/writeSecureScripts.html';

// Is it a file? Could be is_dir() for directory
if (is_file($file)) {
 echo 'Yep: ' . $file . ' is a file
';
}

// Is it readable
if (is_readable($file)) {
 echo $file . ' can be read
';
}

// Is it writable
if (is_writable($file)) {
 echo $file . ' can be written to
';
}

// When was it last modified?
$modified = date("D d M g:i:s", filemtime($file));
echo $file . ' last modifed at ' . $modified . '
';

// When was it last accessed?
$accessed = date("D d M g:i:s", fileatime($file));
echo $file . ' last accessed at ' . $accessed . '
';
?>

Here’s the output:

Yep: demo/writeSecureScripts.html is a file
demo/writeSecureScripts.html can be read

Chapter 4: Files

122

demo/writeSecureScripts.html can be written to
demo/writeSecureScripts.html last modified at Sun 09 Mar 12:08:02
demo/writeSecureScripts.html last accessed at Sun 09 Mar 2:35:47

Clearing the File Statistics Cache

PHP keeps a cache of the results of file information functions to improve

performance. Sometimes, though, it will be necessary to clear that cache;

this can be achieved with the clearstatcache function.

How do I examine directories with PHP?
Particularly for Web-based file managers, it’s handy to be able to explore the

contents of directories using PHP. There are two basic approaches to this; the

PHP functions involved are described in the PHP Manual[5].

The first approach, which uses the opendir, readdir and closedir functions,

is similar to the process of using fopen, fread and fclose to read a file:

File: 11.php

<?php
// Open the current directory
$location = './';

// Open current directory
$dp = opendir($location);

// Loop through the directory
while ($entry = readdir($dp)) {
 // If $entry is a directory...
 if (is_dir($location . $entry)) {
 echo '[Dir] ' . $entry . '
';
 // If $entry is a file...
 } else if (is_file($location . $entry)) {
 echo '[File] ' . $entry . '
';
 }
}

// Close it again!
closedir($dp);
?>

[5] http://www.php.net/dir

123

How do I examine directories with PHP?

http://www.php.net/dir
http://www.php.net/dir

And here’s the output:

[Dir] .
[Dir] ..
[File] 1.php
[File] 10.php
[File] 11.php
[File] 12.php
[File] 13.php
[File] 14.php
[File] 15.php
[File] 16.php
[File] 17.php
[File] 18.php
[File] 19.php
[File] 2.php
[File] 3.php
[File] 4.php
[File] 5.php
[File] 6.php
[File] 7.php
[File] 8.php
[File] 9.php
[Dir] demo
[File] extensions.ini
[Dir] ftpdownloads
[File] sample.zip

The alternative approach is to use the dir function, which is a “pseudo” class

built into PHP. In terms of usage it’s almost exactly the same:

File: 12.php

<?php
// Specify current directory
$location = './';

// Open current directory
$dir = dir($location);

// Loop through the directory
while ($entry = $dir->read()) {
 // If $entry is a directory...
 if (is_dir($location . $entry)) {
 echo '[Dir] ' . $entry . '
';
 // If $entry is a file...
 } else if (is_file($location . $entry)) {

Chapter 4: Files

124

 echo '[File] ' . $entry . '
';
 }
}

// Close it again!
$dir->close();
?>

Which you choose is really only a matter of preference.

How do I display the PHP source code
online?

Sometimes you might want to display the source of a file, such as when you’re

publishing some code for other people to use. It’s important to be extremely

cautious about how you do this, though—you may find yourself giving away more

than you expected, such as database user names and passwords.

Note that hiding code in the interests of security is not what I’m advocating here.

Code should be written to be secure in the first place. Hiding code so that no

one finds out about the holes in it is a recipe for disaster; eventually, someone

will find out what you’ve been hiding and—worse still—you’ll probably be ignorant

of the fact that they’re exploiting your lax security.

PHP provides a very handy function for displaying code called highlight_string,

which displays PHP code in a presentable manner using the formatting defined

in php.ini. It gets even easier with the partner to this function, highlight_file,

which can be simply passed a filename to display.

Here’s a script that displays the source of selected files from a directory:

File: 13.php

<?php
// Define an array of allowed files - VERY IMPORTANT!
$allowed = array('3.php', '4.php', '6.php', '10.php');

// If it's an allowed file, display it.
if (isset($_GET['view']) && in_array($_GET['view'], $allowed)) {
 highlight_file($_GET['view']);
} else {
 // Specify current directory
 $location = './';

125

How do I display the PHP source code online?

 // Open current directory
 $dir = dir($location);

 // Loop through the directory
 while ($entry = $dir->read()) {

 // Show allowed files only
 if (in_array($entry, $allowed)) {
 echo '<a href="' . $_SERVER['PHP_SELF'] .
 '?view=' . $entry . '">' . $entry . "
\n";
 }
 }

 // Close it again!
 $dir->close();
}

Notice that I’m very careful to allow access only to specified files when displaying

either the directory contents or individual file sources. The above example should

give you an idea of how easy it is to build file management systems in PHP.

The nicely presented script is shown in Figure 4.4. Try it yourself to see the

colored highlighting of the various pieces of PHP syntax!

Chapter 4: Files

126

Figure 4.4. Return to the Source

In PHP 4.2.0 or later, if you pass a second argument of TRUE to highlight_string
or highlight_file, it will return the results as a string rather than displaying

the file directly.

How do I store configuration information
in a file?

Certain information that’s used repeatedly throughout your site, such as database

connection settings, is best stored in a single file. Should you need to move your

code to another site, you’ll be able to modify the settings once, rather than hun-

dreds of times. The easiest way to do this is simply to create the variables in an

include file, and then include this file in your code. But sometimes editing PHP

127

How do I store configuration information in a file?

files will make your code’s users nervous, and for the sake of security it’s often

helpful to be able to identify configuration files using a different extension so

that , for example, they can be secured with .htaccess. The handy alternative

is PHP’s parse_ini_file function, which parses files that use the same format

as php.ini.

Consider the following file:

File: demo/example.ini

; Settings to connect to MySQL
[Database_Settings]
host=localhost
user=harryf
pass=secret
dbname=sitepoint

; Default look of the site
[Preferences]
color=blue
size=medium
font=verdana

With parse_ini_file, PHP will read the contents and use them to build a two

dimensional array:

File: 14.php

<?php
$iniVars = parse_ini_file('demo/example.ini', TRUE);

echo '<pre>';
print_r($iniVars);
echo '</pre>';
?>

Note that the second Boolean argument we used with parse_ini_file tells it

that the file contains subsections ([Database_Settings] and [Preferences]),

so it should use these to build a multidimensional array.

Here’s the output:

Array
(
 [Database_Settings] => Array
 (
 [host] => localhost

Chapter 4: Files

128

 [user] => harryf
 [pass] => secret
 [dbname] => sitepoint
)
 [Preferences] => Array
 (
 [color] => blue
 [size] => medium
 [font] => verdana
)
)

Connecting to MySQL using the MySQL class we created in Chapter 3 could now

be achieved like this:

$iniVars = parse_ini_file('demo/example.ini', TRUE);

$mysql = &new MySQL(
 $iniVars['Database_Settings']['host'],
 $iniVars['Database_Settings']['user'],
 $iniVars['Database_Settings']['pass'],
 $iniVars['Database_Settings']['dbname']
);

How do I access a file on a remote
server?

What I haven’t told you so far is that, for the most part, PHP can access files on

a remote server, over the Internet, in almost exactly the same way as it does local

files. The main limitation here is that you can’t use the filesize function, or

other functions geared to fetching information about a file.

Reusing 5.php from “How do I read a local file?”, here’s how we could get the

original file we’ve been working with directly from SitePoint:

File: 15.php

<?php
// Open the file handle for reading
$fp = fopen('http://www.sitepoint.com/print/758', 'r');

// Loop while the connection is good and not at end of file
while (!feof($fp)) {
 // Get a chunk to the next linefeed

129

How do I access a file on a remote server?

http://fopen('http://www.sitepoint.com/print/758',

 $chunk = fgets($fp);
 echo $chunk;
}

// Close the file handle!
fclose($fp);
?>

All we had to do was change the point at which we directed the fopen function

to a URL!

The problem with this approach is that we’ve taken a function that’s geared to

the local file system and used it to access a remote Web server. fopen doesn’t

handle well the sorts problems that you’d typically encounter on the Internet,

such as time-outs, and it fails to provide the detailed error reporting that you

may need for remote connections. It also strips off the HTTP response headers

sent by the remote Web server, which are sometimes necessary—in the case of

Web services, for example—and automatically takes care of request headers,

which you may need to control yourself.

Let’s look at the alternative, fsockopen:

File: 16.php

<?php
$host = 'www.sitepoint.com'; // Remote host
$port = '80'; // Port number
$timeout = '10'; // Timeout in seconds
$uri = '/print/758'; // Page to fetch

// Open remote socket
if (!$fp = fsockopen($host, $port, $errNo, $errMsg, $timeout)) {
 die('Error connecting: ' . $errNo . ' - ' . $errMsg);
}

// Build an HTTP request header
$requestHeader = "GET " . $uri . " HTTP/1.1\r\n";
$requestHeader .= "Host: " . $host . "\r\n\r\n";

// Send the request header
fputs($fp, $requestHeader);

// Loop while the connection is good and not as end of file
while (!feof($fp)) {
 // Get a chunk to the next linefeed
 $chunk = fgets($fp);

Chapter 4: Files

130

http://www.sitepoint.com';

 echo $chunk;
}

// Close the file handle!
fclose($fp);
?>

Looking at the raw output from the above script, we see the following HTTP

headers at the top of the page:

HTTP/1.1 200 OK
Date: Sun, 09 Mar 2003 18:06:59 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
X-Powered-By: PHP/4.3.1
Connection: close
Content-Type: text/html

A detailed analysis of the HTTP protocol is beyond the scope of this book;

however, a little reference material is suggested at the end of this chapter.

How do I use FTP from PHP?
One of the great things about PHP is the sheer amount of functionality that’s

either built in, or is just an extension away; File Transfer Protocol (FTP) is no

exception. Using PHP’s FTP functionality, it’s possible to have PHP scripts act

as clients to an FTP server. This can be useful for anything from building a Web

interface for an FTP file repository, to developing a tool to update your site from

your PHP development environment. In order to use the FTP functions, you’ll

need to make sure your host has enabled PHP’s FTP functionality (see Ap-

pendix B).

FTP is Not Secure

When you connect to a normal FTP server by any means, the user name and

password you provide are sent in clear text to the server. This information

can be read by someone using a packet sniffer that’s “plugged in” anywhere

between you and the server you’re connecting to. Be sure to change your

passwords regularly, and, in general, try to avoid FTP when a better altern-

ative is available.

If you have SSH access to your site and use Windows, WinSCP[6] is a good

tool for transferring files across the secure connection.

[6] http://winscp.vse.cz/eng/

131

How do I use FTP from PHP?

http://winscp.vse.cz/eng/
http://Apache/1.3.27
http://PHP/4.3.1
http://PHP/4.3.1
http://winscp.vse.cz/eng/

Let’s start with a simple example:

File: 17.php (excerpt)

<?php
// Set time limit to infinite
set_time_limit(0);

// Define server and target directory
$ftpServer = 'ftp.uselinux.org';
$targetDir = '/pub/redhat/updates/8.0/en/os/i386/';

// Connect to server
if (!$fp = ftp_connect($ftpServer, 21, 30)) {
 die('Connection failed');
}

// Login anonymously
if (!ftp_login($fp, 'anonymous', 'you@yourdomain.com')) {
 die('Login failed');
}

First, we remove the script execution time limit with the set_time_limit function.

In this particular example, the default PHP script execution time of 30 seconds

should be long enough, but for scripts that involve the transfer of files, longer

execution times may well be needed.

We use the ftp_connect function to open a connection to an FTP server, spe-

cifying the port number of the server (optional: the default is 21) and the time

in seconds before PHP gives up trying to connect (the default is 90).

Following that, the ftp_login function allows us to log into the FTP server. As

it’s a public server, you can log in as an anonymous user (supplying an email

address as your password). This could also be an FTP account on your Web

server, however, in which case you’d have to provide a valid user name and

password.

Here’s the rest of the example:

File: 17.php (excerpt)

// Change directory
if (!ftp_chdir($fp, $targetDir)) {
 die ('Unable to change directory to: ' . $targetDir);
}

// Display the remote directory location

Chapter 4: Files

132

http://ftp.uselinux.org';
mailto:you@yourdomain.com')

echo 'Current Directory: <code>' . ftp_pwd($fp) .
 '<code>
';

echo 'Files Available:
';

// Get a list of files on the server
$files = ftp_nlist($fp, './');

// Display the files
foreach ($files as $file) {
 echo $file . '
';
}
?>

Next, we use ftp_chdir to change directory. It’s important when using FTP to

remember that the root directory for the FTP-related operations will be the dir-

ectory in which you started when you logged into the server, not the true root

directory of the server. So be sure to specify an absolute path when appropriate.

To show that we’re in the right place, we use ftp_pwd to display the present

working directory. The ftp_nlist function returns an array of files from the

current directory, which we can then display.

Here’s what the listing should look like:

Current Directory: /.1/redhat/updates/8.0/en/os/i386
Files Available:
lynx-2.8.5-7.1.i386.rpm
galeon-1.2.6-0.8.0.i386.rpm
ggv-1.99.9-5.i386.rpm
gv-3.5.8-19.i386.rpm
xinetd-2.3.7-5.i386.rpm
pam-0.75-46.8.0.i386.rpm
kamera-3.0.3-5.i386.rpm
pam-devel-0.75-46.8.0.i386.rpm
vnc-3.3.3r2-39.2.i386.rpm

That’s a simple example of PHP’s FTP functions in action. The full list of func-

tions is available in the PHP Manual[7].

In PEAR::NET_FTP we have a handy class that ensures data is transferred in the

correct mode (ASCII or binary), and solves issues relating to recursive uploads

[7] http://www.php.net/ftp

133

How do I use FTP from PHP?

http://www.php.net/ftp
http://lynx-2.8.5-7.1.i386.rpm
http://galeon-1.2.6-0.8.0.i386.rpm
http://ggv-1.99.9-5.i386.rpm
http://gv-3.5.8-19.i386.rpm
http://xinetd-2.3.7-5.i386.rpm
http://pam-0.75-46.8.0.i386.rpm
http://kamera-3.0.3-5.i386.rpm
http://pam-devel-0.75-46.8.0.i386.rpm
http://vnc-3.3.3r2-39.2.i386.rpm
http://www.php.net/ftp

and downloads where we need to transfer a directory and its subdirectories from

one system to another.

The following code, for example, connects to a remote directory on an FTP

server and copies the contents, including subdirectories, to a directory on the

local computer1:

File: 18.php

<?php
// Set time limit to infinite
set_time_limit(0);

// Include PEAR::Net_FTP
require_once 'NET/FTP.php';

// Define server, username and password
$ftpServer = 'ftp.uselinux.org';
$ftpUser = 'anonymous';
$ftpPass = 'user@domain.com';

// Local Directory to place files
$localDir = 'ftpdownloads/';

// Remote Directory to fetch files from
$remoteDir = '/pub/software/web/html-utils/';

// Instantiate Net_FTP
$ftp = new Net_FTP();

// Set host and login details
$ftp->setHostname($ftpServer);
$ftp->setUsername($ftpUser);
$ftp->setPassword($ftpPass);

// Connect and login
$ftp->connect();
$ftp->login();

// Specify the extensions file
$ftp->getExtensionsFile('extensions.ini');

// Get the remote directory contents
if ($ftp->getRecursive($remoteDir, $localDir)) {

1Obviously, this isn’t something you would want to place on your Website without some security

protecting it.

Chapter 4: Files

134

http://ftp.uselinux.org';
mailto:user@domain.com';

 echo 'Files transfered successfully';
} else {
 echo 'Transfer failed';
}
?>

Note that the getExtensionsFile method of Net_FTP allows you to specify a

file that defines particular file extensions, such as .gif and .jpg, as binary or

ASCII, ensuring that they will be transferred in the correct manner. The

getRecursive method fetches the contents of the specified remote directory,

including its subdirectories.

Assuming you have permission to place files on the server, the same operation

can easily be applied in reverse using the putRecursive method. This can prove

a helpful tool for transferring projects between your local development system

and your Website, particularly if you’re using PHP from the command line.

With the ability to transfer files correctly based on their extension, Net_FTP
makes an excellent choice for individual “put” and “get” file operations as well,

as it eliminates the need for you to get the file transfer mode correct.

How do I manage file downloads with
PHP?

A fairly common problem developers face in building sites that will publish files

for download, is how to manage those files. Perhaps some of the files should not

be publicly available. You may also only want to deliver the file after visitors have

provided their details through a Web form. Dealing with downloads may involve

more than simply storing your file in a public directory and linking to it from

your site.

The trick to handling downloads is to get PHP to “serve” the file for you, using

a few special HTTP headers:

File: 19.php

<?php
// Specify a file to download
$fileName = 'sample.zip';
$mimeType = 'application/zip';
if (strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE 5') or
 strpos($_SERVER['HTTP_USER_AGENT'], 'Opera 7')) {
 $mimeType = 'application/x-download';

135

How do I manage file downloads with PHP?

}

// Tell the browser it's a file for downloading
header('content-disposition: attachment; filename=' . $fileName);
header('content-type: ' . $mimeType);
header('content-length: ' . filesize($fileName));

// Display the file
readfile($fileName);
?>

The content-disposition header tells the browser to treat the file as a download

(i.e. not to display it in the browser window), and gives it the name of the file.

The content-type header also tells the browser what type of file you’re sending

it. In most cases, this should be chose to match the type of file you are sending;

however, Internet Explorer 5 and Opera browsers have a bad habit of displaying

files of recognized types in the browser regardless of the content-disposition
header, so we set the MIME type to the made-up value application/x-download
for those browsers. Finally, the content-length header tells the browser the size

of the file, so that it’s able to display a download progress bar.

Send HTTP Headers First

Remember that headers must be delivered before any other content is sent

to the browser.

Be aware that PHP’s output control functions can be helpful here, as they

let you send things to the browser in the right order: you can “hold” content

already sent to output by PHP while letting the headers pass. See Volume

II, Chapter 5 for further details on output control.

Now that delivery of the file is under your control, you can fit this functionality

into your authentication system, for example, to control who can download the

file.

File Distribution Strategy
One of the Internet’s unsolvable problems is how best to distribute files from a

Website. If you sell artwork in JPEG format, for example, how will you handle

the process of accepting payments from customers and then letting them download

only the image they paid for? How can you make sure they don’t redistribute

the images they buy? How many times will customers be allowed to download

an image they’ve paid for?

Chapter 4: Files

136

There’s no perfect solution. What if people decide to make copies of the images

they bought from you and redistribute those copies without your knowing? It’s

almost impossible to prevent them doing so unless you provide files that have

been modified especially for the purpose of distribution (for example, image files

protected by watermarks).

Some of the different strategies for distribution are as follows:

� Send the file via email. This is good for small files as it practically guarantees

delivery, but many email systems place a limit on the size of files a user can

receive (typically one or two megabytes).

� Provide customers with a unique link that they can use to download the file

for a limited time period, such as a week. If an attempted download fails (for

example, the customers lose their Internet connection during the download)

this strategy allows them to try again. A unique, random number can be gen-

erated and used in the URL for the download. This number corresponds with

an entry in a database, which expires after a specified time period. This will

at least limit the number of times the file is downloaded, and should help

prevent redistribution of the file via the same URL. This approach is used by

PayPal Antifraud[8], among others.

� Provide customers with user name and password combinations that they can

use to log into the site and download their own files. This approach has proven

particularly effective for the PHP Architect[9] site, where it’s used it to distrib-

ute the PHP Architect magazine in Adobe Acrobat format. The Acrobat files

are generated “on the fly”, and secured with the same password the customer

used to log in to the site. This obviously discourages customers from redistrib-

uting the magazine, as they’d have to give away their password to do so.

As I said, there’s no perfect solution to this problem. However, greater protection

can be achieved if some form of security is built into the file that’s being down-

loaded, such as a license key in the case of software.

[8] http://www.eliteweaver.co.uk/antifraud/

[9] http://www.phparch.com/

137

File Distribution Strategy

http://www.eliteweaver.co.uk/antifraud/
http://www.phparch.com/
http://www.eliteweaver.co.uk/antifraud/
http://www.phparch.com/

How do I create compressed ZIP/TAR
files with PHP?

Perhaps you have a directory that contains many files, or different types of files,

as well as subdirectories. There may well be situations in which you need to create

a download of the whole directory that preserves its original structure. The typ-

ical command line approach to achieving this on Unix-based systems is first to

create an “archive” file such as a .tar file (.tar files are “Tape Archives” and

were originally conceived to help back up a file system onto tape), and then

compress that file with gzip or bzip2. If you had a directory called mywork that

you wanted to store as a single compressed file, you might enter the following

into the command line:

tar cvf mywork.tar ./mywork
gzip mywork.tar

This gives you a file called mywork.tar.gz. To unzip and extract the file you

could type:

gunzip mywork.tar.gz
tar xvf mywork.tar

This recreates the mywork directory below your current working directory. Note

that you can perform the above examples in a single line on a typical Linux dis-

tribution, if you use the ’z’ flag to compress tar zcvf mywork.tar.gz ./mywork
and extract tar zxvf mywork.tar.gz.

Using PHP’s system function, you could execute these commands from a PHP

script, assuming your Web server has permissions to use the tar and gzip/bzip2

executables (which it probably won’t). How would you create archives from data

stored in your database, or from nodes in an XML document for that matter?

Thanks to PEAR::Archive_Tar[10], it’s all possible. The basic functionality allows

you to build .tar files; provided you have the zlib or bz2 extensions installed,

you can also compress the file.

Let’s create an archive from some of the files we were working with earlier in the

chapter:

[10] http://pear.php.net/Archive_Tar

Chapter 4: Files

138

http://pear.php.net/Archive_Tar
http://mywork.tar.gz
http://mywork.tar.gz
http://pear.php.net/Archive_Tar

File: 20.php

<?php
// Include PEAR::Archive_Tar
require_once 'Archive/Tar.php' ;

// Instantiate Archive_Tar
$tar = new Archive_Tar('demo/demo.tar.gz', 'gz');

// An array of files to archive
$files = array(
 'demo/example.ini',
 'demo/writeSecureScripts.html'
);

// Create the archive file
$tar->create($files);

echo 'Archive created';
?>

It’s pretty simple. When instantiating the class, the second argument tells

Archive_Tar what type of compression to use—the alternative to gz (for gzip)

is bz2 (for bzip2). You can simply omit the second argument if you don’t require

compression. The array of file names needs to be specified when you use the

create method, the file paths being relative to the location where the above

script is executed. That’s it.

To extract the file again, we could use the following code:

File: 21.php

<?php
// Include PEAR::Archive_Tar
require_once 'Archive/Tar.php';

// Instantiate Archive_Tar
$tar = new Archive_Tar('demo/demo.tar.gz');

// Create the archive file
$tar->extract('extract');

echo 'Archive extracted';
?>

139

How do I create compressed ZIP/TAR files with PHP?

http://Archive_Tar('demo/demo.tar.gz',
http://Archive_Tar('demo/demo.tar.gz');

When we call the extract method, we provide a path under which it should ex-

tract the archive—in this case, the subdirectory extract from the location where

this script is executed. Nice and easy.

Archive_Tar is particularly interesting in that it allows strings to be added to

the archive as files. Consider the following example:

File: 22.php

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Include PEAR::Archive_Tar
require_once 'Archive/Tar.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate Archive_Tar
$tar = new Archive_Tar('demo/articles.tar.gz', 'gz');

$sql = "SELECT * FROM articles";

$result = $db->query($sql);

while ($row = $result->fetch()) {
 // Add a string as a file
 $tar->addString('articles/' . $row['article_id'] . '.txt',
 $row['body']);
}
echo 'Article archive created';
?>

Here, we’ve queried a database using the MySQL class we created in Chapter 3,

and used the addString method to add to the archive as files some of the data

we fetched. The first argument represents the path and filename under which

the string should be stored; the second is the string itself.

That should give you a general idea of when Archive_Tar can be useful to you.

For a more extensive tutorial, see the recommended reading below.

Chapter 4: Files

140

http://Archive_Tar('demo/articles.tar.gz',

Further Reading
� HTTP Header Quick Reference: http://www.cs.tut.fi/~jkorpela/http.html

This is fairly dry reading, but represents a useful reference for those attempting

to develop HTTP clients with PHP.

� TAR File Management With PHP:

http://www.devshed.com/Server_Side/PHP/TAR_File/

This article provides an in-depth rundown of what PEAR::Archive_Tar has to

offer.

141

Further Reading

http://www.cs.tut.fi/~jkorpela/http.html
http://www.devshed.com/Server_Side/PHP/TAR_File/
http://www.cs.tut.fi/~jkorpela/http.html
http://www.devshed.com/Server_Side/PHP/TAR_File/

142

Text Manipulation5
Despite the fact that we’re living in an era of multimedia, the majority of Web

content appears in that most dull but effective of formats: text. Most of your

work as a PHP developer will involve manipulating text in some form or other—be

it HTML, XML or otherwise—for display on your Website.

How do I solve problems with text
content in HTML documents?

Learning (X)HTML is generally fairly easy, at least when compared to object

oriented programming languages and the like. HTML is almost deceptively simple

though. There’s more to it than meets the eye, particularly when it comes to

generating HTML on the fly.

In this solution, I’ll look at some of the common problems you’ll encounter when

constructing HTML with PHP, and what’s on offer to help you solve them.

Dynamic Link URLs
When they’re used as part of a link in a Web page, certain characters will cause

problems for users who try to activate that link by clicking on it. Take spaces,

for example; the exact number of spaces contained in the URL may be lost as the

browser identifies the address of the page. However, it is possible to send a rep-

resentation of a space character in a URL using the code %20. This process of re-

placing special characters with appropriate codes is called URL encoding.

There are two types of problem characters:

� reserved characters, which already serve some purpose in URLs, such as ?
and &

� unsafe characters, which may be dealt with unpredictably depending on the

Web browser and Web server

Imagine, for example, you have in your database a user whose login name is

“Ben&Jerry.” You build a page through which you can view that user’s profile.

To access it, you decide to construct a link using the login name from the database.

You might end up with a link like this:

View Ben&Jerry

The index.php script that receives the request will receive the GET variable

($_GET['user']) as just “Ben”, ignoring “Jerry” (who will probably not be

pleased). When the script tries to locate that name in the database, there will

obviously be a problem.

Thankfully, PHP provides the urlencode function to handle this situation. If we

pass the user name that’s included in the link through urlencode as the link is

rendered, this will be the result:

View Ben&Jerry

Notice that the user name in the link becomes Ben%26Jerry. The script will now

receive “Ben&Jerry” as the value of $_GET['user'] and will be able to locate the

user in the database.

Other URL Encoding/Decoding Functions

PHP also provides the urldecode function, which can be useful when you

need to parse HTML with PHP. It also provides the functions rawurlencode
and rawurldecode, which use a + character instead of %20 for marking

spaces. This is the result of an alternative specification for encoding URLs.

At the end of this chapter, I’ve suggested a source of further reading that

takes a detailed look at the subject of URL encoding in general.

Chapter 5: Text Manipulation

144

urlencode and similar functions should only be applied to text as it is being used

to create an HTML document. Don’t be lulled into the trap of modifying the

text before you store it in the database! In the above example, I had to render

the user name in two different formats. If, instead, I had applied the urlencode
to the user name before I inserted it into the database, I’d need to apply

urldecode whenever I wanted to display the user name as normal text. I’d also

run into problems when performing operations such as searching the database;

I’d need yet more code to translate between the two versions. All this can be

avoided if we simply insert the text into the database “as is”, and encode it only

as required.

Form Fields and HTML Content
We face another catch in dealing with HTML form elements that should be pre-

populated with a value—perhaps one that’s taken from a database.

Imagine you have a form that allows users to edit the details of their account

with your site, such as the “profile” page that’s common in online forums. In the

form there’s a text field that allows users to modify their “nickname.” The field

might look something like this:

<input type="text" name="nickname"
value="<?php echo $nickname; ?>" />

The value of the $nickname variable would come from your database. If the user

has a nickname like “Joe Bloggs” there’s no problem. The final HTML that’s de-

livered to the browser will be:

<input type="text" name="nickname"
value="Joe Bloggs" />

But what happens if someone uses a nickname like “Joe "The Hacker" Bloggs”?

The form element will end up looking like this:

<input type="text" name="nickname"
value="Joe "The Hacker" Bloggs" />

This is bad news for Web browsers. At best, they’ll display a form field containing

just the name “Joe”; at worst, they’ll scramble the page completely.

Again, it’s PHP to the rescue! The function htmlspecialchars will identify

characters that are likely to cause problems, and convert them to a special code

so that browsers recognize them as being part of the content. The characters in

145

Form Fields and HTML Content

question are the single quote ('), the double quote ("), the ampersand (&) and

the greater than and less than symbols (< and >).

If we pass Joe’s nickname through htmlspecialchars before we output it, the

input field becomes:

<input type="text" name="nickname"
value="Joe "The Hacker" Bloggs" />

Notice the " that now replaces the double quotes as the value of the nick-

name field. The browser will display these as the intended double quotes.

Saved again!

Line Breaks in HTML
As you probably know, if you have a piece of HTML like this:

<p>Dear Sir or Madam,

This is my nicely formatted letter. I hope that
it really impresses you.

Look! I've started a new paragraph.

Yours faithfully,

Mike Format</p>

it won’t look quite as good when it’s displayed in a Web browser. In this case, it

would look something like this:

Dear Sir or Madam, This is my nicely formatted letter. I hope that
it really impresses you. Look! I've started a new paragraph. Yours
faithfully, Mike Format

This can be a headache on PHP-based sites through which you want to allow

users to perform basic text formatting without having to know too much HTML.

Again, help is at hand, this time in the form of PHP’s nl2br function. Here’s the

HTML produced when we run Mike’s letter through nl2br:

<p>Dear Sir or Madam,

This is my nicely formatted letter. I hope that

Chapter 5: Text Manipulation

146

it really impresses you.

Look! I've started a new paragraph.

Yours faithfully,

Mike Format</p>

Mike can continue to impress with his formatting!

Modify Text when SELECTing, not INSERTing

It’s a common mistake among those who are new to PHP to use the types

of functions described above at the point at which text is inserted into a

database. During the initial design of the application, this may seem like a

good idea. However, this approach may cause problems later—for example,

if you decide you want to display the text in a different format.

Let’s take the nl2br function as an example. This is fine for simple display

in HTML, but what if you want to allow users to edit the text in a textarea
form field? They’ll be confronted with text in which the line feeds have been

stripped out and replaced with br tags. If users weren’t expecting to edit

HTML, they may be very confused. Converting the br elements back to line

feeds is a possibility, but adds complexity and confusion to your code.

By applying nl2br only at the point at which content is displayed to an end

user, after it has been fetched from your database, you’ll avoid many head-

aches.

In some cases, it may be acceptable to remove parts of a string as you insert

it into the database, as is the case with the strip_tags function (see below),

but it’s usually better to avoid actually reformatting the string until you need

to render it for a browser.

Tag Stripping
If you allow your site to be updated by the general public, being able to preclude

the use of HTML is important in preventing visitors posting markup that interferes

with your site’s layout.

The PHP function strip_tags handles most of this job almost perfectly. Given

some text, strip_tags will eliminate anything that looks like an HTML tag. To

be more exact, what strip_tags does is remove any block of text that begins

with < and ends with >. Everything other than the tags is left exactly as it was.

Here’s a simple example:

147

Tag Stripping

File: 1.php

<?php
$text = 'This is bold text';

// Strip that tag
echo strip_tags($text);
?>

The output is:

This is bold text

You can also supply strip_tags a list of allowed tags that you want it to ignore.

For example,

File: 2.php

<?php
$text = 'This is bold and this is <i>italic</i>.
 What about this link?';

// Strip those tags
echo strip_tags($text, '<i>');
?>

Here’s the HTML it returns:

This is bold and this is <i>italic</i>.
 What about this link?

As you can see, strip_tags leaves the text between opening and closing tags. If

it finds a < character but fails to find a matching > character, it will remove all

the text to the end of the string.

Removing HTML with strip_tags does have one drawback, however, in the

handling of attributes. If you allow some tags, your site’s members may be able

to use attributes, such as style, within those tags, which can result in some very

strange layouts. Worse still, JavaScript contained in a link can result in an cross-

site scripting (XSS) security exploit (see Appendix C).

In the next solution, I’ll show you how to implement a “custom code” system

that provides a more reliable mechanism to allow certain tags. Later on, we’ll

look at how you could go about examining the contents of the attributes them-

selves in order to check that they’re valid.

Chapter 5: Text Manipulation

148

http://href="http://www.php.net/">link?';

It’s a Wrap
One final function that’s nice to know about is wordwrap. If you have a long

string of text that contains no particular formatting, you can use wordwrap to

insert a character, such as new line character (\n), at a given interval. wordwrap
takes care not to break up words unless you specifically tell it to. This can be

particularly useful for constructing well-laid out email messages, as we’ll see in

Chapter 8.

How do I make changes to the contents
of a string?

PHP comes with a powerful collection of string functions. With a first glance at

the manual[1], they may seem simple, but with a little cunning there’s much you

can accomplish with them. For example, PEAR::XML_HTMLSax[2] is a complete

SAX parser for badly formed XML (such as HTML). It works almost entirely

without the use of regular expressions, relying on functions like strpos and substr
to do the work.

Search and Replace
Starting with a simple example, let’s consider the following code:

File: 3.php

<?php
// Places part of a string inside an HTML tag
function addTag($text, $word, $tag)
{
 $length = strlen($word);
 $start = strpos($text, $word);
 $word = '<' . $tag . '>' . $word . '</' . $tag . '>';
 return substr_replace($text, $word, $start, $length);
}

$text = <<<EOD
PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a
widely-used Open Source general-purpose scripting language that
is especially suited for Web development and can be embedded

[1] http://www.php.net/strings

[2] http://pear.php.net/package-info.php?package=XML_HTMLSax

149

It’s a Wrap

http://www.php.net/strings
http://pear.php.net/package-info.php?package=XML_HTMLSax
http://www.php.net/strings
http://pear.php.net/package-info.php?package=XML_HTMLSax

into HTML.
EOD;

$word = 'general-purpose';

echo addTag($text, $word, 'b');
?>

The addTag function defined here is a very simple “search and replace” function

that helps us add HTML markup to text. In this example, the string “general-

purpose” in the text is wrapped with a b tag, producing the following output:

PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a
widely-used Open Source general-purpose scripting
language that is especially suited for Web development and can
be embedded into HTML.

Other functions, such as str_replace, can be used to perform similar tasks. It

might have been easier in the above example to use the following approach:

File: 4.php

<?php
$text = <<<EOD
PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a
widely-used Open Source general-purpose scripting language that
is especially suited for Web development and can be embedded
into HTML.
EOD;

$word = 'general-purpose';

echo str_replace($word, '' . $word . '', $text);
?>

This achieves exactly the same result as the first example.

Demolitions
Assuming the piece of text we’ve been using contains line feed characters, we

could use the explode function to break it up into an array of lines:

File: 5.php

<?php
$text = <<<EOD
PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a

Chapter 5: Text Manipulation

150

widely-used Open Source general-purpose scripting language that
is especially suited for Web development and can be embedded
into HTML.
EOD;

$lines = explode("\n", $text);

echo "<table border=\"1\">\n";
foreach ($lines as $line) {
 echo "<tr>\n<td>$line</td>\n</tr>\n";
}
echo "</table>\n";
?>

This breaks the text at the line feed characters and places it in an HTML table,

as shown in Figure 5.1.

Figure 5.1. Exploding Tables

The implode function can be used to reverse the effects of explode,

building a string out of a list of array values.

Short Back and Sides, Please
The trim function is another handy tool; it removes white space characters at

the start and end of strings. It might be useful when, for example, you’re dealing

with form submissions. It works as follows:

File: 6.php

<?php
$string = ' This has whitespace at both ends ';

// Remove that whitespace!
$string = trim($string);
?>

151

Short Back and Sides, Please

Formatting
Two other powerful functions are the printf and sprintf functions, the former

displaying the output to the screen, the latter to another string. Here’s an example:

File: 7.php

<?php
$fruit = array('banana', 'mango', 'pear');
$price = array('30', '50', '35');

// A string with formatting
$format = "A %1\$s costs %2\$d cents.
\n";

for ($i = 0; $i < 3; $i++) {
 printf($format, $fruit[$i], $price[$i]);
}
?>

This produces the following output:

A banana costs 30 cents.
A mango costs 50 cents.
A pear costs 35 cents.

In this example, $format contains special characters that printf and sprintf
recognize and replace with a value we supply. For more details, refer to the PHP

Manual[3].

PHP also has the ability to treat strings as arrays, at least from the point of view

of simple syntax. For example:

File: 8.php

<?php
$string = 'Hello World!';

$length = strlen($string);

for ($i = 0; $i < $length; $i++) {
 echo $string[$i] . '
';
}
?>

[3] http://www.php.net/sprintf

Chapter 5: Text Manipulation

152

http://www.php.net/sprintf
http://www.php.net/sprintf
http://www.php.net/sprintf

This capability only goes so far, though. You can’t, for example, pass a string to

one of PHP’s array functions.

You should now have a taste of what can be achieved with PHP’s normal string

functions. In general, if you can get by with them, do so. They’re fast and easy

to use and they’re far less prone to error than regular expressions.1

How do I implement custom formatting
code?

If you run a site that allows users to add text, the first thing you quickly realize

is allowing them to use straight HTML will be a recipe for disaster. Within no

time at all, someone will have (either accidentally or maliciously) posted a message

that scrambles the tidy layout of your site.

If you’ve ever used a forum like vBulletin or phpBB, you’ll have run into BBCode

(bulletin board code), a collection of non-HTML tags that forum members can

use to provide simple text formatting that won’t damage the layout of your site.

BBCode is almost a standard these days, as most forums implement this tag

convention.

Here’s a simple example of BBCode:

This is an example of a BBCode link to
[url=http://www.sitepointforums.com/]sitepointforums[/url]

When the above text is displayed on the forum, this is the code that’s generated

by the forum software:

This is an example of a BBCode link to
sitepointforums

The advantage of BBCode over PHP’s in-built strip_tags function, which you

saw in “How do I solve problems with text content in HTML documents?”, is

that BBCode gives you complete control over what’s displayed. BBCode allows

you to give your site’s members some ability to format what they add to your

site without impacting the site layout as a whole.

1Regular expressions let you define complex patterns to search for within PHP strings. The topic of

regular expressions is a complex one that could be (and has been) the subject of an entire book. A

reference is provided in the section called “Further Reading” below if you’re interested in exploring

the subject.

153

How do I implement custom formatting code?

http://url=http://www.sitepointforums.com/]sitepointforums[/url
http://href="http://www.sitepointforums.com/">sitepointforums</a

If you’ve read some of the earlier solutions in this book, you’ll know I advocate

the use of classes in PHP. This solution gives me a chance to illustrate this point

to full effect, as we select an open source class that will make implementing a

BBCode system easy.

The class in question is called BBCode, developed by Leif K-Brooks and available

from PHP Classes[4]. This class meets nearly all your BBCode needs, and is

supplied with the code for this book. It is licensed under the PHP license[5].

The most important method of this class is the add_tag method. It takes as its

argument an associative array, which can contain up to six keys describing the

tag in question. Let’s look at some examples of the add_tag method in action.

The following example registers the BBTag, [b]:

$this->bbcode->add_tag(
 array(
 'Name' => 'b',
 'HtmlBegin' => '',
 'HtmlEnd' => ''
)
);

The Name of the tag is b. The HtmlBegin and HtmlEnd keys in the array define

the HTML start and end tags that will be used once the BBTags have been con-

verted.

The following sets up another BBTag, [link]:

$this->bbcode->add_tag(
 array(
 'Name' => 'link',
 'HasParam' => TRUE,
 'HtmlBegin' => '',
 'HtmlEnd' => ''
)
);

This code registers another key, HasParam, which tells the class that this BBTag

has a single attribute that should be displayed in the converted text. Notice also

the HtmlBegin value. Here we use the string %%P%% to identify where the parameter

should be placed.

[4] http://www.phpclasses.org/browse.html/package/951.html

[5] http://www.php.net/license/2_02.txt

Chapter 5: Text Manipulation

154

http://www.phpclasses.org/browse.html/package/951.html
http://www.php.net/license/2_02.txt
http://www.phpclasses.org/browse.html/package/951.html
http://www.php.net/license/2_02.txt

In this next example, which creates a size tag, we see a new key. ParamRegex
defines a regular expression to which the parameter must conform; in this case,

it’s a number that corresponds to a font size. Here’s the code:

$this->bbcode->add_tag(
 array(
 'Name' => 'size',
 'HasParam' => TRUE,
 'HtmlBegin' => '',
 'HtmlEnd' => '',
 'ParamRegex' => '[0-9]+'
)
);

This final example demonstrates all keys of the array in action, and introduces

the key ParamRegexReplace, which can be used to modify a parameter. In this

case, it allows a BBTag such as [color=c5c6c7] to become <span style="color:
#c5c6c7;">:

$this->bbcode->add_tag(
 array(
 'Name' => 'color',
 'HasParam' => TRUE,
 'ParamRegex' => '[A-Za-z0-9#]+',
 'HtmlBegin' => '',
 'HtmlEnd' => '',
 'ParamRegexReplace' => array('/^[A-Fa-f0-9]{6}$/'=>'#$0')
)
);

I’ve wrapped all this stuff neatly in a class called SitepointBBCode (TextManip-
ulation/SitePointBBCode.php in SPLIB), which creates the custom tags in its

constructor. This allows us to define BBTags simply by instantiating the class.

Let’s look at this code in action:

File: 9.php

<?php
// Include the BBCode class
require_once 'ThirdParty/bbcode/bbcode.inc.php';

// Include the SitepointBBCode class which defines custom tags
require_once 'TextManipulation/SitepointBBCode.php';

$text=<<<EOD
Here is some bold HTML which is unparsed.

155

How do I implement custom formatting code?

http://ThirdParty/bbcode/bbcode.inc.php';

[i]This[/i] text [bg=yellow]illustrates[/bg]
the [b]bbcode[/b] class in action[/u].

You can visit [url=http://www.sitepointforums.com/]SitePoint
forums[/url] with it [color=c5c6c7]just[/color] like the
[size=15]real thing[/size].

You can even [s]email[/s] the
[align=center][email=editor@sitepoint.com]editor[/email][/align].
EOD;

// Replace any real HTML with entities
$text = htmlspecialchars($text);

$bbCode=new SitepointBBCode();
echo nl2br($bbCode->parse($text));
?>

The $text variable simulates the text you’ve fetched from the database, which

contains BBCode (remember, you want to apply this kind of text manipulation

after a SELECT, rather than before an INSERT or UPDATE).

The first thing we need to do is pass the text through htmlspecialchars, which

we saw in “How do I solve problems with text content in HTML documents?”.

This will allow the HTML code to appear as plain text without having been parsed

by a browser. At a forum like The SitePoint Forums[6], where users often discuss

HTML, allowing HTML code to appear as ordinary text is essential. A less tech-

nical site, however, might instead choose to use strip_tags, eliminating the

HTML tags completely.

Here’s the raw HTML generated by the above code:

Here is some bold HTML which
is unparsed.

This text
illustrates

the bbcode class
in action.

You can visit <a href="http://www.sitepointforums.com/"
>SitePoint forums with it

[6] http://www.sitepointforums.com/

Chapter 5: Text Manipulation

156

http://www.sitepointforums.com/
http://url=http://www.sitepointforums.com/]SitePoint
mailto:align=center][email=editor@sitepoint.com]editor[/email][/align].
http://href="http://www.sitepointforums.com/"
http://www.sitepointforums.com/

just like the
real thing.

You can even <span style="text-decoration: line-through;"
>email the

<div style="text-align: center">
editor</div>.

All the real HTML has been replaced with HTML entities; the BBCode has been

replaced with the exact markup I want. Isn’t it great to be able to get code wrapped

up in a nice, easy to use class? And for free!

How do I implement a bad word filter?
If you’re running a site that targets minors, or you simply don’t want your

members expressing themselves to the “full” extent in heated discussions, being

able to replace particular words with something that’s a little more pleasant to

the eye can be a very handy tool.

For this particular problem, you might consider implementing a filter before you

insert the text into your database. This solution has the advantage of reducing

the amount of work PHP has to do before the content is displayed.

Here’s a class you can reuse for all your censorship needs:

File: WordFilter.php (in SPLIB)

/**
 * WordFilter
 * Class for censoring words in text
 * @access public
 * @package SPLIB
 */
class WordFilter {
 /**
 * An array of words to censor
 * @access private
 * @var array
 */
 var $badWords;

 /**
 * WordFilter constructor
 * Randomly generates strings to censor words with
 * @param array an array of words to filter

157

How do I implement a bad word filter?

mailto:href="mailto:editor@sitepoint.com">editor</div>.

 * @access public
 */
 function WordFilter($badWords)
 {
 $this->badWords = array();
 srand((float)microtime() * 1000000);
 $censors = array('$', '@', '#', '*', '£');
 foreach ($badWords as $badWord) {
 $badWord = preg_quote($badWord);
 $replaceStr = '';
 $size = strlen($badWord);
 for ($i = 0; $i < $size; $i++) {
 shuffle($censors);
 $replaceStr .= $censors[0];
 }
 $this->badWords[$badWord] = $replaceStr;
 }
 }

 /**
 * Searches for bad words in text and censors them
 * @param string text to filter
 * @return string the filtered text
 * @access public
 */
 function filter($text)
 {
 foreach ($this->badWords as $badWord => $replaceStr) {
 $text = preg_replace('/' . $badWord . '/i', $replaceStr,
 $text);
 }
 return $text;
 }
}

If you’re wondering about the constructor, the idea is to create a random string

with which to replace each word—just for fun. Note that I used preg_quote to

ensure that bad words aren’t interpreted as regular expression syntax.

Now, I have a loathing of Teletubbies™. In fact, the mere mention of the word

“Tubby” sends me into a blind rage. Putting the class into action, I can eradicate

from my site the discussion of all things “Tubby”:

Chapter 5: Text Manipulation

158

File: 10.php

<?php
// Include the word filter
require_once 'TextManipulation/WordFilter.php';

// An array of words to replace
$badWords = array('tele', 'tubby', 'tubbies', 'byebye');

// Include the word file with the list of bad words
$wordFilter = new WordFilter($badWords);

// $text simulates some data from the database
$text = 'Time for teletubbies! I like tubbies so much. ByeBye!';

// Filter the words
$text = $wordFilter->filter($text);

echo $text;
?>

What do I get?

Time for £#£*#££*$@*@! I like ££*$@*@ so much. @$$#*$!

The world is now a safer place.

How do I validate submitted data?
Validating strings is often important. How do you make sure that the data a user

submits via a form is what it’s supposed to be—for example, a URL or an email

address? Ensuring that the value provided by a user is what it’s supposed to be

is a common problem. Thankfully, PEAR::Validate is available, saving you from

reinventing the wheel. The version used here was 0.2.0.

PEAR::Validate offers a main class for validating strings and values that are

common to Web applications, as well as a growing number of related internation-

alized classes for dealing with things like UK post codes and US social security

numbers. Within each class is a collection of static methods (methods that can

be called without constructing an object from the class) that are used to validate

a particular value. Currently, the best way to find out what’s available is to look

at the source code, as this is still a fairly young package with little documentation.

Parse the files with PHPDocumentor to generate the API documentation (see

Volume II, Chapter 6 for more on PHPDocumentor).

159

How do I validate submitted data?

Here’s how we could use three of the methods available in the main Validate
class, namely string, email and url, to validate the data from a form:

File: 11.php (excerpt)

<?php
// Include PEAR::Validate
require_once 'Validate.php';

// Include file to strip quotes if needed
require_once 'MagicQuotes/strip_quotes.php';

// Initialize errors array
$errors = array('name' => '', 'email' => '', 'url' => '');

// If the form is submitted...
if (isset($_POST['submit'])) {

 // Define the options for formatting the name field
 $name_options = array(
 'format' => VALIDATE_ALPHA . VALIDATE_SPACE,
 'min_length' => 5
);

 // Validate name
 if (!Validate::string($_POST['name'], $name_options)) {
 $errors['name'] = ' class="error"';
 }

 // Validate email
 if (!Validate::email($_POST['email'])) {
 $errors['email'] = ' class="error"';
 }

 // Validate url
 if (!Validate::url($_POST['url'])) {
 $errors['url'] = ' class="error"';
 }
}
?>

First, we include PEAR::Validate and my own code that handles magic quotes.

Then, having tested to see that the form was submitted, we call the validate

methods statically to check the fields. The first check is to see if the name field

is a string containing only letters from the alphabet or space characters, and is

at least five characters long (this was defined by the $name_options array).

Chapter 5: Text Manipulation

160

Next, we simply need to call Validate::email and Validate::url to check the

email and url fields submitted via the form. Note that if we pass the value TRUE
as the second argument, PEAR::Validate checks the existence of the specified

host name against DNS, using PHP’s checkdnsrr function. This validation does

come at the cost of the delay involved in communicating with the nearest DNS

server.

Here’s the code for the form itself:

File: 11.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>PEAR::Validator</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
form.userinfo {
 font-family: verdana;
 font-size: 12px;
 width: 30em;
}
form.userinfo legend {
 font-weight: bold;
}
form.userinfo div {
 clear: both;
 margin: 5px 10px;
}
form.userinfo label {
 float: left;
}
form.userinfo span {
 float: right;
}
.error {
 color: red;
 font-weight: bold;
}
</style>
</head>
<body>
<form class="userinfo" action="<?php echo $_SERVER['PHP_SELF'];
?>" method="POST">

161

How do I validate submitted data?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

 <legend>Enter your details</legend>
 <div>
 <label<?php echo $errors['name']; ?>>Name:</label>

 <input type="text" name="name"
 value="<?php echo @$_POST['name']; ?>" />

 </div>
 <div>
 <label<?php echo $errors['email']; ?>>Email:</label>

 <input type="text" name="email"
 value="<?php echo @$_POST['email']; ?>" />

 </div>
 <div>
 <label<?php echo $errors['url']; ?>>Website:</label>

 <input type="text" name="url"
 value="<?php echo @$_POST['url']; ?>" />

 </div>
 <div>

 <input type="submit" name="submit" value="send" />

 </div>
</form>
</body>
</html>

Building the form itself, we use the $errors array and some CSS to highlight

form labels with red. This lets users know which part of their input was invalid,

as shown in Figure 5.2.

Figure 5.2. PEAR::Validator in Action…

Chapter 5: Text Manipulation

162

Also worthy of note in this example is the use of the @ operator when output-

ting variables with echo:

<?php echo @$_POST['url']; ?>

By preceding the variable name with @, we’ve instructed PHP not to object

if the variable in question does not exist.

How do I filter out undesirable HTML
code?

As you saw in “How do I solve problems with text content in HTML documents?”,

the strip_tags function is useful for removing tags from a string that contains

HTML; however, it doesn’t deal with attributes in tags. That’s a serious limita-

tion—it potentially exposes you to hazards like cross-site scripting (XSS) attacks

(see Appendix C) and allows users to implement the style tag, which could be

used to rearrange your page.

The strategy we’re going to apply to filtering works on the principle, “deny

everything we don’t explicitly allow.” To help us, we’ll still use the strip_tags
function to eliminate everything but a small subset of HTML. Then, we’ll use

the native XML SAX extension to parse what remains, allowing us to examine

those contents. Note that there’s a full explanation of the SAX extension in

Volume II, Chapter 2. Here I’ll assume you know how it works and concentrate

on building a simple class to allow a few tags. We’ll also use PEAR::Validate, this

time to check the contents of links for the href attribute.

Once again, the best way to make this functionality into a reusable component

is to use a class:

File: TextManipulation/FormFilter.php (in SPLIB) (excerpt)

/**
 * FormFilter

 * Class for examining HTML tags.

 * Note: requires PEAR::Validate
 * @access public
 * @package SPLIB
 */
class FormFilter {
 /**
 * String of allowed tags
 * @access private

163

How do I filter out undesirable HTML code?

 * @var string
 */
 var $allowedTags = '<a><i><u>';

 /**
 * Instance of native XML parser
 * @access private
 * @var resource
 */
 var $parser;

 /**
 * String of allowed tags
 * @access private
 * @var string
 */
 var $post = '';

 /**
 * Used to store any XML error string
 * @access private
 * @var string
 */
 var $error = '';

 /**
 * Constructs FormFilter
 * @access public
 */
 function FormFilter()
 {
 $this->parser = xml_parser_create();
 xml_set_object($this->parser, $this);
 xml_set_element_handler($this->parser, 'open', 'close');
 xml_set_character_data_handler($this->parser, 'data');
 }

 /**
 * Constructs FormFilter
 * @param string data to filter
 * @return string filter data
 * @access public
 */
 function filter($post)
 {
 $this->post = '';

Chapter 5: Text Manipulation

164

 $post = strip_tags($post, $this->allowedTags);
 $post = '<?xml version="1.0"?><post>' . $post . '</post>';
 if (!xml_parse($this->parser, $post, true)) {
 $this->error = 'Post data is not well formed: ' .
 xml_error_string(xml_get_error_code($this->parser)) .
 on line ' . xml_get_current_line_number($this->parser);
 return false;
 }
 return $this->post;
 }

 /**
 * Returns any XML errors
 * @return string XML error
 * @access public
 */
 function getError()
 {
 return $this->error;
 }

Within the constructor of our FormFilter class, the first thing we must do is

create an instance of the native Expat parser and tell it which call back functions

to use (much more on this in Volume II, Chapter 2). With that done, we provide

the filter method to “screen” the string containing HTML. First, we strip out

everything but the tags defined in the $allowedTags member variable. We then

need to prepend the XML processing instruction to the start of the string, and

make sure the lot is wrapped in a root XML node; this is done so that the parser

won’t complain about the string being badly formed.

If we run into problems during parsing, the error message will be stored locally

and made available via the getError method. Once parsing is complete, we return

the post to the code that called the filter method.

The real work happens in the XML handlers:

File: TextManipulation/FormFilter.php (in SPLIB) (excerpt)

 /**
 * Sax Open TagHandler
 * @param XML_HTMLSax
 * @param string tag name
 * @param array attributes
 * @return void
 * @access private
 */

165

How do I filter out undesirable HTML code?

 function open(&$parser, $tag, $attrs)
 {
 switch ($tag) {
 case 'A':
 if (isset($attrs['HREF']) &&
 Validate::url($attrs['HREF'])) {
 $this->post .= '<a href="' . $attrs['HREF'] .
 '" target="_blank">';
 } else {
 $this->post .=
 '';
 }
 break;
 case 'B':
 case 'STRONG':
 $this->post .= '';
 break;
 case 'I':
 case 'EM':
 $this->post .= '';
 break;
 }
 }

 /**
 * Sax Close TagHandler
 * @param XML_HTMLSax
 * @param string tag name
 * @param array attributes
 * @return void
 * @access private
 */
 function close(&$parser, $tag)
 {
 switch ($tag) {
 case 'A':
 $this->post .= '';
 break;
 case 'B':
 case 'STRONG':
 $this->post .= '';
 break;
 case 'I':
 case 'EM':
 $this->post .= '';
 break;

Chapter 5: Text Manipulation

166

 }
 }

 /**
 * Sax Data Handler
 * @param XML_HTMLSax
 * @param string data inside tag
 * @return void
 * @access private
 */
 function data(&$parser, $data)
 {
 $this->post .= $data;
 }
}

The handler methods are called by the parser as it reads through the XML docu-

ment. Looking at the open method, you can see how we might deal with different

tag names. In particular, when we receive an a tag, we use PEAR::Validate to

check whether the URL is valid. Note also that we’re converting b and i to strong
and em. Any other attributes we encounter that are not specifically identified

here are simply thrown away.

Note that for this example the use of strip_tags was actually unnecessary, as

the handler methods will also ignore any tags that are not specifically identified.

Of course, we’re limiting ourselves to only a few HTML tags here. Dealing with

others—lists, for example—typically requires more complex code, adding to the

risk that we might allow HTML tags we weren’t expecting. The strip_tags
function acts as our insurance policy.

One benefit of our using the XML extension is that we require users to post well

formed XML. This has the advantage that an unclosed a, for example, won’t be

accepted. It does mean that certain tags, such as br (if allowed), will cause prob-

lems if they aren’t written to XML standards.

Here’s an example of the class in action:

File: 12.php

<?php
// Include PEAR::Validate
require_once 'Validate.php';

// Include PEAR::XML_HTMLSax
require_once 'TextManipulation/FormFilter.php';

167

How do I filter out undesirable HTML code?

// Include file to strip quotes if needed
require_once 'MagicQuotes/strip_quotes.php';

// If the form is submitted...
if (isset($_POST['submit'])) {
 // Instantiate the form filter
 $formFilter = &new FormFilter();

 // Filter the message
 if (FALSE === ($filtered_message =
 $formFilter->filter($_POST['message']))) {
 $filtered_message = $formFilter->getError();
 }
}
?>
<!DOCTYPE html "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Form HTML Filter</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>Add your comment:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST">
<textarea cols="40" rows="5" name="message"></textarea>

<input type="submit" name="submit" value=" Post ">
</form></p>
<p>Allowed tags: <code><a>
 <i> </code></p>
<?php
if (isset ($filtered_message)) {
 echo ("<p>Your post:
\n<code>\n".
 htmlspecialchars($filtered_message)."</code>\n");
}
?>
</body>
</html>

You’ll see by testing that this code allows only those elements that we identified

in the class.

Chapter 5: Text Manipulation

168

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

Further Reading
� URL Encoding: http://www.blooberry.com/indexdot/html/topics/urlencoding.htm

This makes a useful reference for URL encoding.

� HTML Entities Reference: http://www.htmlhelp.com/reference/html40/entities/

Bookmark this handy reference for characters that have special meanings in

HTML.

� PCRE Tutorial: http://codewalkers.com/tutorials/30/2.html

In this tutorial, you’ll find some worthwhile and practical help on Perl Com-

patible Regular Expressions.

169

Further Reading

http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.htmlhelp.com/reference/html40/entities/
http://codewalkers.com/tutorials/30/2.html
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.htmlhelp.com/reference/html40/entities/
http://codewalkers.com/tutorials/30/2.html

170

Dates and Times6
Wouldn’t it be nice if we had a ten-day week? How about 100 minutes in an

hour? Ten months each year?

Dates and times are probably something you take for granted. You deal with

them every day and are probably unaware of the clever mathematical algorithms

your brain uses to work out how long you have to wait before Friday comes

around again. It’s only when you start programming that you realize that what

you’ve been taking for granted all these years is not as easy to deal with in code

as you’d expect. Blame the Romans!

In our day-to-day lives, we’re used to working with decimal (base ten) numbers,

which are optimized for dealing with groups of ten (ten ones in ten, ten tens in

a hundred, ten hundreds in a thousand, etc.). Avoiding a math lecture, the

problem with dates and times is that they don’t break down into groups of ten:

� In one second you have one thousand milliseconds. No problem.

� In one minute you have sixty seconds.

� In one hour you have sixty minutes.

� In one day you have twenty-four hours.

So, how do you calculate the number of days given a value in milliseconds? That’s

a stack of long division! And that’s just time—what about dates?

� In one week, you have seven days (does your week begin on Sunday or

Monday?)

� In one month you have… er… you don’t know exactly how many days or

weeks; it depends on the month (and don’t get me started on leap years!)

� In one year you have twelve months.

Of course, that’s too easy. How about making it more difficult? You often need

to be able to express a date in multiple formats such as “Tuesday 18th March,

2003”, “03/18/03” (US format), “18/03/03” (European format), “18th Mar 2003”,

and “20030318” (a MySQL-style timestamp), not to forget “1047942000” (a

Unix timestamp)!

How do you plan to display a list of articles fetched from a database and ordered

by date? What if you want to present something more complex, such as an online

calendar? There’s a lot to think about when dealing with dates and times in your

applications.

PHP really helps to make times and dates as painless as possible, thanks to

powerful functions like date. But it’s important to develop the right strategy for

dealing with dates and times early in your career as a PHP programmer. Take

the right approach from day one, and you’ll avoid having to go back later and

write insanely complex code to fix the mistakes you made as a newbie. In this

chapter, we’ll be looking at the kinds of strategies you can employ, and solving

some of the common problems you’ll face when it comes to dates and times.

How do I store dates in MySQL?
At first glance, the easiest way to store dates in MySQL may appear to be to

simply drop them in exactly as they’d appear on a Web page, for example, as

“18th March 2003”. Be warned—this is the first step on the path to serious hair

loss. The WHERE clause in an SQL statement run against MySQL will not allow

you to do things like this:

SELECT * FROM table WHERE date > '14th February 2003'

A far better way to store date information is to use a timestamp. Timestamps

are numbers that identify dates and times in a format that can be used to solve

Chapter 6: Dates and Times

172

the types of problems you’ll typically encounter in your applications; they make

it easier to perform operations such as ordering a list or comparing two dates, for

example. As a PHP developer, there are essentially two types of timestamp you’re

likely run into—the Unix timestamp and the MySQL timestamp.

Unix Timestamps
Unix timestamps are generally the most effective way to handle dates—they’re

a simple solution to a tricky problem. A Unix timestamp reflects the number of

seconds that have passed since January 1, 1970, 00:00:00 GMT. Converting

dates to their Unix timestamps makes date- and time-related calculations easy.

The downside of Unix timestamps is that unless you’re a child prodigy they’re

not human-readable; if I told you that 1047994036 was the number of seconds

that had passed since January 1, 1970, could you tell me what the date was?

The other problem with Unix timestamps is that they can only be used within a

limited date range, depending on your operating system. On Linux-based systems,

you should be able to go back to somewhere around 1902, and forward as far as

2037. On Windows-based operating systems, the lower limit may be as recent

as January 1, 1970. The problem lies in the size of the number. Any operating

system can easily handle integer numbers up to a certain size (232, or

4,294,967,296 for current 32-bit operating systems), after which it must work

harder to juggle oversized numbers. For the sake of efficiency, therefore, operating

systems usually impose this “maximum” size on important values like dates and

times. Linux at least allows you to have negative integer values for dates, hence

you can work with dates occurring before January 1, 1970, while PHP on Win-

dows may complain about such dates. What I’m saying here is that there’s poten-

tially another Y2K-like problem looming somewhere around January 19, 2038,

which will affect all 32-bit operating systems still in existence. Try searching

Google for that date and you’ll see what I mean…

Although 2038 is a long way off and the timestamp issue may influence no more

than your choice of pacemaker, it’s worth bearing in mind if you’re planning an

application that will need to work with dates from the distant past or future

(perhaps on a history Website). PHP provides functions such as time and mktime
to help deal with Unix timestamps. To see the problem in action, try running

the following script on as many different operating systems as you can:

File: 1.php

<?php
echo '1st Jan 1899: ' . mktime(0, 0, 0, 1, 1, 1899) . '
';

173

Unix Timestamps

echo '1st Jan 1902: ' . mktime(0, 0, 0, 1, 1, 1902) . '
';
echo '31st Dec 1969: ' . mktime(0, 0, 0, 12, 31, 1969) . '
';
echo '1st Jan 1790: ' . mktime(0, 0, 0, 1, 1, 1970) . '
';
echo '1st Jan 1937: ' . mktime(0, 0, 0, 1, 1, 2037) . '
';
echo '1st Jan 2038: ' . mktime(0, 0, 0, 1, 1, 2038) . '
';
echo '19th Jan 2038: ' . mktime(0, 0, 0, 1, 19, 2038) . '
';
echo '20th Jan 2038: ' . mktime(0, 0, 0, 1, 20, 2038) . '
';
echo '1st Jan 2039: ' . mktime(0, 0, 0, 1, 19, 2039) . '
';
?>

Depending on your operating system, and particularly on Windows, this may

generate a range of different PHP warning errors.

Another thing to be aware of with Unix timestamps is that they vary in length;

a timestamp from January 2, 1970 will obviously be shorter than a contemporary

timestamp. In general, when you’re placing Unix timestamps in your database,

a column size of 10 (INT(10)) should be more than enough to keep your applic-

ation running for the next 270+ years (assuming it’s not running on a 32-bit

operating system, of course).

MySQL Timestamps
MySQL timestamps are simpler than Unix timestamps. The generalized form is

YYYY-MM-DD HH:MM:SS and is typically stored in a column of type DATETIME (note

also the column types DATE and TIME, which store only YYYY-MM-DD and HH:MM:SS
respectively).

For simple sorting and comparison operations, timestamps in this form are perfect

and they have the advantage of being human-readable. They also have a predict-

able length (until we get to the year 9999), which makes them easier to validate.

On the downside, you’re still lumbered with problems when it comes to more

complicated date-related operations. How would you group data on a weekly

basis, for example? You’ll probably end up converting the MySQL timestamp to

a Unix timestamp to achieve this, and such conversions can significantly slow

down an application that handles large sets of data.

Personally, of the two timestamps, I prefer to use Unix timestamps to store date

information in MySQL. Of course, I plan to be retired and fishing when 2038

comes around, but I’ll provide examples of both here, and leave the choice up to

you.

Chapter 6: Dates and Times

174

Timestamps in Action
To see Unix timestamps in action, assuming the column doesn’t already exist,

we first need to modify the articles table we used in Chapter 3 with the follow-

ing command:

ALTER TABLE articles ADD
published INT(10) UNSIGNED DEFAULT '0' NOT NULL;

Note that we’ve made the new published column UNSIGNED, because we don’t

plan to insert any dates occurring before January 1, 1970 (which would require

negative values); this increases the range of positive timestamp values that can

be stored. The default value of 0 represents January 1, 1970.

We can now insert a new row as follows:

File: 2.php

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Get the UNIX timestamp for right now
$now = time();

// A query to create an article
$sql = "INSERT INTO articles
 SET
 title='Test Article',
 body='This is a test...',
 author='HarryF',
 published='$now'";

// Perform the query
$result = $db->query($sql);

if ($result->isError()) {
 echo 'Problem: ' . $result->isError();

175

Timestamps in Action

} else {
 echo 'Article inserted';
}
?>

Notice we’ve used the time function to get a Unix timestamp for the current

time, and then inserted this into the database. Tasks like ordering the records

are now possible; we simply use a query like this one:

SELECT * FROM articles ORDER BY published DESC LIMIT 0, 10

This obtains a list of the ten newest articles in the database, starting with the

most recent.

To deal with a complicated query, such as fetching all articles posted in the last

week, we can use the mktime function to generate the timestamps we need, with

a little help from the date function. Here’s the solution in this case:

File: 3.php (excerpt)

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Timestamp for last week
$lastWeek = mktime(0, 0, 0, date('m'), date('d') - 7, date('Y'));

$sql="SELECT * FROM articles
 WHERE published > '$lastWeek'
 ORDER BY published DESC";

// Perform the query
$result = $db->query($sql);

while ($row = $result->fetch()) {
 echo $row['title'] . ': ' .
 date('F j, Y', $row['published']) . '
';
}

The mktime function takes a little getting used to (it’s worth studying the

manual[1] for more detailed information), but is very powerful. It constructs a

Unix timestamp from the seconds, minutes, hours, month, day, and year compon-

ents (in that order) of the date and time. In this case, we want to ascertain the

date exactly one week ago. Thus, we’ve used this expression for the day compon-

ent:

[1] http://www.php.net/mktime

Chapter 6: Dates and Times

176

http://www.php.net/mktime
http://www.php.net/mktime

date('d') - 7

date('d') returns the day component of today’s date (again, the manual page[2]

for this function is worthy of your attention), and subtracting seven takes us back

one week from today. You may have noticed that if today’s date is the 1st of the

month, subtracting seven from it will give a day of “-6”. Handily, mktime is able

to understand the intention; it will adjust the month correctly and start counting

backwards from the total number of days in the previous month.

If you’re interested in maximum performance and don’t mind doing the math

yourself, you can achieve approximately the same effect1 using:

$lastWeek = time() - 7 * 24 * 3600;

Or even more simply:

$lastWeek = time() - 604800;

Later, we’ll use date, in conjunction with a Unix timestamp from the database,

to create a human-readable date for that stamp:

date('F j, Y', $row['published'])

date can be given a Unix timestamp, and will format it according to the first ar-

gument (in this case, 'F j, Y'):

March 18, 2003

As you can see, the date function converts Unix timestamps into something

readable.

To use MySQL timestamps, you need to modify the articles table with this

command:

ALTER TABLE articles CHANGE published published DATETIME NOT NULL

Note that the dates stored in the articles will be messed up when you do this;

obviously, it’s not something you should try with real data.

A query to identify articles from the last week would now look like this:

[2] http://www.php.net/date
1The difference is that by using mktime you can specify articles published after midnight one week

ago, whereas the alternative method looks for articles published after the current time one week ago.

In most applications, the difference is likely to be academic.

177

Timestamps in Action

http://www.php.net/date
http://www.php.net/date

File: 4.php

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Select articles
$sql = "SELECT
 *,
 DATE_FORMAT(published,'%M %e, %Y') as published
 FROM articles
 WHERE published > UTC_TIMESTAMP() - INTERVAL 7 DAY
 ORDER BY published DESC";

// Perform the query
$result = $db->query($sql);

while ($row = $result->fetch()) {
 echo $row['title'] . ': ' .
 $row['published'] . '
';
}
?>

Note that we’ve used MySQL’s DATE_FORMAT function[3] to format the date for

display on the page, whereas in the previous example, the formatting was up to

the PHP script. We’ve also used the MySQL UTC_TIMESTAMP function and an

INTERVAL to select the dates we’re looking for.

This example demonstrates several of the reasons I prefer to store date/time values

as Unix timestamps:

� I like SQL statements to be as simple as possible.

� It’s generally easier to debug errors in PHP than in SQL statements.

[3] http://www.mysql.com/doc/en/Date_and_time_functions.html

Chapter 6: Dates and Times

178

http://www.mysql.com/doc/en/Date_and_time_functions.html
http://www.mysql.com/doc/en/Date_and_time_functions.html

� Many details of MySQL’s date/time features are database-specific, and

wouldn’t port to other databases well if needed.

� Your database should be responsible for keeping track of your data, not

formatting it for display.2

You generally need to rely on MySQL’s in-built functions to perform some of

the work for you when you use MySQL timestamps. Let me show you another

example that suffers from “complex query syndrome.”

Say you wanted to display a statistic that told you how many days ago the last

article was published on the site. To do this, you’d need to calculate the “distance”

in days (as opposed to the difference) between today’s date and the date on which

the last article was published. MySQL can do this as follows:

SELECT TO_DAYS(NOW()) - TO_DAYS(published)
FROM articles
ORDER BY published DESC
LIMIT 1

This may look fine, but the SQL statement is gradually becoming more complic-

ated. If I store the data as a Unix timestamp instead, the query would look like

this:

SELECT published
FROM articles
ORDER BY published DESC
LIMIT 1

Then, to display the result in PHP, I’d use the following;

$daysAgo = floor((time() - $row['published']) / 86400);

86400 is the number of seconds in a day; the floor function is used to round

down a decimal to its integer value.

Of course, you may not agree that it’s simpler to handle things in PHP, in which

case I fully encourage you to explore MySQL’s date handling features. In the

end, Unix timestamps and MySQL timestamps can be used to achieve the same

ends; which you prefer is a matter of taste.

2Incidentally, the makers of MySQL tend to agree with me on this point.

179

Timestamps in Action

How do I solve common date problems?
Consider the types of calculations our brains make each time we’re confronted

with a calendar:

“I’d like it finished by the 3rd of March… That’s only five days

away!”

It’s clear there’s more to dealing with dates than simply organizing data in order

of significance, or displaying an individual datum. In this solution, we’ll look at

some of the common problems you may encounter when dealing with dates and

times. In particular, we’ll see how to deal with

� days of the week

� weeks of the year

� days of the year

� the number of days in a month

� leap years

In the process, we’ll build a class that can be easily reused in your own applica-

tions.

The following code lays the foundation for the class:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

<?php
/**
 * DateMath class for solving common date problems
 * @package SPLIB
 */
class DateMath {
 /**
 * Unix timestamp
 * @access private
 * @var int
 */
 var $timeStamp;

 /**

Chapter 6: Dates and Times

180

 * DateMath constructor
 * If parameters not provided, DateMath uses current time
 * <code>
 * $dateMath = new DateMath(2003,8,22); // Uses 22nd August 2003
 * $dateMath = new DateMath(); // Uses current date and time
 * </code>
 * @param int year (e.g. 2003)
 * @param int month (e.g. 8 for August)
 * @param int day of month (e.g. 22)
 * @param int hours (e.g. 15)
 * @param int minutes (e.g. 5)
 * @param int seconds (e.g. 7)
 */
 function DateMath($y = NULL, $m = NULL, $d = NULL, $h = NULL,
 $i = NULL, $s = NULL)
 {
 $time = time();

 $y = is_numeric($y) ? $y : date('Y', $time);
 $m = is_numeric($m) ? $m : date('m', $time);
 $d = is_numeric($d) ? $d : date('d', $time);
 $h = is_numeric($h) ? $h : date('H', $time);
 $i = is_numeric($i) ? $i : date('i', $time);
 $s = is_numeric($s) ? $s : date('s', $time);
 $this->timeStamp = mktime($h, $i, $s, $m, $d, $y);
 }

 /**
 * For setting a Unix timestamp
 * @param int a Unix timestamp
 * @return void
 * @access public
 */
 function setTimeStamp($timeStamp)
 {
 $this->timeStamp = $timeStamp;
 }

The constructor checks to see whether you’ve passed any values for a date, the

arguments appearing in the order year, month, day, hour, minute and finally

second. Any parameter for which you fail to provide a numeric value will assume

the current date or time. The constructor then turns this into a timestamp, which

will make later calculations easier.

If I want to begin with a timestamp, I can use the setTimeStamp method to

provide my own.

181

How do I solve common date problems?

Day of the Week
If we’re given the date “March 22, 2003”, how can we find out which day of the

week it was? The easiest solution is to convert it to a timestamp, then use PHP’s

date function to tell us which day the twenty-second fell on. To add this to the

class, we need only insert another method:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Returns the day of the week
 * @param boolean if true returned value will be numeric day of
 * week
 * @return mixed e.g. Saturday or 6
 * @access public
 */
 function dayOfWeek($numeric = false)
 {
 if ($numeric) {
 return date('w', $this->timeStamp);
 } else {
 return date('l', $this->timeStamp);
 }
 }

Now, using the dayOfWeek method, we’ll find out what day of the week March

22, 2003 was:

File: 5.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Instantiate DateMath class 22nd March 2003
$dateMath = new DateMath(2003, 03, 22);

echo '22nd March 2003 is a ' . $dateMath->dayOfWeek();
?>

Note that if we pass TRUE to the dayOfWeek method, it will return a numeric

representation of the day of the week, starting with 0 as Sunday:

echo '22nd March 2003 is day ' . $dateMath->dayOfWeek(TRUE) .
 ' of the week.';

Chapter 6: Dates and Times

182

Week of the Year
To ascertain the week of the year, we add another method to the DateMath class:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Returns the ISO 8601 week of the year
 * @return int numeric week of year e.g. 12
 * @access public
 */
 function weekOfYear()
 {
 return date('W', $this->timeStamp);
 }

Putting this into action:

File: 6.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Instantiate DateMath class 22nd March 2003
$dateMath = new DateMath(2003, 3, 22, 0, 0, 0);

echo '22nd March 2003 is in week ' . $dateMath->weekOfYear() .
 ' of the year';
?>

Be aware that the weekOfYear method relies on PHP’s date function, which uses

the ISO 8601 notation for weeks[4]. Under that standard, the first week of the

year is the week (beginning on a Monday) that contains the first Thursday of

the year. So if, for instance, the last two days in December fell on a Monday and

a Tuesday, they would actually belong to the next year according to this notation.

Number of Days in a Month
My memory is terrible and I can never remember how many days a particular

month is supposed to have. Thankfully, it’s not too hard to find out with PHP,

where we can simply add a daysInMonth method to the DateMath class:

[4] http://www.cl.cam.ac.uk/~mgk25/iso-time.html

183

Week of the Year

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Provides the number of days in the month
 * @return int number of days in the month
 * @access public
 */
 function daysInMonth()
 {
 return date('t', $this->timeStamp);
 }

Here, we simply rely again on the PHP date function to do the hard work, but

it’s good to have this method available from our class—this makes it a complete

solution for common date-related problems.

Let’s put it to the test:

File: 7.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

$months = array(
 'January' => 01,
 'February' => 02,
 'March' => 03,
 'April' => 04,
 'May' => 05,
 'June' => 06,
 'July' => 07,
 'August' => 08,
 'September' => 09,
 'October' => 10,
 'November' => 11,
 'December' => 12);

foreach ($months as $name => $num) {
 $dateMath = new DateMath(2003, $num, 1, 0, 0, 0);
 echo $name . ' has ' . $dateMath->daysInMonth() . ' days
';
}
?>

This helps me remember that:

January has 31 days
February has 28 days

Chapter 6: Dates and Times

184

March has 31 days
April has 30 days
May has 31 days
June has 30 days
July has 31 days
August has 31 days
September has 30 days
October has 31 days
November has 30 days
December has 31 days

Note that this method will correctly report twenty-nine days in February when

the date stored in DateMath occurs in a leap year. And speaking of leap years…

Leap Years
Not all years are the same, which, if you had the misfortune to be born on Feb-

ruary 29, you’ll know only too well; every four years there’s an extra day, with

occasional exceptions.3 To identify leap years, I can take advantage of the

daysInMonth method to create a new method; this will examine February and

use it to find out whether it occurs in a leap year:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Determines whether current year is a leap year
 * @return boolean true if a leap year
 * @access public
 */
 function isLeapYear()
 {
 return date('L', $this->timeStamp);
 }

Once again, we’re wrapping a convenient package around an obscure feature of

PHP’s date function.

Let’s see how it works:

3Years evenly divisible by 4 are leap years, with the exception of years evenly divisible by 100 that

are not evenly divisible by 400. Therefore, the years 1700, 1800, 1900 and 2100 are not leap years,

but 1600, 2000, and 2400 are leap years.

185

Leap Years

File: 8.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Build an array for the next ten years
$thisyear = date('Y');
$years = range($thisyear, $thisyear + 10);

// Find the leap years
foreach ($years as $year) {
 $dateMath = new DateMath($year, 1, 1, 0, 0, 0);
 if (!$dateMath->isLeapYear()) {
 echo $year . ' is not a leap year
';
 } else {
 echo $year . ' is a leap year!
';
 }
}
?>

This identifies which of the next ten years are and are not leap years:

2003 is not a leap year
2004 is a leap year!
2005 is not a leap year
2006 is not a leap year
2007 is not a leap year
2008 is a leap year!
2009 is not a leap year
2010 is not a leap year
2011 is not a leap year
2012 is a leap year!
2013 is not a leap year

Day of the Year
Another feature of date tells us what day of the year it is:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Returns the day of the year
 * @return int numeric day of year e.g. 81
 * @access public
 */
 function dayOfYear()

Chapter 6: Dates and Times

186

 {
 return date('z', $this->timeStamp) + 1;
 }

This is then simply applied to find out that March 22 will be the eighty-first day

of the year 2005:

File: 9.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Instantiate DateMath class 22nd March 2003
$dateMath = new DateMath(2003, 3, 22, 0, 0, 0);

echo '22nd March 2003 is day ' . $dateMath->dayOfYear() .
 ' of the year';
?>

First Day in the Month
A useful piece of information, particularly when building calendars, is to be able

to determine what day of the week the first of a month falls on:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Returns the day of the week for the first of the month
 * @param boolean if true returned value will be numeric day of
 * week
 * @return mixed e.g. 1 or Monday
 * @access public
 */
 function firstDayInMonth($numeric = false)
 {
 $firstDay = mktime(0, 0, 0, date('m', $this->timeStamp), 1,
 date('Y', $this->timeStamp));
 if ($numeric) {
 return date('w', $firstDay);
 } else {
 return date('l', $firstDay);
 }
 }

Just to double check, March 2003 should begin on a Saturday:

187

First Day in the Month

File: 10.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Instantiate DateMath class 22nd March 2003
$dateMath = new DateMath(2003, 3, 22, 0, 0, 0);

echo 'The first day of March is a ' .
 $dateMath->firstDayInMonth() . '.';
?>

You’ll see more of this method in the next solution.

A Touch of Grammar
Let’s say you want to print out the day of the month in an English format, with

a suffix (e.g. “January 1st, 2003”). How could we decide on the suffix for the

number? In this case, the built-in date function provides the answer with its S
formatting character:

// Retrieve the day of the month, with suffix
$dayOfMonth = date('jS');

On February 3, this would result in $dayOfMonth being '3rd'.

However, what if we want to apply a suffix for a number that isn’t a day of the

month? You may have noticed in the section called “Day of the Year” that what

we got back was a message like this:

22nd March 2003 is day 81 of the year

Of course, “the 81st day of the year” would have been more natural. What we

need is a little code which, when given a positive integer, provides the correct

suffix. Let’s add this code to the DateMath class:

File: DateTime/DateMath.php (in SPLIB) (excerpt)

 /**
 * Provide the suffix for a number e.g. 22 is the 22nd
 * @static
 * @param int some number
 * @return string e.g. 'nd' for 22nd
 * @access public
 */

Chapter 6: Dates and Times

188

 function suffix($num)
 {
 if ($num < 11 || $num > 13) {
 $desc = array(0 => 'th', 1 => 'st', 2 => 'nd', 3 => 'rd',
 4 => 'th', 5 => 'th', 6 => 'th', 7 => 'th',
 8 => 'th', 9 => 'th');
 return $desc[$num % 10];
 } else {
 return 'th';
 }
 }

Note that the numbers 11, 12, and 13 are special cases in the English language,

and are treated as such by the code above.

Here’s the suffix method in action:

File: 11.php

<?php
// Include DateMath class
require_once 'DateTime/DateMath.php';

// Instantiate DateMath class for 22nd March 2003
$dateMath = new DateMath(2003, 3, 22, 0, 0, 0);

echo '22nd March 2003 is the:
';
echo ($dateMath->dayOfWeek(TRUE) + 1) .
 $dateMath->suffix($dateMath->dayOfWeek(TRUE) + 1) .
 ' day of the week
';
echo $dateMath->weekOfYear() .
 $dateMath->suffix($dateMath->weekOfYear()) .
 ' week of the year
';
echo $dateMath->dayOfYear() .
 $dateMath->suffix($dateMath->dayOfYear()) .
 ' day of the year
';
?>

This tells me:

22nd March 2003 is the:
7th day of the week
12th week of the year
81st day of the year

The methods provided here should solve the majority of the more unusual date-

related problems. The DateMath class is simple, as you can see, but it’s easily

189

A Touch of Grammar

made more complex, so you should have no problems adding further methods

to it.

How do I build an online calendar?
Now that the DateMath class is ready, I have a couple of methods that will help

us build a calendar. Aside from the specific date-related issues that DateMath
solves, the hard part is to build an online calendar that suits everybody. If one

site needs a calendar as HTML, but another needs WML (wireless markup lan-

guage), we have a problem. The trick to solving this problem is to separate the

building of the calendar’s “data structures” from the rendering of output.

To cut a long story short, in top cooking program style it’s time to say that magic

phrase, “Here’s one I prepared earlier!” as I introduce a collection of classes that

can help build calendar data structures. Once we’ve got a grasp on these, we’ll

use them to build our calendar.

As shown in the UML diagram in Figure 6.1, all the classes in this example inherit

a great deal of functionality from the Calendar base class.

Chapter 6: Dates and Times

190

Figure 6.1. Calendar Classes as UML

The basic strategy these classes employ is as follows: given a Month, for example,

you can build the Days that occur in it. Likewise, given a Day, you can build the

Hours that occur within that day. Furthermore, any subclass of Calendar you

might deal with is aware of what comes before and after it; so, if you’re dealing

with a Day object representing January 1, 2003, it will “know” that a Day object

representing December 31, 2003 comes before it. Date components themselves

may be obtained in either numeric form, like 2003, 8, and 9 for the Year, Month,

and Day components of the date August 9, 2003 respectively, or as Unix

timestamps, depending on what you need to achieve.

191

How do I build an online calendar?

The easiest way to see how this works is by example.

The following snippet of code shows the Year class being used to create Month
objects for a simple calendar that displays months only.

To start with, we need to include the necessary classes:

File: 12.php (excerpt)

<?php
// Include Calendar Year
require_once 'DateTime/Year.php';
require_once 'DateTime/Month.php';

Since this is our first time using a sizeable inheritance hierarchy, I should note

that the two classes included here—Year and Month—both perform some includes

of their own. For example, they both include their parent class, Calendar. Also

included is a class called TimeUnitValidator which is responsible for checking

that dates created by these classes are valid. Although all these classes should be

included transparently as a result of the two includes above, you do need to ensure

that the relevant class files are available (PHP will let you know if they’re not!).

The code presented here and in the code archive assumes that all of the date/time

classes may be found in a directory called DateTime located in your PHP include

path.

Next, I need to set default values for the $_GET variables that control which part

of the calendar is displayed. I set these to the current year and month if no date

is provided via the URL. There’s no requirement to use the variable names that

appear here; you can call them whatever you like.

File: 12.php (excerpt)

// Initialize $_GET variables to this year and month if not set
if (!isset($_GET['y'])) $_GET['y'] = date('Y');
if (!isset($_GET['m'])) $_GET['m'] = date('m');

Once that’s done, we create a Year object and pass it the number value of the

year it represents (e.g. 2003). Following that, we create an array and place inside

it a Month object. This array is used to identify particular calendar elements as

having been “selected”, something we’ll see in action shortly.

File: 12.php (excerpt)

// Create a new Year object
$year = new Year($_GET['y']);

$selectedMonths = array(

Chapter 6: Dates and Times

192

 new Month($_GET['y'], $_GET['m'])
);

Finally, we call the Year’s build method and pass it the array of selected months:

File: 12.php (excerpt)

// Instruct the Year to build Month objects
$year->build($selectedMonths);

It’s the build method that actually instructs the Calendar subclasses (with the

exception of Second) to build their children. Again, this will become clear in a

moment.

Next, we create two variables that we’ll use to make the “next” and “previous”

links, allowing users to navigate between years:

File: 12.php (excerpt)

$prev = $_SERVER['PHP_SELF'] . "?y=" . $year->lastYear();
$next = $_SERVER['PHP_SELF'] . "?y=" . $year->nextYear();

Notice that we use the Year method, lastYear, to get the numeric value for the

previous year, and nextYear to return the value for the coming year. Then, as

we begin to build the calendar output HTML, we use thisYear to obtain the

value of the current year:

File: 12.php (excerpt)

// Start building HTML
$calendar = "<table>\n";
$calendar .=
 "<caption><< " .
 $year->thisYear() .
 " >></caption>\n";

Note that passing the value TRUE to any method beginning with the word “this”

(e.g. thisYear) will return a timestamp instead of a numeric, human-readable

value. We’ll use this capability in a moment.

With the top of the calendar built, we can start to build the body using the iter-

ator method fetch in a while loop. The fetch method returns the “children” of

the class you’re working with; for example, a Day returns Hours, while a Minute
returns Seconds.

193

How do I build an online calendar?

File: 12.php (excerpt)

while ($month = $year->fetch()) {
 $calendar.="<tr>\n";
 $link = $_SERVER['PHP_SELF'] . "?y=" . $month->thisYear() .
 "&m=" . $month->thisMonth();
 if (!$month->isSelected()) {
 $calendar .= "<td>" .
 date('F', $month->thisMonth(TRUE)) .
 "</td>\n";
 } else {
 $calendar .= "<td class=\"selected\">" .
 date('F',$month->thisMonth(TRUE)) .
 "</td>\n";
 }
 $calendar .= "</tr>\n";
}
$calendar .= "</table>\n";
?>

The build method must be called before you use the fetch method, other-

wise fetch will return FALSE.

Inside the loop itself, you’ll notice the isSelected method. This is used to

identify months that were passed to the build method. It allows us to modify

the format of the HTML for “selected” months so they’re highlighted in some

way.

Also, notice here that we passed the boolean value TRUE to thisMonth. This tells

the method to return a Unix timestamp for the day, rather than a numeric value;

we can then reformat that timestamp as the English name for the appropriate

month using PHP’s date function.

Now that we’ve constructed the calendar and placed it inside a string, we can

simply “drop” it into our HTML page… and hey presto—we see a simple calendar

showing the months in the year! The output is shown in Figure 6.2.

Chapter 6: Dates and Times

194

Figure 6.2. Months in the Year

A Roman Calendar
Now you have a rough idea of the methods available, how about a more useful

example? The following code displays a given month in a format that’s common

to calendars—a table in which each row represents a week. To start with, we’ll

instantiate a Month and use it to get timestamps for the next and previous months:

File: 13.php (excerpt)

<?php
// Include Calendar Month and Day
require_once 'DateTime/Month.php';
require_once 'DateTime/Day.php';

// Set up initial variables
if (!isset($_GET['y'])) $_GET['y'] = date('Y');
if (!isset($_GET['m'])) $_GET['m'] = date('m');
if (!isset($_GET['d'])) $_GET['d'] = date('d');

// Instantiate the Month class
$month = new Month($_GET['y'], $_GET['m']);

// Get the details of the months as timestamps
$last = $month->lastMonth(true);
$next = $month->nextMonth(true);
$thisMonth = $month->thisMonth(true);

Next, we’ll build the top row of the table, allowing users to navigate between

months:

195

A Roman Calendar

File: 13.php (excerpt)

// Start building the calendar
$calendar = "<table class=\"cal\" width=\"420\">\n<tr>\n";
$calendar .= "<td colspan=\"2\"> " .
 "<a class=\"cal_nav\" href=\"" .
 $_SERVER['PHP_SELF'] .
 "?y=" . date('Y', $last) .
 "&m=" . date('m', $last) . "&d=1\">" .
 date('F', $last) . "</td>";
$calendar .= "<td class=\"cal_now\" colspan=\"3\" " .
 "align=\"center\">". date('F', $thisMonth) .
 " " . date('Y',$thisMonth) . "</td>";
$calendar .= "<td colspan=\"2\" align=\"right\">" .
 "<a class=\"cal_nav\" href=\"" .
 $_SERVER['PHP_SELF'] .
 "?y=" . date('Y', $next) .
 "&m=" . date('m', $next) . "&d=1\">" .
 date('F', $next) . "" .
 " </td></tr>";

We’ll also build an array of selected days and call the buildWeekDays method

on the Month object:

File: 13.php (excerpt)

// Array for selected days
$sDays = array(new Day($_GET['y'], $_GET['m'], $_GET['d']));

// Build the days of the month
$month->buildWeekDays($sDays);

Month is a special case when it comes to its build methods. The default build
method constructs a normal sequence of days for any given month.

buildWeekDays, on the other hand, constructs a sequence containing “empty”

days that are used as placeholders when building the calendar. The columns in

a typical monthly calendar, as you’re no doubt aware, are often aligned by day

of the week, the far left being, perhaps, Monday. Of course, not every month

begins on a Monday, hence the need for “empty” days to preserve the alignment.

Note the Month class comes with another method, buildWeeks, should you wish

to deal with Weeks as objects. To avoid a very lengthy discussion, I’ll leave you

to explore that on your own, but the end effect is similar to using the

buildWeekDays method, there being “empty” days in the Weeks produced.

Chapter 6: Dates and Times

196

Using the fetch iterator method again, we can loop through the days, dealing

with one at a time and building the body of the calendar as we go:

File: 13.php (excerpt)

// Define the days of the week for column headings
$daysOfWeek = array('Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday');

// Build the column headings
$calendar .= "<tr class=\"cal_top\">\n";
// Display the days of the week
foreach ($daysOfWeek as $dayOfWeek) {
 $calendar .= "<th class=\"cal_week\">" . $dayOfWeek . "</th>";
}
$calendar .= "\n</tr>\n";

$alt = '';

// Loop through the day entries
while ($day = $month->fetch()) {

 // For displaying alternate row styles
 $alt = $alt == "cal_row" ? "cal_row_alt" : "cal_row";

 // If it's the start of a week, start a new row
 if ($day->isFirst()) {
 $calendar .= "<tr class=\"" . $alt . "\">\n";
 }

 // Check to see if day is an "empty" day
 if (!$day->isEmpty()) {

 // If it's the current day, highlight it
 if (!$day->isSelected()) {
 $calendar .= "<td>";
 } else {
 $calendar .= "<td class=\"cal_current\">";
 }

 // Display the day inside a link
 $calendar .= "<a class=\"cal_entry\" href=\"" .
 $_SERVER['PHP_SELF'] . "?y" .
 $day->thisYear() .
 "&m=" . $day->thisMonth() .
 "&d=" . $day->thisDay() . "\">" .
 $day->thisDay() . "</td>";

197

A Roman Calendar

 // Display an empty cell for empty days
 } else {
 $calendar .= "<td class=\"cal_entry\"> </td>";
 }

 // If its the end of a week, close the row
 if ($day->isLast()) {
 $calendar .= "\n</tr>\n";
 }
}
$calendar .= "</table>\n";
?>

The Day class comes with the methods isFirst and isLast, which allow you to

identify Days that have been constructed by buildWeekDays and fall at the begin-

ning or end of a week, respectively.

The isEmpty method allows us to identify “empty” days, as discussed above.

Should we find one, all we want to display is an empty table cell. If the day isn’t
empty, we must check to see if it’s a “selected” day, for which we used the

isSelected method.

Now that the table’s built, we just need to drop it into a Web page with the

correct CSS definitions; this will display a nicely formatted table as shown in

Figure 6.3.

Figure 6.3. A Familiar Monthly Calendar

PHP Filofax
So far, I’ve only made use of the Year, Month and Day classes. That’s fine for

many situations, but what if we want to build an Intranet Website, for instance,

where people can view their daily schedules? Enter: the Hour class. In this next

Chapter 6: Dates and Times

198

solution, we’ll make a new version of the previous example, but this time, below

the table for the month, we’ll display another table for the day, containing hours.

We’ll add the following code below that used to generate the monthly calendar.

First, create a new Day object, using whatever the current values are from the

$_GET variables. We also need to initialize the $_GET variable for an hour (if it

hasn’t already been set), because we want the current hour, or an hour the user

has selected, to appear highlighted in the schedule.

File: 14.php (excerpt)

// Create a new day
$day = new Day($_GET['y'], $_GET['m'], $_GET['d']);

// Initialize the current hour
if (!isset($_GET['h'])) $_GET['h'] = date('H');

$sHours = array(new Hour($_GET['y'], $_GET['m'], $_GET['d'],
 $_GET['h']));

// Build the hour list for that day
$day->build($sHours);

$calendar .= "
\n";
$calendar .= "<table class=\"cal\" width=\"450\">\n";
$calendar .= "<caption>Your schedule for " .
 date('l', $day->thisDay(true)) .
 "</caption>\n";

Because this will be an office application, we limit the hours displayed to office

hours. You’ve effectively seen the rest of the methods here previously.

File: 14.php (excerpt)

$alt = '';

// Loop through the hours
while ($hour = $day->fetch()) {
 // Set a range for the hours; only between 8am and 6pm
 if ($hour->thisHour() < 8 || $hour->thisHour() > 18) {
 continue;
 }

 // For alternating row colors
 $alt = $alt == "cal_row" ? "cal_row_alt" : "cal_row";

 // If it's the current day, highlight it

199

PHP Filofax

 if (!$hour->isSelected()) {
 $calendar .= "<tr class=\"" . $alt . "\">\n";
 } else {
 $calendar .= "<tr class=\"cal_current\">\n";
 }

 $calendar .= "<td align=\"right\" >";

 // Display the hour inside a link
 $calendar .= "<a class=\"cal_entry\" href=\"" .
 $_SERVER['PHP_SELF'] . "?y" .
 $hour->thisYear() .
 "&m=" . $hour->thisMonth() .
 "&d=" . $hour->thisDay() .
 "&h=" . $hour->thisHour() . "\">" .
 date('g A', $hour->thisHour(true)) . "</td>";

 $calendar .= "<td align=\"right\" >" .
 "Timestamp is " . $hour->getTimeStamp() . "</td>";

 $calendar .= "</tr>\n";
}
$calendar .= "</table>\n";
?>

Just so there’s some information displayed against each entry, I’ve added the

timestamp value here. In practice, you could use this value to build an SQL query

that selects from a user’s diary all the entries for a particular day, then checks

which database results should be displayed by comparing the timestamp values

as each row of the table is built. This will require the performance of multiple

iterations over the result set4, but is preferable to performing a new query for

each hour in the schedule. The fetch method of the MySQLResult class from

Chapter 3 resets the query result set automatically each time it reaches the end,

allowing you to pass the values through multiple times. Here’s a simplified example

of how you could do it:

$sql = "SELECT * FROM diary
 WHERE
 date >= " . $day->thisday(true) . " AND
 date < " . ($day->thisDay(true) + 86400) . "
 ORDER BY date DESC";

4This can actually be avoided if you’re especially clever, and make each iteration process only its share

of the result set. It might be worth exploring this if you expect to have many entries per day.

Chapter 6: Dates and Times

200

$result = &$db->query($sql);

// Loop through the hours
while ($hour = $day->fetch()) {

 // Loop through the query result
 while ($row = $result->fetch()) {
 if ($row['date'] >= $hour->thisHour(true) &&
 $row['date'] < $hour->nextHour(true)) {
 // Display the entry here
 }
 }
}

Figure 6.4 demonstrates how the “filofax” should look.

Figure 6.4. Highly Organized with PHP

Note that although I’ve rendered the HTML for the calendar using purely pro-

cedural code, which I’ve done to make the use of the Calendar engine easier to

understand, in practice it would probably be easier to wrap the code up in a class

that constructs the HTML and makes displaying it easy—perhaps even taking

advantage of PEAR::HTML_Table, which you’ll see in Chapter 9. You may also

201

PHP Filofax

want to investigate the caching techniques in Volume II, Chapter 5. Rendering

the calendar output is an expensive operation in terms of PHP resources, so if

you can store the compiled HTML (assuming the calendar won’t change much),

you’ll significantly improve performance.

The important thing to note is the impact of separating the process of developing

the calendar data structure (as handled by Calendar and its subclasses) from the

work of building HTML; this makes it easy to reuse Calendar as a tool to build

other calendars that look and behave differently for the end user.

How do I deal with time zones?
Ever since Britannia ruled the waves, the world has been encumbered with the

problem that all time is centered on an area of London called Greenwich. Now

home to the National Maritime Museum, Greenwich is home to many a dimly

lit pub where you’ll find it’s a good idea not to mention you’re from out of town.

Using landlubber terminology, time zones operate east and west around the globe,

and measure how many hours before or after Greenwich the sun reaches its

highest point in the day. The fact that no one ever sees the sun in Greenwich

apparently never deterred early sailors, who used clocks set to Greenwich Mean

Time (GMT) to work out how far east or west they’d traveled round the globe.

These days, GMT is also referred to as coordinated universal time (UTC), Zulu

time, universal time, or simply world time.

Dealing with time zones is almost as problematic for today’s Web developer as

it was for the early explorers, and it requires some effort to make sure you get it

right. Maybe the country in which your site is hosted is in a different time zone

to the one in which you’re based. You may also need to allow visitors to set their

own time zone, so your site can adapt time-sensitive content accordingly.

Your host should provide you with a server that’s configured correctly and provides

you with a time value that you’ll be able to use through PHP’s date and time
functions. The server should also be accurately configured for the time zone in

which it resides. You can check these values with PHP’s date function, as shown

here:

<?php
 echo date('H:i:s T O');
?>

This will return something like:

Chapter 6: Dates and Times

202

08:54:36 EST -0500

What is my time zone?

To determine the value to set for major cities all over the world, visit

http://www.bsdi.com/xdate/.

But how can you change the environment so that the date and time functions

display values for the specific time zone you want them to reflect? On Linux

systems, this is easily achieved in a global manner, using PHP’s putenv function

to set the system’s TZ variable for the current script execution:

File: 15.php

<?php
echo 'Current time: ' . date('H:i:s T O') . '
';
putenv('TZ=Europe/London');
echo 'New time: ' . date('H:i:s T O');
?>

putenv and Internet Information Services (IIS)

Be aware that on some Windows servers (particularly on Microsoft IIS), the

putenv function affects not only the current script execution, but the entire

server process.

In the above example, the first time you invoke the script you will see the

time zone change, but thereafter you will see the same time zone displayed

by both echo statements. To return the server to your system’s default time

zone, you will have to either restart it or use putenv again to set the TZ
variable it to its original value.

On my Linux server, this displays the following:

Current time: 09:31:10 EST -0500
New time: 14:31:10 GMT +0000

By using the php.ini setting auto_prepend_file, you can apply the change to

every PHP script executed on your site, making sure all instances of date or time
use the correct time zone. If you cannot change php.ini, or you need to restrict

the change to a particular site or directory on your server, use a .htaccess file

with a command like this one:

php_value auto_prepend_file '/path/to/set_timezone.php'

203

How do I deal with time zones?

http://www.bsdi.com/xdate/
http://www.bsdi.com/xdate/

On Windows systems, no such luck; if you are not able to change the time zone

settings of your server yourself, you’ll need to resort to translating the time zone

using PHP, which means you won’t be able to call date and time directly.

How do I time a PHP script?
As you find yourself building bigger and more complicated applications with

PHP, it’s often a good idea to know what impact your code is having on overall

performance; the Internet is already slow, especially for those using dialup con-

nections, and making your visitors wait won’t encourage them to come back for

more. Discovering how long your scripts take to execute can be achieved easily

with PHP’s microtime function:

File: 16.php

<?php
function getMicroTime()
{
 list($usec, $sec) = explode(" ", microtime());
 return (float)$usec + (float)$sec;
}

$start = getMicroTime();

for ($i = 0; $i < 5; $i++) {
 sleep(1);
}

echo 'Script took: ' . (getMicroTime() - $start);
?>

The above code tells me “Script took: 4.9990350008011”, which is a time in

seconds. microtime returns a string value of the format decimal_part in-
teger_part. Exploding this result and adding them together gets the floating

point time in seconds. This approach to timing scripts simply involves noting

the time before the script begins, and again when all execution has finished. The

microtime function is used to provide a time that’s precise enough to be useful.

If you want to build an overall picture of what’s going on within your site, you

could use the php.ini settings auto_prepend_file and auto_append_file to

time all scripts, or with a .htaccess file like so:

php_value auto_prepend_file '/path/to/script_start.php'
php_value auto_append_file '/path/to/script_end.php'

Chapter 6: Dates and Times

204

Combined with the logging mechanisms we’ll discuss in Chapter 10, this would

allow you to build up statistics of script performance across your site.

How do I schedule batch jobs with PHP?
Being able to use cron jobs5 is an ideal way to execute scripts on a regular basis

irrespective of what’s happening on your site. However, if you don’t have access

to cron, or you’re running PHP on a system that lacks an effective “batch execu-

tion” tool, another alternative exists in the form of pseudo-cron[6]. If ever you’re

looking for an example of the ingenuity of PHP developers, look no further than

this!

The way pseudo-cron works is by using the normal hits on your site to execute

PHP scripts in the background. Particularly cunning is the way it uses a script

that behaves as an image to execute other PHP scripts without impacting the

performance of the page a visitor is viewing. All you need to do is use an HTML

img tag to insert the image script into a page that’s viewed regularly.

Installing Pseudo-cron
The version of pseudo-cron I used was 1.22. If your php.ini setting

short_open_tag is off, make sure you edit the files that come with pseudo-cron

to provide a full <?php opening tag.

Step one is to place the contents of the ZIP file somewhere on your site—ideally

in a directory outside your Web directory, to prevent any potential security risks.

Next, edit the following sections of the file pseudo-cron.inc.php to your liking:

$cronTab = '/home/username/pseudocron/cronjobs/crontab.txt';

$writeDir = '/home/username/pseudocron/cronjobs/';

$useLog = 1;

5Cron is a program that runs on most Unix-based systems. It allows tasks—often called “cron jobs”—to

be scheduled for execution at regular intervals.

[6] http://www.bitfolge.de/?l=en&s=pseudocron

205

How do I schedule batch jobs with PHP?

http://www.bitfolge.de/?l=en&s=pseudocron
http://pseudo-cron.inc.php
http://www.bitfolge.de/?l=en&s=pseudocron

The $cronTab variable points to the file that contains your crontab schedule6.

The format is very similar to traditional cron (see the section called “Further

Reading”). The $writeDir variable specifies a location that will be used to write

the log files of cron executions. In the distribution, this is a relative directory

location; if you’ve placed the code in a secure directory, you will need to specify

the full path. You will also need to provide public read and write permissions to

this directory so that the Web server user has permission to write to it; this comes

with the usual security warning to users of a shared Web server: other users will

also have access to this directory. That, of course, assumes you wish to write log

files; you can switch them off by setting $useLog to 0.

Next, edit the following line in imagecron.php so that it includes the correct file:

include("/home/username/pseudocron/pseudo-cron.inc.php");

The file crontab.txt is used to specify PHP scripts that will be executed by

pseudo-cron. For example:

#mi h d m dow job

0 1 * * * /home/user/pseudocron/cronjobs/dbbackup.php
*/30 9-17 * * 1-5 /home/user/pseudocron/cronjobs/rssupdate.php
0 2 * * * /home/user/pseudocron/cronjobs/webstats.php
0 9 1 * * /home/user/pseudocron/cronjobs/report.php

The cron schedule format takes a little getting used to, but is well described on

the Web (see the section called “Further Reading” for a recommendation).

In this particular case the first script, dbbackup.php, representing a database

backup, is run every day at 01:00. The rssupdate.php script, which might be

updating news feeds, is run every thirty minutes between 9:00 and 17:00 from

Monday to Friday (note you can also use Mon-Fri instead of 1-5). On the second

hour of every day, webstats.php is run, a job which processes visitor data captured

from the last day. Finally, at 09:00 on the first day of every month, the re-
port.php script is run, which mails a report of various critical information about

the site to it its administrator.

The files specified in crontab.txt are included by pseudo-cron.inc.php. Be

aware that it’s up to you to make sure the scripts don’t contain any critical errors

(this may result in pseudo-cron.inc.php failing to execute other scripts as well).

6To set up tasks for execution by cron on a Unix system, a user has traditionally had to use a separate

program named crontab. The name has grown to be used as the name for the group of cron tasks

that have been configured on a system.

Chapter 6: Dates and Times

206

http://include("/home/username/pseudocron/pseudo-cron.inc.php");
http://pseudo-cron.inc.php

Also, if a script will require more than the default thirty seconds to complete ex-

ecution, you must also handle this, using set_time_limit or otherwise to ensure

each job has enough time to complete.

With that set up, all it takes to use pseudo-cron is to display some HTML with

a “fake image” that points to imagecron.php. For example:

File: 17.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Pseudo-cron Example </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>This is an example of pseudo-cron.
</p>
</body>
</html>

Don’t forget that the files that pseudo-cron actually executes should not be placed

in a location where visitors can access them directly, otherwise you may have

cron jobs occurring when you weren’t expecting them!

Further Reading
� ADOdb Date and Time Library:

http://php.weblogs.com/adodb_date_time_library

This article focuses on extending the life of the Unix timestamp.

� Date/Time Processing with PHP:

http://www.devshed.com/Server_Side/PHP/DateTime/

A great article providing an in-depth run down of PHP’s date and time func-

tions.

� Practical Date/Time examples with PHP and MySQL:

http://www.devarticles.com/art/1/331/

207

Further Reading

http://php.weblogs.com/adodb_date_time_library
http://www.devshed.com/Server_Side/PHP/DateTime/
http://www.devarticles.com/art/1/331/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"
http://php.weblogs.com/adodb_date_time_library
http://www.devshed.com/Server_Side/PHP/DateTime/
http://www.devarticles.com/art/1/331/

� Red Hat Linux Customization Guide Chapter 28: Automated Tasks:
https://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-autotasks.html

Red Hat’s basic introduction to cron. Also check out the man page for

crontab[11] for a complete description of the schedule file format expected

by pseudo-cron.

[11] http://linux.ctyme.com/man/man0447.htm

Chapter 6: Dates and Times

208

https://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-autotasks.html
http://linux.ctyme.com/man/man0447.htm
http://linux.ctyme.com/man/man0447.htm
http://https://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-autotasks.html
http://linux.ctyme.com/man/man0447.htm

Images7
Building a Website is not just about displaying (X)HTML formatted text. The

umbrella term “multimedia” describes the delivery of many forms of content to

your desktop, including sound, text, and images—even animation and movies.

Where images are concerned, PHP has great capabilities. You can do a whole lot

more than simply add static images to your HTML.

How about automatically adding a watermark to identify your files, or uploading

an image and having it displayed as a thumbnail of the correct size for your page?

Better yet, what about a graph rendered on the fly from figures stored in your

database? We’ll cover all this and more in the following pages.

In other chapters of The PHP Anthology you’ll find additional examples, such as

storing images in MySQL and displaying them (Chapter 9), rendering images

with text (Volume II, Chapter 1), and using an image as a way to run a PHP

script “in the background” (Volume II, Chapter 4). This chapter concentrates

purely on some of the common problems you’re likely to want to solve when

displaying images with the help of PHP.

To use the examples here, you will need the GD image library for PHP. The

PHP functions that use the GD library are documented in the PHP manual[1].

Complete installation instructions are also provided there.

[1] http://www.php.net/image

http://www.php.net/image
http://www.php.net/image

Thanks to patent issues with GIF images[2], support for this format in the GD

library ceased in version 1.6. It is possible to find older versions of the GD library

online but using it may put you in the line of fire from Unisys or IBM. What

makes life even more entertaining is that the GD library only began to offer

support for the PNG format (a free alternative to GIF supported by newer

browsers) in version 1.6. In the examples here, I’ll assume you have GD version

2.0 (which is bundled with the latest versions of PHP) with Freetype, JPEG, and

PNG support built in.

The good news is the patent on the GIF format expires in 2004, so hopefully

we’ll see GIF support return to the GD library soon. Until then, it’s worth regard-

ing the PNG format as the preferred alternative. PNG is capable of supporting

full 32-bit images, compared with GIF's 8 bits. In addition, PNG uses a more ef-

ficient compression algorithm, reducing the amount of bandwidth used when

comparing an 8-bit PNG with an 8-bit GIF.

MIME Types
MIME stands for Multipurpose Internet Mail Extensions, a standard originally

conceived to help identify different email content types. MIME has since become

the de facto standard for describing content types on the Internet. When you deal

with images in PHP, it’s important to have a grasp of the different content types,

or you may end up struggling for hours with a simple problem.

In general, before you send requested content to the browser, your Web server

must announce the content type using a special Content-Type header, so the

browser knows what to do with the content. For example, here are the headers

that a server might send to announce an image in Portable Network Graphics

(PNG) format:

HTTP/1.1 200 OK
Date: Fri, 28 Mar 2003 21:42:44 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
Last-Modified: Wed, 26 Feb 2003 01:27:19 GMT
Content-Length: 1164
Connection: close
Content-Type: image/png

[2] http://www.gnu.org/philosophy/gif.html

Chapter 7: Images

210

http://www.gnu.org/philosophy/gif.html
http://Apache/1.3.27
http://PHP/4.3.1
http://www.gnu.org/philosophy/gif.html

The Content-Type header is used to specify the MIME type of the content on

the current URL. In this case, the MIME type is image/png, which signifies a

PNG image.

Where this becomes important in PHP is when we’re generating an image from

a PHP script. By default, PHP scripts send a MIME type of text/html (an HTML

document). So, in instances when your script is sending an image instead of

HTML, you’ll need to specify the MIME type using PHP’s header function. For

example:

<?php
header('Content-Type: image/png');
?>

The MIME types you’ll need for images are outlined in Table 7.1.

Table 7.1. MIME Types for Images

MIME TypeImage Format

image/jpeg1JPEG File Interchange Format

(.jpeg/.jpg)

image/pngPortable Network Graphics (.png)

image/gifGraphics Interchange Format (.gif)

image/bmpWindows Bitmap (.bmp)

image/xml+svgScalable Vector Graphics (.svg)

1Internet Explorer understands the image/jpeg type, but when uploading a JPEG image it sends

a type of image/pjpeg.

How do I create thumbnail images?
If your site will allow images to be uploaded, perhaps for display with submitted

content, how can you make sure the images displayed will be of a suitable size?

If a user uploads a particularly large image, it might destroy the layout of the

page when it’s displayed. One solution is to create thumbnail images, which

guarantee that the images displayed never exceed a certain height and width.

Building a basic thumbnail is a five stage process:

1. Load the source image into a PHP variable.

211

How do I create thumbnail images?

2. Determine the height and width of the original image.

3. Create a blank thumbnail image of the correct size.

4. Copy the original image to the blank thumbnail.

5. Display the thumbnail using the correct content type.

Let’s create a thumbnail from a large version of the SitePoint logo in JPEG format:

File: 1.php

<?php
// Specify source image
$sourceImage = 'sample_images/sitepoint_logo.jpg';

// Specify thumbnail height and width
$thumbWidth = 200;
$thumbHeight = 90;

// Load the source image
$original = imagecreatefromjpeg($sourceImage);

// Get the size of the original
$dims = getimagesize($sourceImage);

// Create a blank thumbnail (note slightly reduced height)
$thumb = imagecreatetruecolor($thumbWidth, $thumbHeight);

// Copy a resized version of the original onto the thumbnail
imagecopyresampled($thumb, $original, 0, 0, 0, 0,
 $thumbWidth, $thumbHeight, $dims[0], $dims[1]);

// Send the content header
header("Content-type: image/jpeg");

// Display the image
imagejpeg($thumb);
?>

In the above example, we used imagecreatefromjpeg to load an image from the

file system into a PHP variable. The getimagesize function tells us the width

and height of the image (more on getimagesize in a moment).

The imagecreatetruecolor function is used to create a blank image (in memory,

as a PHP variable) into which the thumbnail image will be placed. Note that as

Chapter 7: Images

212

the function name suggests, this creates a true color (twenty-four bit) image, as

opposed to the palette-based (eight bit) image you’ll get with imagecreate (see

the section called “Further Reading” for suggested sources of information on

images). The imagecreatefromjpeg function creates a true color image from the

source file, so we need the thumbnail to be true color as well.

The imagecopyresampled function is the point at which the thumbnail is actually

created from the original. It places a resized version of the image into the blank

thumbnail image, resampling along the way to ensure that the image is resized

smoothly. An older version of this function, imagecopyresized, changes the size

of the image more crudely. Refer to the PHP manual for a complete description

of this function’s arguments if you need to.

Finally, after sending the correct content type header, we use imagejpeg to output

the completed thumbnail. Figure 7.1 shows the end result. While there is certainly

room for improvement, this is a start.

Figure 7.1. Our First Thumbnail

Let’s go back to the getimagesize function—it’s worth noting the information

this provides:

File: 2.php

<?php
// Specify source image
$sourceImage = 'sample_images/sitepoint_logo.jpg';

// Get the size of the original
$dims = getimagesize($sourceImage);

echo '<pre>';
print_r($dims);
echo '</pre>';
?>

This displays:

213

How do I create thumbnail images?

Array
(
 [0] => 395
 [1] => 123
 [2] => 2
 [3] => width="395" height="123"
 [bits] => 8
 [channels] => 3
 [mime] => image/jpeg
)

The first element of the array is the width of the image, and the second is its

height. The third is a number that identifies the type of image, for which a 1 is

a GIF, 2 is a JPEG and 3 is a PNG (more are described in the PHP Manual[3]).

Note that the mime element of the array only became available with PHP 4.3.0.

The Thumbnail Class
So far, so good… but the thumbnail we’ve created stretches the original image

to the full size of the blank thumbnail. This causes the image to warp, unless it

happens to have the same width-to-height ratio as the thumbnail. Instead, we

want a proportionally scaled version of the original that fits into the blank

thumbnail as neatly as possible. In this section, we’ll write a class that does exactly

that.

The class will also make it possible to deal with images that are smaller than the

thumbnail size, allowing them to be left at their original size if required. The

class will be designed to handle PNG and JPEG files only, but can easily be

modified to handle others.

As usual, I’ll concentrate on building the API of the class—the parts you might

use from your own code—then show you how that class can be used. The complete

code is provided in the code archive.

As with any class, we start with the constructor:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * Thumbnail constructor
 * @param int max width of thumbnail
 * @param int max height of thumbnail
 * @param boolean (optional) if true image scales

[3] http://www.php.net/getimagesize

Chapter 7: Images

214

http://www.php.net/getimagesize
http://www.php.net/getimagesize

 * @param boolean (optional) if true inflate small images
 * @access public
 */
 function Thumbnail($maxWidth, $maxHeight, $scale = true,
 $inflate = true)
 {
 $this->maxWidth = $maxWidth;
 $this->maxHeight = $maxHeight;
 $this->scale = $scale;
 $this->inflate = $inflate;

The constructor for the Thumbnail class takes four arguments. The first two are

the maximum width and height of the thumbnail in pixels, respectively. The third

argument tells the class whether it should scale the image to the thumbnail pro-

portionally, or just stretch it (as with the earlier example). The fourth argument

tells the class what to do with images that are too small, that is, whether to blow

them up to fill the thumbnail or not.

With those arguments safely stored in instance variables, here’s the rest of the

constructor:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 // Consider modifying these to handle other image types
 $this->types = array('image/jpeg', 'image/png');
 $this->imgLoaders = array(
 'image/jpeg' => 'imagecreatefromjpeg',
 'image/png' => 'imagecreatefrompng'
);
 $this->imgCreators = array(
 'image/jpeg' => 'imagejpeg',
 'image/png' => 'imagepng'
);
 }

$this->types lists the MIME types that this class can handle.

$this->imgLoaders lists the functions used to load images of those MIME types,

while $this->imgCreators lists the functions for creating new images of those

types.

The Thumbnail class provides two methods for loading the image you want to

convert. The first, loadFile, allows you to specify a local file to load:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * Loads an image from a file

215

The Thumbnail Class

 * @param string filename (with path) of image
 * @return boolean
 * @access public
 */
 function loadFile($image)
 {
 // Code omitted
 }

The second, loadData, allows you to pass binary image data stored in a PHP

variable, so you can create thumbnail images from files stored, for example, in a

MySQL table:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * Loads an image from a string (e.g. database)
 * @param string the image data
 * @param mime mime type of the image
 * @return boolean
 * @access public
 */
 function loadData($image, $mime)
 {
 // Code omitted
 }

In addition to the image data, you also need to supply the MIME type as the

second argument. Normally, when images are stored in a database, their MIME

type is stored with them, as we saw in Chapter 9.

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * If a filename is provided, creates the thumbnail using that
 * name. If not, the image is output to the browser
 * @param string (optional) filename to create image with
 * @return boolean
 * @access public
 */
 function buildThumb($file = null)
 {
 $creator = $this->imgCreators[$this->sourceMime];
 if (isset($file)) {
 return $creator($this->thumb, $file);
 } else {
 return $creator($this->thumb);

Chapter 7: Images

216

 }
 }

The buildThumb method is used to render the finished thumbnail. If you pass

this method a file name, the thumbnail will be stored as a file using the name

you specify. Otherwise, the image is output directly to the browser, so you will

need to make sure you’ve sent the correct HTTP header first. Notice that here

we’re using the image function names we stored in the constructor.

The final public methods are used to get information about the thumbnail. The

getMime method returns the MIME type, which can be used to generate a Con-
tent-Type header for the thumbnail:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * Returns the mime type for the thumbnail
 * @return string
 * @access public
 */
 function getMime()
 {
 return $this->sourceMime;
 }

The getThumbWidth and getThumbHeight methods are used to return the width

and height of the thumbnail in pixels, which you could then use to create an

HTML img tag, for example:

File: Images/Thumbnail.php (in SPLIB) (excerpt)

 /**
 * Returns the width of the thumbnail
 * @return int
 * @access public
 */
 function getThumbWidth()
 {
 return $this->thumbWidth;
 }

 /**
 * Returns the height of the thumbnail
 * @return int
 * @access public
 */
 function getThumbHeight()

217

The Thumbnail Class

 {
 return $this->thumbHeight;
 }

That’s it! Let’s take our shiny new class for a spin:

File: 3.php

<?php
// Include the ThumbNail class
require_once 'Images/Thumbnail.php';

// Instantiate the thumbnail
$tn = new Thumbnail(200, 200);

// Load the image from a file
$tn->loadFile('sample_images/sitepoint_logo.jpg');

// Send the HTTP Content-Type header
header('Content-Type: ' . $tn->getMime());

// Display the thumbnail
$tn->buildThumb();
?>

The above example shows the Thumbnail class being passed a filename to create

a thumbnail. We use the PHP header function together with the getMime
method to send the correct HTTP header; then we simply call the buildThumb
method to display the image. The result is shown in Figure 7.2.

Figure 7.2. A Proportionally Scaled Thumbnail

Here’s another example to show off the loadData method and illustrate how files

can be stored rather than directly output:

File: 4.php

<?php
// Include the ThumbNail class
require_once 'Images/Thumbnail.php';

// Instantiate the thumbnail

Chapter 7: Images

218

$tn = new ThumbNail(200, 200);

// Load an image into a string (this could be from a database)
$image = file_get_contents('sample_images/sitepoint_logo.jpg');

// Load the image data
$tn->loadData($image, 'image/jpeg');

// Build the thumbnail and store as a file
$tn->buildThumb('sample_images/thumb_sitepoint_logo.jpg');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Thumbnail Example </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>

<body>
<h1>Before...</h1>

<h1>After...</h1>
<img src="sample_images/thumb_sitepoint_logo.jpg"
 width="<?php echo $tn->getThumbWidth(); ?>"
 height="<?php echo $tn->getThumbHeight(); ?>" />
</body>
</html>

Notice that as we generate the image tag for the thumbnail, we use the

getThumbWidth and getThumbHeight methods to complete correctly the width
and height attributes. Figure 7.3 shows the resulting page.

219

The Thumbnail Class

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

Figure 7.3. Before and After

Finally, here’s how you might build a simple thumbnail display from a directory

containing PNG and JPEG files (see Chapter 4 for details on the built-in dir
class used in this example). This first section reads through the directory; it looks

for images that don’t have thumbnails and creates them. This saves us the over-

head of having to create the thumbnails each time:

File: 5.php (excerpt)

<?php
// Include the Thumbnail class
require_once 'Images/Thumbnail.php';

// Open the sample_images subdirectory
$dir = dir('sample_images');

// Read through the files looking for images to convert
while ($image = $dir->read()) {
 // Get the file extension
 $ext = explode('.', $image);
 $size = count($ext);
 // Check that it's a valid file
 if (($ext[$size-1] == 'png' || $ext[$size-1] == 'jpg') &&
 preg_match('/^thumb_/', $image) == 0 &&
 $image != '.' && $image != '..') {

Chapter 7: Images

220

 // Check no thumbnail exists for this image
 if (file_exists('sample_images/thumb_' . $image)) {
 continue;
 } else {
 // Instantiate the thumbnail without scaling small images
 $tn = new Thumbnail(200, 200, TRUE, FALSE);

 // Create the thumbnail
 $tn->loadFile('sample_images/' . $image);
 $tn->buildThumb('sample_images/thumb_' . $image);
 }
 }
}

The script then reads through the directory looking for thumbnails (files beginning

with thumb_) and adds the names of those it finds to a table that’s displayed in

the body of the page:

File: 5.php (excerpt)

// Rewind the directory listing
$dir->rewind();

// Start building an HTML table
$table = "<table border=\"1\" cellpadding=\"5\">\n";

// Read through the directory and add thumbnails to the table
while ($image = $dir->read()) {
 if (preg_match('/^thumb_/', $image) == 1 &&
 $image != '.' && $image != '..') {
 $table .= "<tr>\n<td align=\"center\">";
 $table .= "";
 $table .= "</td>\n</tr>\n";
 }
}

$table .= "</table>\n";

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Thumbnail Example </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />

221

The Thumbnail Class

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

</head>

<body>
<h1>Thumbnails...</h1>
<?php echo $table; ?>
</body>
</html>

A sample of this script’s output appears in Figure 7.4. Note that because we in-

stantiate the Thumbnail class with the inflate (fourth) argument set to FALSE,

the small logos are left at their original size.

Figure 7.4. Thumb List

Chapter 7: Images

222

How do I add a watermark to an image?
Another common problem you may have to solve is how to watermark an image,

that is, how to place some identifying image or text to show that you own the

copyright. With the GD library and PHP, it’s a snap!

If you have a logo or some other identifiable graphic with a transparent back-

ground, you can easily place this over another image:

File: 6.php

<?php
// Load the original image
$image = imagecreatefrompng('sample_images/mysql_logo.png');

// Get image width
$iWidth = imagesx($image);

// Allow transparent images...
imagealphablending($image, true);

// Get the watermark image
$watermark = imagecreatefrompng(
 'sample_images/sitepoint_watermark.png');

// Get the height and width
$wmWidth = imagesx($watermark);
$wmHeight = imagesy($watermark);

// Find the far right position
$xPos = $iWidth - $wmWidth;

// Copy the watermark to the top right of original image
imagecopy($image, $watermark, $xPos, 0, 0, 0, $wmWidth,
 $wmHeight);

// Send the HTTP content header
header('Content-Type: image/png');

// Display the final image
imagejpeg($image);
?>

The process is simply a matter of loading the original image and switching on

alpha blending (drawing transparency), so that images with transparent back-

223

How do I add a watermark to an image?

grounds can be placed upon it. Load the “watermark” image, then, once its height

and width have been obtained, use imagecopy to place the watermark on the

original.

The result in this case, as shown in Figure 7.5, sees a mini SitePoint logo appear

in the top right of the MySQL logo:

Figure 7.5. Dolphin Branding

Displaying text on top of an image is even easier. For example:

File: 7.php

<?php
// Load the original image
$image = imagecreatefrompng('sample_images/mysql_logo.png');

// Get a color and allocate to the image pallet
$color = imagecolorallocate($image, 153, 153, 153);

// Add the text to the image
imagestring($image, 3, 0, 0, 'Skippy 2003', $color);

// Send the HTTP content header
header('Content-Type: image/png');

// Display the final image
imagejpeg($image);
?>

The imagecolorallocate function allows you to create a new color to use for

drawing on the image by specifying the red, green, and blue components. The

function returns a number, which identifies that color in the image.

Once you have the color in hand, you can use the imagestring function to place

the text over the image. The second argument of the function is a font number,

where numbers 1 to 5 refer to built-in fonts. You can use imagefontload to make

your own fonts available. The third and fourth arguments represent the horizontal

Chapter 7: Images

224

and vertical coordinates where the text should be drawn on the image. The rest

of the arguments are self-explanatory.

The output of the script is shown in Figure 7.6.

Figure 7.6. Shouldn’t that be Flipper?

How do I display charts and graphs with
PHP?

Displaying data in graphical form is a powerful way to communicate with your

site’s visitors, and help yourself understand exactly how your site is being used.

The graphs could show anything from your monthly site traffic statistics (as seen

in Volume II, Chapter 4), to reports of sales made on your site.

A number of projects extend PHP’s basic capabilities to render images, allowing

data to be displayed as some form of graph or chart. First and foremost is the

excellent JpGraph library[4], a project written in PHP that makes full use of the

GD library and PHP’s image functions. There’s a lot you can do with JpGraph,

and to provide a detailed examination is beyond the scope of this book. At over

1MB in size, the documentation is excellent, and offers many useful examples.

I’ve also recommended some further reading at the end of this chapter. Here,

however, I’ll be showing you how to display bar and pie charts from the same

simple set of data.

Be aware that JpGraph is licensed free for noncommercial use only (make sure

you read the licensing information on the site). The version used here is 1.11.

The code here also assumes you’ve added the jpgraph/src/ directory to your

PHP include path, to allow the JpGraph class files to be loaded.

[4] http://www.aditus.nu/jpgraph/index.php

225

How do I display charts and graphs with PHP?

http://www.aditus.nu/jpgraph/index.php
http://www.aditus.nu/jpgraph/index.php

JpGraph and PHP Notices

Depending on which version of JpGraph you’re using, you may run into

trouble if you have PHP’s error notices switched on in php.ini. The gener-

ated error messages can cause the graph image to fail to display. The examples

in this chapter explicitly disable notices in order to avoid this problem. See

Chapter 10 for more information on how to control error reporting.

Bar Graph
First, let’s see how you can generate a bar graph with JpGraph.

Assuming it’s available somewhere in your include path, in this case we’ll include

the core “engine” as well as the bar graph class. Next, we set up two arrays of

sample data, which will be used for the X and Y axes of the graph. In a practical

application, these might be results you’ve fetched from MySQL.

File: 8.php (excerpt)

<?php
// JpGraph does not work with notices enabled
error_reporting(E_ALL ^ E_NOTICE);

// Include the necessary JpGraph libraries
require_once 'jpgraph.php'; // Core engine
require_once 'jpgraph_bar.php'; // Bar graph

// Sample sales data: could be a database query
$xdata = array('Mousemats', 'Pens', 'T-Shirts', 'Mugs'); // X Axis
$ydata = array(35, 43, 15, 10); // Y Axis

The JpGraph API is, in most cases, self-explanatory, and comes with complete

(and useful) API documentation. The first step in generating a graph from our

data arrays is to set up the “foundations” of the graph itself, such as size and

background color:

File: 8.php (excerpt)

// Set up the graph
$graph = new Graph(400, 200, 'auto'); // Width, height
$graph->img->SetMargin(40, 20, 20, 40); // Margin widths
$graph->SetScale('textlin'); // X text, Y linear scale
$graph->SetColor('green'); // Plot background green
$graph->SetMarginColor('navy'); // Margin color navy
$graph->SetShadow(); // Use a drop shadow
$graph->SetFrame(true, 'blue'); // Blue frame

Chapter 7: Images

226

Adding a title to the graph is not a problem. JpGraph has most of the useful fonts

you’re likely to need, such as Verdana and Courier, built in.

File: 8.php (excerpt)

// Set up the graph title
$graph->title->Set('Sales Figures for March'); // Title text
$graph->title->SetColor('white'); // Title color
$graph->title->SetFont(FF_VERDANA, FS_BOLD, 14); // Title font

Now, let’s set up the X axis. Here, the labels are assigned using the SetTickLabels
method, ticks being the markers for each interval on the X axis.

File: 8.php (excerpt)

// Set up the X Axis
$graph->xaxis->title->Set('Product Type'); // Text
$graph->xaxis->title->SetColor('yellow'); // Color
$graph->xaxis->title->SetFont(FF_VERDANA, FS_BOLD, 10); // Font
$graph->xaxis->SetTickLabels($xdata); // Labels
$graph->xaxis->SetColor('silver', 'orange'); // Colors
$graph->xaxis->SetFont(FF_VERDANA, FS_NORMAL, 8); // Font
$graph->xaxis->HideTicks(); // Ticks

The Y axis will take numeric values that are generated automatically once the Y

data is added.

File: 8.php (excerpt)

// Set up the Y Axis
$graph->yaxis->title->Set('Units Sold'); // Text
$graph->yaxis->title->SetColor('yellow'); // Color
$graph->yaxis->title->SetFont(FF_VERDANA, FS_BOLD, 10); // Font
$graph->yaxis->SetColor('silver', 'orange'); // Colors
$graph->yaxis->SetFont(FF_VERDANA, FS_NORMAL, 8); // Font
$graph->yaxis->HideTicks(); // Ticks

The following code is what actually draws the bars on the chart:

File: 8.php (excerpt)

// Create the Bar graph plot
$bplot = new BarPlot($ydata); // Y data
$bplot->SetWidth(0.75); // Width of bars
$scol = array(255, 51, 204); // Gradient start
$ecol = array(204, 0, 102); // Gradient end
$bplot->SetFillGradient($scol, $ecol, GRAD_VER); // Add gradient

227

Bar Graph

All that remains is to add the bar chart plot to the graph and send it to the

browser:

File: 8.php (excerpt)

// Finishing
$graph->Add($bplot); // Add bar plot to graph
$graph->Stroke(); // Send to browser
?>

Figure 7.7 shows the outcome. Not bad for just seventy-one lines of PHP!

Figure 7.7. Massive Demand for Pens

Pie Chart
Another type of graph that can be built easily with JpGraph is the pie chart. Let’s

take the sample data we used in the last example, and built a pie chart.

At the start of the script, we must include the pie chart and 3D pie chart classes:

File: 9.php (excerpt)

<?php
// JpGraph does not work with notices enabled
error_reporting(E_ALL ^ E_NOTICE);

// Include the necessary JpGraph libraries
require_once 'jpgraph.php'; // Core engine
require_once 'jpgraph_pie.php'; // Pie chart
require_once 'jpgraph_pie3d.php'; // 3D Pie chart

// Sample sales data: could be a database query

Chapter 7: Images

228

$xdata = array('Mousemats', 'Pens', 'T-Shirts', 'Mugs'); // X Axis
$ydata = array(35, 43, 15, 10); // Y Axis

This time, rather than using the Graph class, we use the PieGraph class:

File: 9.php (excerpt)

// Set up the graph
$graph = new PieGraph(400, 200, 'auto'); // Width, height
$graph->SetMarginColor('yellow'); // Margin color yellow
$graph->SetShadow(); // Use a drop shadow
$graph->SetFrame(true, 'red'); // Red frame

The title is set up as before:

File: 9.php (excerpt)

// Set up the graph title
$graph->title->Set('March Sales'); // Title text
$graph->title->SetColor('navy'); // Title color
$graph->title->SetFont(FF_VERDANA, FS_BOLD, 14); // Title font

We also need a legend to identify what each segment of the pie represents:

File: 9.php (excerpt)

// Set up the pie segment legend
$graph->legend->SetColor('navy'); // Legend text color
$graph->legend->SetFillColor('orange'); // Legend background color
$graph->legend->Pos(0.05, 0.5); // Legend position

Now, we create the 3D pie chart, instantiating it with the Y data and using the

X data for the legends:

File: 9.php (excerpt)

// Set up 3D pie chart
$pie = new PiePlot3d($ydata); // Instantiate 3D pie with Y data
$pie->SetLegends($xdata); // Add X data to legends
$pie->SetTheme('water'); // Set color theme
$pie->SetCenter(0.39); // Center relative to X axis
$pie->SetSize(100); // Size of pie radius in pixels
$pie->SetAngle(30); // Set tilt angle of pie
$pie->ExplodeSlice(0); // Pop out a slice
$pie->ExplodeSlice(1); // Pop out another slice

Next to each segment on the chart we’ll display a label to identify the percentage

of the whole that segment represents:

229

Pie Chart

File: 9.php (excerpt)

// Set up values against each segment
$pie->value->SetFont(FF_VERDANA, FS_NORMAL, 10); // The font
$pie->value->SetColor('navy'); // Font color

Finally, we add the 3D pie to the graph and send it to the browser:

File: 9.php (excerpt)

// Finishing
$graph->Add($pie); // Add bar plot to graph
$graph->Stroke(); // Send to browser
?>

The result is shown in Figure 7.8.

Figure 7.8. Humble Pie

JpGraph represents the premiere graphing solution for PHP, as it offers much

more functionality than the examples we’ve seen here. Of particular note is the

fact that it allows you to store the rendered graphs as PNG files, so you can render

once and reuse the finished image later.

How do I prevent “hot linking” of
images?

One problem you may encounter, particularly if your site hosts unique images,

is other sites that “hot link” to your images from their pages, making it seem like

your cool images are hosted or owned by them. Aside from the potential copyright

Chapter 7: Images

230

issues here, outside sites “hot linking” your images may also eat up your band-

width.

Different solutions have been devised, such as using Apache’s mod_rewrite to

check the referral information the browser provides (which cannot always be relied

upon) to make sure the source is a local Web page. For example:

SetEnvIfNoCase Referer "^http://www\.sitepoint\.com/" locally_link
ed=1
SetEnvIfNoCase Referer "^http://sitepoint\.com/" locally_linked=1
SetEnvIfNoCase Referer "^$" locally_linked=1
<FilesMatch "\.(gif|png|jpe?g)$">
 Order Allow,Deny
 Allow from env=locally_linked
</FilesMatch>

Another option is to use sessions to establish that the person viewing the image

is a visitor to your site. The trick is to register a session variable that a visitor

must have to be able to view the image, then use a second script to render the

image. For example:

File: 10.php

<?php
// Start a session
session_start();

// Register a variable in the session
$_SESSION['viewImages'] = TRUE;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Preventing Hotlinking </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>Here is the image:</p>

</body>
</html>

231

How do I prevent “hot linking” of images?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

Notice that the above code registers a session variable called viewImages, then

uses the img tag to point at a PHP script that will fetch the image. Here’s the

code for that script:

File: 11.php

<?php
// Start a session
session_start();

// Check to see if $viewImages is registered
if (isset($_SESSION['viewImages']) &&
 $_SESSION['viewImages'] == TRUE) {

 // An array of available images
 $images = array(
 'sitepoint_logo.jpg',
 'php-big.png'
);

 // If $_GET['img'] is set and in available...
 if (isset($_GET['img']) && in_array($_GET['img'], $images)) {

 // Get the image information
 $dims = getimagesize('sample_images/' . $_GET['img']);

 // Send the correct HTTP headers
 header('content-disposition: inline; filename=' .
 $_GET['img']);
 header('content-type: ' . $dims['mime']); # PHP 4.3.x +
 header('content-length: ' .
 filesize('sample_images/' . $_GET['img']));

 // Display the image
 readfile('sample_images/' . $_GET['img']);

 } else {
 die('Invalid or no image specified');
 }

} else {
 die('This image is protected from hotlinking');
}
?>

The script first checks to see that the viewImage session variable has been set to

TRUE. If it has, and the image name provided via $_GET['img'] is registered in

Chapter 7: Images

232

http://4.3.x

the array $images2, the script uses the getimagesize function you saw earlier

to get the correct MIME type for the image, send the headers, and display it.

This should stop all but the most determined “hot linkers.”

Note that in Volume II, Chapter 1, I develop a Session class used to wrap all

calls to PHP’s session API. The above examples, modified to use the Session
class look like this:

File: 12.php

<?php
// Include the session class
require_once 'Session/Session.php';

// Instantiate the Session class
$session = new Session();

// Register a variable in the session
$session->set('viewImages', TRUE);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Preventing Hotlinking </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>Here is the image:</p>

</body>
</html>

File: 13.php

<?php
// Include the Session class
require_once 'Session/Session.php';

// Instantiate the Session class
$session = new Session();

2A more practical alternative would be to store the list of images in a database. However you do it,

it’s important to verify that the file requested is one you intended to grant access to; otherwise, you

may be allowing access to more than you expect.

233

How do I prevent “hot linking” of images?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

// Check to see if $viewImages is registered
if ($session->get('viewImages')) {

 // An array of available images
 $images = array(
 'sitepoint_logo.jpg',
 'php-big.png'
);

 // If $_GET['img'] is set and in available...
 if (isset($_GET['img']) && in_array($_GET['img'], $images)) {

 // Get the image information
 $dims = getimagesize('sample_images/' . $_GET['img']);

 // Send the HTTP headers
 header('content-disposition: inline; filename=' .
 $_GET['img']);
 header('content-type: ' . $dims['mime']);
 header('content-length: ' . filesize('sample_images/' .
 $_GET['img']));

 // Display the image
 readfile('sample_images/' . $_GET['img']);

 } else {
 die('Invalid image specified');
 }

} else {
 die ('This image is protected from hotlinking');
}
?>

Further Reading
� Read Me First! http://www.sketchpad.net/readme.htm

This article provides good explanation of the essentials of computer graphics.

It’s required reading if you’ve got big plans for the GD library.

� Generating Images on the Fly:

http://hotwired.lycos.com/webmonkey/01/21/index4a.html

This is Webmonkey’s introduction to PHP’s image functions.

Chapter 7: Images

234

http://www.sketchpad.net/readme.htm
http://hotwired.lycos.com/webmonkey/01/21/index4a.html
http://www.sketchpad.net/readme.htm
http://hotwired.lycos.com/webmonkey/01/21/index4a.html

� Developing Professional Quality Graphs with PHP:

http://www.zend.com/zend/tut/tutsweat3.php

This is a handy tutorial on using JpGraph.

235

Further Reading

http://www.zend.com/zend/tut/tutsweat3.php
http://www.zend.com/zend/tut/tutsweat3.php

236

Email8
Building online applications is not just about delivering pages to Web browsers.

For most Websites, email is an essential tool for everything from staying in touch

with visitors, to building user registration systems.

Sending simple emails is easy with PHP’s mail function; you need only one line

of code to send a message—what could be easier?

The mail function integrates either with the local sendmail client (an email ap-

plication widely used on Unix based systems), or with a remote SMTP (Simple

Mail Transfer Protocol) server if you lack a sendmail-compatible client. Your

Web host should set this up for you, but if you’re using Windows for your devel-

opment environment, you’ll need to tell PHP which SMTP server to use for

sending mail. In the vast majority of cases, this will be the SMTP server provided

by your ISP.

To set this up, you need to modify the following settings in php.ini:

[mail function]
; For Win32 only.
SMTP = smtp.yourdomain.com

; Default value
smpt_port = 25

http://smtp.yourdomain.com

; For Win32 only.
sendmail_from = you@yourdomain.com

In this chapter, we’ll concentrate on a class that takes the worry out of building

more complicated emails: PHPMailer[1]. PHPMailer is licensed under the Lesser

GNU Public License and provides a solid API for dealing with any content you’re

likely to want to email from your site. It may not be as simple as a one-liner, but

it certainly makes sending complex emails more convenient! The version used

for this chapter was 1.65.

How do I simplify the generation of
complex emails?

Using the mail function is fine for simple messages, but there are numerous fea-

tures you have to implement yourself. This initially makes itself apparent when

you decide you want your own email address to appear in the “From” field of a

message, and grows more complicated as you try to add people’s names against

their addresses, attempt to carbon copy email, and so on.

Kevin Yank discusses the issues in detail in Advanced email in PHP (see the section

called “Further Reading” at the end of this chapter), so you know exactly what’s

involved.

PHPMailer adds to the mail function a raft of functionality including attachments,

HTML emails, and mixed format emails; it’s also capable of bypassing the mail
function completely and directly connecting to an SMTP server. Its API makes

the construction of more complex emails very easy.

The first thing you’ll need to do is download PHPMailer and place it somewhere

in your include path. Version 1.65 is provided with the class library for this book.

The most basic use of PHPMailer is:

File: 1.php

<?php
// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

// Instantiate it
$mail = new phpmailer();

[1] http://phpmailer.sourceforge.net/

Chapter 8: Email

238

http://phpmailer.sourceforge.net/
mailto:you@yourdomain.com
http://ThirdParty/phpmailer/class.phpmailer.php';
http://phpmailer.sourceforge.net/

// Define who the message is from
$mail->From = 'you@yourdomain.com';
$mail->FromName = 'Your Name';

// Set the subject of the message
$mail->Subject = 'Test Message';

// Add the body of the message
$body = 'This is a test';
$mail->Body = $body;

// Add a recipient address
$mail->AddAddress('you@yourdomain.com', 'Your Name');

// Send the message
if (!$mail->Send()) {
 echo 'Mail sending failed';
} else {
 echo 'Mail sent successfully';
}
?>

As you can see, the methods and class member variables PHPMailer exposes for

public use are fairly self-explanatory. Although this clearly amounts to many

more lines of code than you need when using the mail function, it’s easy to read

and hides the complexities involved in correctly formatting SMTP headers.

How do I add attachments to messages?
With PHPMailer, you effectively have at your disposal three methods to add at-

tachments to messages—two dealing with files in general, and one specific to

images:

AddAttachment(path, name [, encoding[, type]])

This method is intended for files that are already located on your server. You

supply the path and name of the file. Note that encoding is generally best

left to the default of "base64", while you may want to supply a more specific

MIME type1 via the type parameter.

1A list of common MIME types can be found at http://www.hivemail.com/mime.types.phps. MIME

types are discussed in greater detail in Chapter 7.

239

How do I add attachments to messages?

http://www.hivemail.com/mime.types.phps
mailto:you@yourdomain.com';
mailto:mail->AddAddress('you@yourdomain.com',
http://www.hivemail.com/mime.types.phps

AddStringAttachment(string, filename[, encoding[, type]])

Using AddStringAttachment, you can supply PHPMailer with a file that

you’ve already stored in a PHP variable, for example, a file that has just been

uploaded or a file stored in MySQL.

AddEmbeddedImage(path, cid, name[, encoding[, type]])

Using AddEmbeddedImage, you can attach an image and give it an id (via

cid), which allows you to embed it in the body of an HTML email.

Here’s an example using the AddAttachment method:

File: 2.php

<?php
// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

// Instantiate it
$mail = new phpmailer();

// Modify this
$yourEmail = 'your@yourdomain.com';
$yourName = 'Your Name';

// Modify this
$recipientEmail = 'your@yourdomain.com';
$recipientName = 'Your Name';

// Define who the message is from
$mail->From = $yourEmail;
$mail->FromName = $yourName;

// Set the subject of the message
$mail->Subject = 'Test Attachment';

// Add the body of the message
$body = 'This message has an attachment';
$mail->Body = $body;

// Add an attachment,
if (!$mail->AddAttachment('./files/php_logo.gif',
 'php_logo.gif',
 'base64', 'image/gif')) {
 echo 'Failed to attach file!
';
}

Chapter 8: Email

240

http://ThirdParty/phpmailer/class.phpmailer.php';
mailto:your@yourdomain.com';
mailto:your@yourdomain.com';
http://mail->AddAttachment('./files/php_logo.gif',

// Add a recipient address
$mail->AddAddress($recipientEmail, $recipientName);

// Send the message
if (!$mail->Send()) {
 echo 'Mail sending failed';
} else {
 echo 'Mail sent successfully';
}
?>

To demonstrate the AddStringAttachment method, let’s use the

PEAR::HTML_QuickForm library, which is covered in detail in Chapter 9, to

build a simple file upload form:

File: 3.php (excerpt)

<?php
// Include the QuickForm class
require_once 'HTML/QuickForm.php';

// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

// Modify this
$yourEmail = 'you@example.com';
$yourName = 'Your name';

// Instantiate QuickForm
$form = new HTML_QuickForm('imageUpload', 'POST');

// Add the recipient name field
$form->addElement('text', 'name', 'Recipient Name: ');
$form->addRule('name', 'Enter a name', 'required', NULL,
 'client');

// Add the recipient address field
$form->addElement('text', 'mailTo', 'Recipient Email: ');
$form->addRule('mailTo', 'Enter an email address', 'required',
 NULL, 'client');
$form->addRule('mailTo', 'Enter a valid email address', 'email',
 NULL, 'client');

// Add the subject field
$form->addElement('text', 'subject', 'Subject: ');
$form->addRule('subject', 'Enter a subject', 'required', NULL,

241

How do I add attachments to messages?

http://ThirdParty/phpmailer/class.phpmailer.php';
mailto:you@example.com';

 'client');

// Add the message body
$form->addElement('textarea', 'body', 'Message: ');
$form->addRule('body', 'Add a body to the message', 'required',
 NULL, 'client');

// The file upload field
$form->addElement('file', 'image', 'Select Image: ');
$form->addRule('image', 'The maximum file size is 56k',
 'maxfilesize', 57344);
$form->addRule('image', 'The file must be an image', 'mimetype',
 array('image/gif', 'image/jpeg', 'image/png'));
$form->addRule('image', 'No file selected.', 'uploadedfile', NULL,
 'client');

// The submit button
$form->addElement('submit', 'submit', 'Send');

Taking the form submission data, we can now use PHPMailer to send emails with

attachments from a form generated by PHP:

File: 3.php (excerpt)

if ($form->validate()) {
 // Fetch the details of the file
 $name = $form->_submitFiles['image']['name'];
 $type = $form->_submitFiles['image']['type'];

 // Fetch file
 $filename = $form->_submitFiles['image']['tmp_name'];
 $fp = fopen ($filename, 'r');
 $contents = fread($fp, filesize($filename));
 fclose($fp);

 // Instantiate it
 $mail = new phpmailer();

 // Define who the message is from
 $mail->From = $yourEmail;
 $mail->FromName = $yourName;

 // Set the subject of the message
 $mail->Subject = $form->getSubmitValue('subject');

 // Add the body of the message
 $mail->Body = $form->getSubmitValue('body');

Chapter 8: Email

242

 // Add the contents of the form upload
 $mail->AddStringAttachment($contents, $name, 'base64', $type);

 // Add a recipient address
 $mail->AddAddress($form->getSubmitValue('mailTo'),
 $form->getSubmitValue('name'));

 // Send the message
 if (!$mail->Send()) {
 echo 'Mail sending failed';
 } else {
 echo 'Mail sent successfully';
 }

} else {
 $form->display();
}
?>

The resulting form is shown in Figure 8.1.

Figure 8.1. Sending an Email with an Attachment

We’ll look at the AddEmbeddedImage method in the next solution.

How do I send HTML email?
Some email clients, such as Outlook Express and many Web-based clients, are

capable of understanding HTML placed in the body of an email. Using PHPMailer,

it’s easy to add HTML to emails and even embed attached images within the

243

How do I send HTML email?

document. The class will automatically determine whether you’ve placed HTML

in the body of the message and set the correct MIME headers accordingly. You

can also add an alternative text message and, using AddEmbeddedImage, you can

place an attached image in the body of the HTML message.

Putting all this together in a single example, here’s what we get:

File: 4.php

<?php
// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

// Instantiate it
$mail = new phpmailer();

// Modify this
$yourEmail = 'you@example.com';
$yourName = 'Your Name';

// Modify this
$recipientEmail = 'you@example.com';
$recipientName = 'Your Name';

// Define who the message is from
$mail->From = $yourEmail;
$mail->FromName = $yourName;

// Set the subject of the message
$mail->Subject = 'Test HTML Email';

// Add the HTML body of the message
$html = 'Hi ' . $recipientName . '!
';

// Embed an image using cid:12345
$html .= 'This page was generated by ';

// Add message to body
$mail->Body = $html;

// Add the plain text alternative
$txt = "Hi " . $recipientName . "!\n";
$txt .= "This page was generated by PHP";

// Add message as alternative
$mail->AltBody = $txt;

Chapter 8: Email

244

http://ThirdParty/phpmailer/class.phpmailer.php';
mailto:you@example.com';
mailto:you@example.com';

// Add an embedded attachment identify the cid
if (!$mail->AddEmbeddedImage('./files/php_logo.gif',
 '12345',
 'php_logo.gif',
 'base64', 'image/gif')) {
 echo 'Failed to attach file!
';
}

// Add a recipient address
$mail->AddAddress($recipientEmail, $recipientName);

// Send the message
if (!$mail->Send()) {
 echo 'Mail sending failed';
} else {
 echo 'Mail sent successfully';
}
?>

That sends a multipart message, one part HTML and the other plain text, as

well as an image which was embedded in the HTML with an img tag.

Be aware that even fewer mail clients support embedded images in HTML, though

most major mail clients, including Outlook, Outlook Express, Eudora, Netscape,

Mozilla Mail, and Evolution, do.

How do I mail a group of people?
Sometimes it’s useful to be able to mail more than one person at a time. Other

times, sending email to a group of people is called spamming—something I’m

sure you won’t be doing with PHP!

With PHPMailer, one option you have is to use the addCC and addBCC methods,

which allow you to add multiple addresses to those fields, operating in the same

way as the addAddress method. This approach may not suit your needs, though,

as especially large distribution lists can quickly overwhelm your email server if

you list all the addresses in the header of a single email.

A better approach can be achieved by sending each email individually, while re-

using the same instance of the PHPMailer class:

245

How do I mail a group of people?

http://mail->AddEmbeddedImage('./files/php_logo.gif',

File: 5.php

<?php
// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

// Instantiate it
$mail = new phpmailer();

// Modify this
$yourEmail = 'you@example.com';
$yourName = 'Your Name';

// An array of recipients: Modify these
$recipients = array(
 'Your Name1' => 'recipient@example.com',
 'Your Name2' => 'recipient@example.com',
 'Your Name3' => 'recipient@example.com'
);

// Define who the message is from
$mail->From = $yourEmail;
$mail->FromName = $yourName;

// Set the subject of the message
$mail->Subject = 'Test Group Mail';

// Add the body of the message
$body = 'This message is being sent to a group';
$mail->Body = $body;

// Look through the recipients
foreach ($recipients as $name => $address) {
 // Add a recipient address
 $mail->AddAddress($address, $name);

 // Send the message
 if (!$mail->Send()) {
 echo 'Mail sending failed to ' . $address . '
';
 } else {
 echo 'Mail sent successfully to ' . $address . '
';
 }

 // Reset the address
 $mail->clearAddresses();
}

Chapter 8: Email

246

http://ThirdParty/phpmailer/class.phpmailer.php';
mailto:you@example.com';
mailto:recipient@example.com',
mailto:recipient@example.com',
mailto:recipient@example.com'

echo 'Finished sending emails
';
?>

In the above example, we reuse the same instance of PHPMailer, for which we’ve

set up the message and its sender. For each element of the $recipients array

(which is intended to simulate the result of a database query) we can add an ad-

dress to the PHPMailer instance, send the message, then remove it again using

the clearAddresses method. Note that PHPMailer also has a

clearAllRecipients method that removes any CC or BCC entries, and a

clearAttachments method to remove any attached files. For replacing the body

or subject of the message, you need only assign a new value to it in the same way

as before:

$mail->Body = $body;

For very large distribution lists, a simple foreach loop won’t quite cut it—you’ll

risk flooding your mail server with messages! Instead, you’ll need to devise a

means of sending the messages at a rate that your server can handle. The simplest

way to achieve this is to use the PHP sleep function to pause your script every

ten messages or so. You’ll also need to use the set_time_limit function to allow

your script to run for more than the default thirty second limit.

How do I handle incoming mail with
PHP?

You’ve already seen that sending mail with PHP is no problem. But what about

dealing with incoming mail using PHP? If your site is hosted on a Linux system,

you’ll be happy to hear that, with a little tuning, you should be able to get PHP

to examine incoming email. What’s more, PHP has a number of mechanisms for

reading email and extracting the information you need, such as the IMAP exten-

sion[3], the Mailparse extension[4], and a more limited PEAR package written

in PHP, PEAR::Mail_Mime[5]. As our focus in this chapter is on built-in PHP

functionality, not esoteric extensions, we’ll look briefly at what PEAR::Mail_Mime

has to offer here.

In this solution, I’ll assume you have your site hosted on a Linux based system,

have command prompt access to the server, are able to run PHP from the com-

[3] http://www.php.net/imap

[4] http://www.php.net/mailparse

[5] http://pear.php.net/package-info.php?pacid=21

247

How do I handle incoming mail with PHP?

http://www.php.net/imap
http://www.php.net/imap
http://www.php.net/mailparse
http://pear.php.net/package-info.php?pacid=21
http://www.php.net/imap
http://www.php.net/mailparse
http://pear.php.net/package-info.php?pacid=21

mand prompt, and are using sendmail on the server to handle email. Phew! It’s

a long list of requirements, I know, but this fairly common configuration greatly

simplifies matters.

First things first. You’ll need to place a file called .forward in your home direct-

ory. Use a text editor to write the following to the file (all on one line):

you@yoursite.com
"|/home/yourUserName/phpmailer/mailhandler.php"

This tells the mail system on the server that any email headed for

you@yoursite.com not only needs to be delivered to that address, but must also

be sent to the PHP script at /home/yourUserName/phpmailer/mailhandler.php.

Now, within the PHP script mailhandler.php, you can process incoming email

in any way you like. As this PHP script is intended to be run automatically by

the mail system—not your Web server—the first line of the file must point to

the location of the standalone PHP program on your server (commonly

/usr/bin/php). Here’s a possible script that detects incoming email from a par-

ticular address and sends a second notification email in response:

File: 6.php

#!/usr/bin/php
<?php
// Read the email from the stdin file
$fp = fopen('php://stdin', 'r');
$email = fread ($fp, filesize('php://stdin'));
fclose($fp);

// Break the email up by linefeeds
$email = explode("\n", $email);

// Initialize vars
$numLines = count($email);
for ($i = 0; $i < $numLines; $i++) {
 // Watch out for the From header
 if (preg_match("/^From: (.*)/", $email[$i], $matches)) {
 $from = $matches[1];
 break;
 }
}

// Forward the message to the hotline email
if (strstr($from, 'vip@example.com')) {
 mail('you@yourdomain.com', 'Urgent Message!',

Chapter 8: Email

248

mailto:you@yoursite.com
mailto:you@yoursite.com
mailto:vip@example.com')
mailto:mail('you@yourdomain.com',

 'Check your mail!');
}
?>

The code fetches the email from standard input. For details on this and other

issues surrounding standalone PHP scripts, refer to the the PHP Manual[6].

The mail reading functionality of PEAR::Mail_Mime is a “work in progress”, but

you can make your life easier by reading email with its Mail_mimeDecode class.

This example achieves the same objectives as the previous script, but the code is

much simpler:

File: 7.php

#!/usr/bin/php
<?php
// Include the PEAR mimeDecode class
require_once 'Mail/mimeDecode.php';

// Read the email from the stdin file
$fp = fopen('php://stdin', 'r');
$email = fread($fp, filesize('php://stdin'));
fclose($fp);

$decode = new Mail_mimeDecode($email, "\r\n");
$structure = $decode->decode();

// Forward the message to the hotline email
if (strstr($structure->headers['from'], 'vip@example.com')) {
 mail('you@yourdomain.com', 'Urgent Message!',
 'Check your mail!');
}
?>

The variable $structure contains a data structure in which all the key elements

of the email are provided in a named form. For example,

$structure->headers['from'] contains the “From” address of the message.

If you save a raw email as a text file and decode it with Mail_mimeDecode, you’ll

be able to see the values for yourself. Here’s an example of $structure, passed

through the print_r function, using some of the test data from another PEAR

package—PEAR::mailparse[7]:

[6] http://www.php.net/features.commandline

[7] http://pear.php.net/package-info.php?pacid=143

249

How do I handle incoming mail with PHP?

http://www.php.net/features.commandline
http://pear.php.net/package-info.php?pacid=143
mailto:vip@example.com')
mailto:mail('you@yourdomain.com',
http://www.php.net/features.commandline
http://pear.php.net/package-info.php?pacid=143

stdClass Object
(
 [headers] => Array
 (
 [return-path] =>
 [received] => Array
 (
 [0] => from secure.thebrainroom.com (raq338.uk
 [1] => from pb1.pair.com (pb1.pair.com [216.92
 [2] => (qmail 63230 invoked by uid 1010); 28 O
 [3] => (qmail 63215 invoked from network); 28
)
 [x-authentication-warning] => zaneeb.brainnet.i: Host
 [mailing-list] => contact php-cvs-help@lists.php.net;
 [precedence] => bulk
 [list-help] =>
 [list-unsubscribe] =>
 [list-post] =>
 [delivered-to] => mailing list php-cvs@lists.php.net
 [reply-to] => marcus.boerger@post.rwth-aachen.de
 [message-id] => <5.1.0.14.2.20021028193555.01d47c20@ma
 [x-mailer] => QUALCOMM Windows Eudora Version 5.1
 [date] => Mon, 28 Oct 2002 19:36:10 +0100
 [to] => Melvyn Sopacua
 [from] => marcus.boerger@t-online.de (Marcus =?iso-885
 [cc] => php-cvs@lists.php.net
 [in-reply-to] => <5.1.0.14.2.20021028192151.039729e0@y
 [references] => <5.1.0.14.2.20021028190015.01d4d650@ma
 [mime-version] => 1.0
 [content-type] => multipart/alternative; boundary="===
 [x-sender] => 520072483730-0001@t-dialin.net
 [x-spam-status] => No, tests=bogofilter, spamicity=0.0
 [subject] => Re: [PHP-CVS] cvs: php4 /ext/iconv/tests
 [x-tbr-destbox] => user.wez.php.cvs (auth as wez) (wez
)
 [ctype_primary] => multipart
 [ctype_secondary] => alternative
 [ctype_parameters] => Array
 (
 [boundary] => =====================_71195359==_.ALT
)
 [parts] => Array
 (
 [0] => stdClass Object
 (
 [headers] => Array

Chapter 8: Email

250

http://secure.thebrainroom.com
http://www.raq338.uk
http://pb1.pair.com
http://pb1.pair.com
http://zaneeb.brainnet.i:
mailto:php-cvs-help@lists.php.net;
mailto:php-cvs@lists.php.net
mailto:marcus.boerger@post.rwth-aachen.de
mailto:5.1.0.14.2.20021028193555.01d47c20@ma
mailto:marcus.boerger@t-online.de
mailto:php-cvs@lists.php.net
mailto:5.1.0.14.2.20021028192151.039729e0@y
mailto:5.1.0.14.2.20021028190015.01d4d650@ma
mailto:520072483730-0001@t-dialin.net
http://user.wez.php.cvs

 (
 [content-type] => text/plain; charset=
 [content-transfer-encoding] => quoted-
)
 [ctype_primary] => text
 [ctype_secondary] => plain
 [ctype_parameters] => Array
 (
 [charset] => iso-8859-1
 [format] => flowed
)
)
)
)

A Solution Looking for a Problem?
It may not be obvious what value there is in being able to handle incoming emails

with PHP. If you’ve ever read the SitePoint Tech Times[8], you know the an-

swer—whether you realize it or not! Subscribing and unsubscribing to the mailing

list is handled by PHP. You could also use PHP to build spam filters, allow updates

to your forum applications both by browser and email, and create a whole host

of other applications.

Further Reading
� Advanced email in PHP: http://www.sitepoint.com/article/679

This tutorial provides an in-depth look at PHP’s mail function and how to

use it in conjunction with SMTP headers.

� Incoming Mail in PHP: http://gvtulder.f2o.org/4_Incoming_Mail_and_PHP

This article explains the essentials of handling incoming mail with PHP for

servers using sendmail, exim and qmail.

� Using PEAR’s mimeDecode Module: http://www.devarticles.com/art/1/618

� IMAP Mail Reading with PHP3:

http://www.phpbuilder.com/columns/musone19990207.php3

[8] http://www.sitepoint.com/newsletters/

251

A Solution Looking for a Problem?

http://www.sitepoint.com/newsletters/
http://www.sitepoint.com/article/679
http://gvtulder.f2o.org/4_Incoming_Mail_and_PHP
http://www.devarticles.com/art/1/618
http://www.phpbuilder.com/columns/musone19990207.php3
http://www.sitepoint.com/article/679
http://gvtulder.f2o.org/4_Incoming_Mail_and_PHP
http://www.devarticles.com/art/1/618
http://www.phpbuilder.com/columns/musone19990207.php3
http://www.sitepoint.com/newsletters/

This article provides an introduction to reading emails with PHP’s IMAP ex-

tension.

Chapter 8: Email

252

Web Page Elements9
Despite the relative youth of the Internet as a means of information delivery,

already discussions rage around the question of whether “design is dead.”

Whatever your position in this debate, it becomes clear as we render Web content

with PHP that the same “elements” keep reappearing.

When you’re working on your first PHP Website, writing a script to generate an

HTML table may not seem like a problem. Give it time! After you’ve put together

a few sites and have had to go back to modify your past efforts, tables won’t seem

so rosy. Eventually, the mere mention of maintenance may well have you gasping

“not another table!” as you weep quietly into your keyboard.

Fear not—help is at hand. Not all HTML is the same, yet there are obvious

commonalities between HTML elements. These make the perfect target for PHP

classes, which allow you to eliminate repetitive work and concentrate on the

creative aspects that you enjoy.

In this chapter, we’ll make extensive use of some of PEAR’s HTML packages. As

a step up from hand coding your own HTML tables and forms, PEAR represents

excellent value.

Appendix D explains how to install PEAR on your server and add packages. You’ll

need to refer to that information to use the PEAR classes required in this chapter.

The examples we’ll discuss here will use the following database tables:

� A table for users:

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
)

� A table to store images:

CREATE TABLE image (
 image_id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(100) NOT NULL DEFAULT '',
 size INT(11) NOT NULL DEFAULT '0',
 type VARCHAR(50) NOT NULL DEFAULT '',
 contents BLOB NOT NULL,
 PRIMARY KEY (image_id)
)

� And last of all, a table to store a site menu:

CREATE TABLE menu (
 menu_id INT(11) NOT NULL auto_increment,
 parent_id INT(11) NOT NULL default '0',
 name VARCHAR(255) NOT NULL default '',
 description TEXT NOT NULL,
 location VARCHAR(255) NOT NULL default '',
 PRIMARY KEY (menu_id),
 UNIQUE KEY location (location)
)

You’ll find the MySQL queries that create these tables and sample data included

in the code archive in the sql/ directory.

Chapter 9: Web Page Elements

254

How do I display data in a table?
HTML tables are the natural result of much of PHP’s interaction with data stored

in MySQL databases. Having a tool in your kit for quick table generation is an

essential time saver as you build PHP applications.

The simplest approach to generating a table using the MySQL class I built in

Chapter 3 might look like this:

File: 1.php

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

$sql = "SELECT * FROM user ORDER BY lastName, firstName";

$result = $db->query($sql);

echo "<table align=\"center\">\n";
echo "<tr>\n<th>Login</th><th>Name</th><th>Email</th>\n</tr>";

while ($row = $result->fetch()) {
 echo "<tr>
 <td>" . $row['login'] . "</td>
 <td>" . $row['firstName'] . ' ' . $row['lastName'] . "</td>
 <td>" . $row['email'] . "</td>
 </tr>\n";
}
echo "</table>";

While it’s fine for something simple, this method can become a burden as your

tables grow more complex.

PEAR Shaped Tables
The task of building more complex tables is made easier by

PEAR::HTML_Table[1]. Developed by Bertrand Mansion and Adam Daniel,

HTML_Table provides a handy API for table construction that doesn’t require you

to type a tag of HTML. For complex tables, this can save a lot of time, and reduce

your chance of making mistakes with HTML itself. The version used here was

1.5.

[1] http://pear.php.net/HTML_Table

255

How do I display data in a table?

http://pear.php.net/HTML_Table
http://pear.php.net/HTML_Table

Let’s see how it works with a simple example. We’ll repeat the above user list

and add some attractive visuals. First, having included the HTML_Table class, we’ll

build a switch statement that allows us to order the results by a particular column:

File: 2.php (excerpt)

// Include the PEAR::HTML_Table class
require_once 'HTML/Table.php';

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Basic SQL statement
$sql = "SELECT * FROM user";

// A switch to allow sorting by column
switch (@$_GET['sort']) {
 case 'login';
 $sql .= " ORDER BY login ASC";
 break;
 case 'email';
 $sql .= " ORDER BY email ASC";
 break;
 default:
 $sql .= " ORDER BY lastName, firstName";
 break;
}

So far, so good.

To use HTML_Table, you’ll need to be happy with PHP’s arrays; many of the ar-

guments accepted by HTML_Table are passed in array form. HTML attributes are

typically passed as associative (named) arrays, while row data itself is passed as

indexed (numbered) arrays:

File: 2.php (excerpt)

// Overall style for the table
$tableStyle = array(
 'width' => '650',
 'style' => 'border: 1.75px dotted #800080;'
);

// Create the table, passing the style
$table = new HTML_Table($tableStyle);

// Define a style for the caption of the table
$captionStyle = array(

Chapter 9: Web Page Elements

256

 'style' => 'font-family: Verdana; font-weight: bold;
 font-size: 14.75px; color: navy;'
);

// Add the caption, passing the text to display and the style
$table->setCaption('User List', $captionStyle);

// Define an array of column header data
$columnHeaders = array(
 'Login',
 'Name',
 'Email'
);

// Add the header row, passing header text and using a TH tag
$table->addRow($columnHeaders, '', 'TH');

Inside the following while loop, we fetch each row and build an indexed array

out of the associative arrays we’ve retrieved from the database. We then add the

indexed array to the table using the addRow method:

File: 2.php (excerpt)

// Fetch the result object
$result = $db->query($sql);

// A loop for each row of the result set
while ($row = $result->fetch()) {
 // Place row data in indexed array
 $rowData = array(
 $row['login'],
 $row['firstName'] . ' ' . $row['lastName'],
 $row['email']
);

 // Add the row, passing the data
 $table->addRow($rowData);
}

Let’s finish up by applying a few HTML attributes to make the table more attract-

ive. First, we’ll use setAllAttributes to apply a style to every cell. Then, we’ll

override this style for the first row (numbered 0), using setRowAttributes to

make that text slightly larger. Finally, we’ll use altRowAttributes to apply an

alternating style to each row, beginning with the first row of real data in the table:

257

PEAR Shaped Tables

File: 2.php (excerpt)

// Set the style for each cell of the row
$cellStyle = 'style="font-family: verdana; font-size: 11;"';

// Apply the style
$table->setAllAttributes($cellStyle);

// Define the style for the column headings
$headerStyle = 'style="background-color: #ffffff;
 font-family: verdana;
 font-weight: bold;
 font-size: 12;"';

// Set the row attributes for the header row
$table->setRowAttributes(0, $headerStyle);

// Set alternating row colors
$table->altRowAttributes(
 1,
 'style="background-color: #d3d3d3"',
 'style="background-color: #ffffff"',
 TRUE
);

// Display the table
echo $table->toHTML();

The end result is a neat looking table that we can order by column, as shown in

Figure 9.1.

Chapter 9: Web Page Elements

258

Figure 9.1. Table Generated by PEAR::HTML_Table

You may be a little underwhelmed by the amount of code that’s required to

generate this table. Remember, though, that the table we built with HTML_Table
contained a lot more formatting than did the simple example we began with. It

would also make more sense in the real world to define a Website’s CSS properties

in a dedicated style sheet, and simply set class attributes using the HTML_Table
API.

How do I build a result pager?
A result pager is a navigational element that allows your site’s visitors to browse

data pulled from your database in “pages”. Its purpose is to avoid the use of full

table scans (SELECT * FROM table), which can really slow down your server if

you’re dealing with a lot of data, and to provide results in user-friendly “chunks”

rather than as a single, giant list. If you’ve ever used a search engine like Google™

(and it’s probably safe to assume you have), you’ve used a result pager to browse

through search results.

MySQL makes it extremely easy to implement a result pager; we simply need to

use the LIMIT clause in our queries. Here’s a simple example:

SELECT * FROM user LIMIT 5, 10

259

How do I build a result pager?

The above query will start at row number 5 and select a total of 10 rows. All you

need now is some PHP that constructs this clause dynamically, passing the row

number at which the query will start and the number of rows it will select.

When to Implement a Result Pager

As a general rule, if you have full table scan queries such as SELECT * FROM
user, you should consider implementing a result pager.

While you’re developing your application you may not notice a problem,

but once you have a table containing thousands of records and your site’s

achieving high levels of traffic, MySQL will be hard-pressed to deal with all

those queries. Also, depending on how you write your PHP, your scripts may

take an increasingly long time to execute as the number of rows in the table

grows.

The trick is to come up with the PHP code that generates those two magic

numbers in the LIMIT clause. In general, the first step is to get MySQL to tell

you how many rows there are in the “unpaged” result set. This will typically re-

quire a COUNT query:

SELECT COUNT(*) AS num_rows FROM user

To ascertain the total number of pages, we simply divide the number of rows in

the result set by the number of rows to be displayed per page. We can then

identify which row will begin each page by multiplying the page number by the

number of rows that appear per page.

This is easier to see with some code. First, let’s put together a simple paging class

that encapsulates these calculations:

File: Database/SimplePager.php (in SPLIB) (excerpt)

/**
 * SimplePager class
 * Used to help calculate the number of pages in a database result
 * set
 * @access public
 * @package SPLIB
 */
class SimplePager {
 /**
 * Total number of pages
 * @access private
 * @var int
 */

Chapter 9: Web Page Elements

260

 var $totalPages;

 /**
 * The row MySQL should start its select with
 * @access private
 * @var int
 */
 var $startRow;

 /**
 * SimplePager Constructor
 * @param int number of rows per page
 * @param int total number of rows available
 * @param int current page being viewed
 * @access public
 */
 function SimplePager($rowsPerPage, $numRows, $currentPage = 1)
 {
 // Calculate the total number of pages
 $this->totalPages = ceil($numRows / $rowsPerPage);

 // Check that a valid page has been provided
 if ($currentPage < 1) {
 $currentPage = 1;
 } else if ($currentPage > $this->totalPages) {
 $currentPage = $this->totalPages;
 }

 // Calculate the row to start the select with
 $this->startRow = (($currentPage - 1) * $rowsPerPage);
 }

 /**
 * Returns the total number of pages available
 * @return int
 * @access public
 */
 function getTotalPages()
 {
 return $this->totalPages;
 }

 /**
 * Returns the row to start the select with
 * @return int
 * @access public

261

How do I build a result pager?

 */
 function getStartRow()
 {
 return $this->startRow;
 }
}

We can simply pass this class the relevant row information, along with the

number of the page that’s being viewed when we instantiate it. It will then tell

us the total number of pages and the row number at which we should start our

select query.

Here it is in action:

File: 3.php (excerpt)

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Find out how many rows are available
$sql = "SELECT COUNT(*) AS num_rows FROM user";
$result = $db->query($sql);
$row = $result->fetch();

// Define the number of rows per page
$rowsPerPage = 10;

// Set a default page number
if (!isset($_GET['page'])) {
 $_GET['page'] = 1;
}

// Instantiate the pager
$pager = new SimplePager($rowsPerPage, $row['num_rows'],
 $_GET['page']);

// Build a table for the pager
echo "<table align=\"center\">\n<tr>\n";

// Build the HTML for the pager
for ($i = 1; $i <= $pager->getTotalPages(); $i++) {
 echo "<td>";
 if ($i == $_GET['page']) {
 echo "$i";
 } else {
 echo $i;
 }

Chapter 9: Web Page Elements

262

 echo "</td>\n";
}
echo "</tr>\n</table>\n";

Notice that we’ve used the getTotalPages method in the for loop that builds

the links for navigation between pages.

With the page primed and the HTML built, we can now create the results table,

taking advantage of the getStartRow method:

File: 3.php (excerpt)

// Now construct the "real" SQL statement
$sql = "SELECT * FROM user
 LIMIT " . $pager->getStartRow() . ", " . $rowsPerPage;

// Fetch and display the results
$result = $db->query($sql);

echo "<table align=\"center\">\n";
echo "<tr>\n<th>Login</th><th>Name</th><th>Email</th>\n</tr>";

while ($row = $result->fetch()) {
 echo "<tr>\n
 <td>" . $row['login'] . "</td>
 <td>" . $row['firstName'] . ' ' . $row['lastName'] . "</td>
 <td>" . $row['email'] . "</td>\n
 </tr>\n";
}
echo "</table>";

We can now page through the user table display ten rows at a time. This makes

a reasonable start, but the code is somewhat messy. It also lacks a few features,

such as the ability to simply click “next” or “previous” to go one page forward or

backward. And there’s no limit to the number of pages that are displayed at once

(with a large table there may be hundreds of pages, which will result in an ugly

looking Web page).

Sliding Page Numbers
PEAR offers another handy package called PEAR::Pager_Sliding[2]. Written by

Lorenzo Alberton, Pager_Sliding combines calculations and link construction

in a single, easy-to-use class. The version used here is 1.4.

[2] http://pear.php.net/Pager_Sliding

263

Sliding Page Numbers

http://pear.php.net/Pager_Sliding
http://pear.php.net/Pager_Sliding

The class doesn’t provide everything we want, so the first thing we need is a class

that will extend the Pager_Sliding class to provide some extra information.

This, by the way, uses inheritance (see Chapter 2 for more information).

File: Database/DB_Pager_Sliding.php (in SPLIB) (excerpt)

/**
 * DB_Pager_Sliding - extends PEAR::Pager_Sliding
 * Provides an API to help build query result pagers
 * @access public
 * @package SPLIB
 */
class DB_Pager_Sliding extends Pager_Sliding {
 /**
 * DB_Pager_Sliding constructor
 * @param array params for parent
 * @access public
 */
 function DB_Pager_Sliding($params)
 {
 parent::Pager_Sliding($params);
 }

 /**
 * Returns the number of rows per page
 * @access public
 * @return int
 */
 function getRowsPerPage()
 {
 return $this->_perPage;
 }

 /**
 * The row number to start a SELECT from
 * @access public
 * @return int
 */
 function getStartRow()
 {
 if ($this->_currentPage == 0) {
 return $this->_perPage;
 } else {
 return ($this->_currentPage - 1) * $this->_perPage;
 }
 }
}

Chapter 9: Web Page Elements

264

This extended class provides the information we’ll need to construct the query.

Now, let’s add the pager to the user table we built in “How do I display data in

a table?”:

File: 4.php (excerpt)

// Include the PEAR::HTML_Pager_Sliding class
require_once 'HTML/Sliding.php';

// Include the extended class
require_once 'DB_Pager_Sliding.php';

// Instantiate MySQL
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

$sql = "SELECT COUNT(*) AS num_rows FROM user";
$result = $db->query($sql);
$row = $result->fetch();

// Define pager settings
$pager_params = array(
 // The total number of rows
 'totalItems' => $row['num_rows'],
 // Rows per page
 'perPage' => 10,
 // The size of the sliding Window +/-
 'delta' => 2,
 // Separator and spacing between links
 'separator' => '.',
 'spacesBeforeSeparator' => 2,
 'spacesAfterSeparator' => 2,
 // The $_GET variable name
 'urlVar' => 'page',
 // Browser status bar text
 'altPrev' => 'Previous Page',
 'altNext' => 'Next Page',
 'altPage' => 'Page: ',
 // CSS Class names
 'curPageLinkClassName' => 'currentPage',
 'linkClass' => 'pageLink',
);

// Instantiate the pager
$pager = &new DB_Pager_Sliding($pager_params);

// Fetch the HTML links
$links = $pager->getLinks();

265

Sliding Page Numbers

Now we can modify the query to use a LIMIT clause generated by the pager:

File: 4.php (excerpt)

// Basic SQL statement
$sql = "SELECT * FROM user";

// A switch to allow sorting by column
switch (@$_GET['sort']) {
 case 'login';
 $sql .= " ORDER BY login ASC";
 break;
 case 'email';
 $sql .= " ORDER BY email ASC";
 break;
 default:
 $sql .= " ORDER BY lastName, firstName ASC";
 break;
}

// Add the LIMIT clause
$sql .= " LIMIT " . $pager->getStartRow() . ", " .
 $pager->getRowsPerPage();

All that remains now is to define the CSS classes currentPage and pageLink,

which we’ve specified in the pager’s settings, and display the links below the

table:

File: 4.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Users </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
.currentPage
{
 font-family: verdana;
 font-size: 10px;
 font-weight: bold;
 color: red;
}
.pageLink
{

Chapter 9: Web Page Elements

266

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

 font-family: verdana;
 font-size: 10px;
 color: red;
}
</style>
</head>

<body>
<?php
// Display the table
echo $table->toHTML();
?>
<div align="center">
<?php
// Display the paging links
echo $links['all'];
?>
</div>
</body>
</html>

Note that we haven’t reproduced the code that constructs the table here, but rest

assured you’ll find it in the code archive associated with this solution.

The Pager_Sliding class provides the constructed links in an array. We can

either access each link individually, which is handy if we want more control over

the way the pager is positioned on the page, or we can display the complete pager

with $links['all'], as we’ve done here.

The completed table followed by the paging links is shown in Figure 9.2.

Figure 9.2. Paging All Users…

267

Sliding Page Numbers

The great thing about the Pager_Sliding class is that the range of pages it dis-

plays will change to reflect the page the visitor is currently viewing. As your table

grows, it remains easy to navigate. This is important when you’re dealing with

large result sets; if a query returned more than ten pages of results, for example,

without a “sliding pager” you’d have a very long row of pages to display on your

Web page, which would be both ugly and difficult to navigate. The Pager_Sliding
class helps you implement a pager that’s similar to the one used by Google[3],

where a search often returns hundreds of pages of results.

How do I handle HTML forms in PHP?
“With great power comes great responsibility.”
—Spiderman’s Uncle Ben

Compared to links and URLs, HTML forms provide a far more powerful mech-

anism by which to accept information from your site’s visitors. Forms allow you

to develop complex interfaces that, for example, can enable users to select values

from a dynamically-generated list, enter large bodies of text, and even upload

files. Forms make possible anything from a simple guest book to an intricate user

registration and authentication system. But with increased functionality comes

a wider range of problems. How can you validate a form? What should you do

if a form is incorrectly completed? How can you populate a form with data from

a database? These are just a few of the challenges you’ll face as you deal with

forms; there are many more.

HTTP Request Methods

The Internet’s HTTP protocol, commonly used to fetch Web pages, defines a number of

“methods” that browsers can use to send requests and data to Web servers. Of the available

methods, the two most important are the GET method and the POST method.

� GET is the “default” method for the Internet, used whenever you request a page with

your browser. All data in the request must be encoded in the URL.

� POST is most often used for submitting forms. It allows additional form data to be sent

with the request.

HTML lets you specify the method to use for each form tag. Although GET is the default,

it is most common to use POST, which avoids cluttering the URL with the submitted

data.

[3] http://www.google.com/

Chapter 9: Web Page Elements

268

http://www.google.com/
http://www.google.com/

Guidelines for Dealing with Forms
� Use the POST method when declaring your form in HTML. This prevents

form values from appearing in the URL, and allows a larger amount of data

to be submitted through the form.

� Use PHP’s htmlspecialchars function when populating form fields with

PHP values, to avoid malformed HTML, as discussed in Chapter 5.

� Don’t rely exclusively on JavaScript validation. It can improve the user exper-

ience, but used alone JavaScript validation can easily be bypassed by the user.

� If you use normal HTTP, form data will be sent in “clear text” over the Internet

from the browser to the server. This means it can be intercepted by someone

using a packet sniffer. When you send confidential information such as finan-

cial details, use an encryption technology such as SSL.

Forms in Action with QuickForm
I’ll assume for the moment that you’re happy to use forms at their most basic.

Here, we’ll concentrate on another PEAR package—PEAR::HTML_QuickForm[4].

Developed by Bertrand Mansion and Adam Daniel, QuickForm makes it easy to

render simple HTML forms from PHP… but that’s not all! QuickForm provides

further functionality to help with a range of other problems, such as the generation

of calendar form elements, and validation with both PHP and JavaScript. It

automatically takes care of issues related to magic quotes, too, so if you’re using

QuickForm, you don’t need to worry whether magic quotes is on or off. The

version used in these examples was 3.1.

First, a simple example:

File: 5.php

<?php
// Include the QuickForm class
require_once 'HTML/QuickForm.php';

// Instantiate the QuickForm class
$form = new HTML_QuickForm('quickForm1', 'POST');

// Add a text input field called firstName,

[4] http://pear.php.net/HTML_QuickForm

269

Guidelines for Dealing with Forms

http://pear.php.net/HTML_QuickForm
http://pear.php.net/HTML_QuickForm

// labelled "Enter your name"
$form->addElement('text', 'firstName', 'Enter your name');

// Add a submit button called submit with "Send" as the text
// for the button
$form->addElement('submit', 'submit', 'Send');

// If the form is submitted...
if (isset($_POST['submit'])) {
 // Display the submitted value "firstName"
 echo 'Hello ' . $form->getSubmitValue('firstName');
} else {
 // If not submitted, display the form
 $form->display();
}
?>

This displays a simple form in which users can enter their names.

Here’s the nicely formatted HTML it generates:

<table border="0">
 <form action="/sitepoint/WebPageElements/3.php" method="POST"
name="quickForm1" target="_self">
 <tr>
 <td align="right" valign="top">Enter your name</td>
 <td nowrap="nowrap" valign="top" align="left"><input
name="firstName" type="text" /></td>
 </tr>
 <tr>
 <td align="right" valign="top"></td>
 <td nowrap="nowrap" valign="top" align="left"><input
name="submit" value="Send" type="submit" /></td>
 </tr>
 </form>
</table>

In this case, we used the native $_POST variable to determine whether the form

had been submitted. But we don’t have to do it this way. If we apply QuickForm’s

validation functionality, we can use its validate method to check whether the

form has been submitted, and ensure it has been validated correctly, in a single

blow.

Here’s the same form; this time, it uses JavaScript in PHP to check that the name

was entered, and falls back on PHP validation should JavaScript be disabled:

Chapter 9: Web Page Elements

270

File: 6.php

<?php
// Include the QuickForm class
require_once 'HTML/QuickForm.php';

// Instantiate the QuickForm class
$form = new HTML_QuickForm('quickForm2', 'POST');

// Add a text input field called firstName, labelled
// "Enter your name"
$form->addElement('text', 'firstName', 'Enter your name');

// Rule to validate with JavaScript and PHP
$form->addRule('firstName', 'Please enter your name', 'required',
 FALSE, 'client');

// Add a submit button called submit with "Send" as the text
// for the button
$form->addElement('submit', 'submit', 'Send');

// If the form is submitted...
if ($form->validate()) {
 // Display the submitted value "firstName"
 echo 'Hello ' . $form->getSubmitValue('firstName');
} else {
 // If not submitted, display the form
 $form->display();
}
?>

The addRule method provides the means to add validation rules to the form.

The inclusion of the argument client tells QuickForm to use JavaScript for form

validation on the client side. Note that when you use client side validation,

QuickForm will continue to validate the form on the server side for browsers in

which JavaScript is turned off.

We can use the validate method to check whether the form has been submitted.

Note that if the form fails to validate in PHP, it is again displayed to users along

with a message that tells them what they did wrong (see Figure 9.3).

271

Forms in Action with QuickForm

Figure 9.3. Now, What Was my Name Again?

QuickForm Validation Rule Types
We used the required rule in the above example. QuickForm comes with a

number of built-in rules for specific situations, as well as some more general rules.

The supported rules are:

required the form field must be supplied a value

maxlength the field value is constrained to a maximum length in

characters

minlength the field value must contain a minimum number of

characters

rangelength the field value must be exactly the specified length

email the field value must be a valid email address

emailorblank the field value must be a valid email address or must

be empty

lettersonly the field value may contain only the letters ’a’ to ’z’

(case insensitive)

alphanumeric the field may contain only the letters ’a’ to ’z’ (case

insensitive) or numbers

Chapter 9: Web Page Elements

272

numeric the field value may contain only numbers

nopunctuation there may not be any punctuation characters in the

field

nonzero the field value must be a number other than 0

uploadedfile the field must contain an uploaded file, as verified by

the PHP is_uploaded_file function[5]

maxfilesize the uploaded file contained in the field is constrained

to a maximum size

mimetype the uploaded file contained in the field must be of a

particular MIME type1

filename the filename of the uploaded file contained in the field

must match a regular expression

function when passed the value of the field, the specified func-

tion must return TRUE

regexp the value of the field must match the specified regular

expression

You can apply one or more of the above rules to any QuickForm field with the

addRule method:

addRule(element, message, type[, format[, validation[, reset[,
force]]]])

Of the above arguments,

element is the name you have assigned to the element, using the

addElement method

message is the text displayed to a user if they break this validation

rule

type is the validation rule type (listed above)

[5] http://www.php.net/is-uploaded-file
1See http://www.hivemail.com/mime.types.phps for a list of MIME types.

273

QuickForm Validation Rule Types

http://www.php.net/is-uploaded-file
http://www.hivemail.com/mime.types.phps
http://www.php.net/is-uploaded-file
http://www.hivemail.com/mime.types.phps

format is the parameter for the rule, such as the minimum length

or a regular expression for use with the regex rule type

validation can be either server or client; if client is used both

JavaScript and PHP validation will be performed

reset if TRUE, empties the associated form field when the form

is re-displayed upon user error

force makes QuickForm apply the validation rule even if the

form name doesn’t exist, which is useful if you’re generating

forms “on the fly”

If you look at the code for QuickForm, you’ll find that each method of the class

has been documented. At the time of writing, the documentation has yet to be

published on the PEAR Website, though it should be available soon.

Sign Up Today
Now that you’re better acquainted with QuickForm, it’s time to use it for some-

thing more interesting. Let’s build a registration form to add new accounts to the

users table. This will mean putting the MySQL class from Chapter 3 into action

again. Here goes…

File: 7.php (excerpt)

<?php
// Include the MySQL class
require_once 'MySQL.php';

// Include the QuickForm class
require_once 'HTML/QuickForm.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

To kick off, we’ve included the classes we’ll need, and we’ve set up the variables

for the database. Next, we’ll define three functions QuickForm will use to perform

operations on the values it receives from the forms:

Chapter 9: Web Page Elements

274

File: 7.php (excerpt)

// A function for comparing password
function cmpPass($element, $confirmPass)
{
 global $form;
 $password = $form->getElementValue('password');
 return $password == $confirmPass;
}

// A function to apply mysql_real_escape_string
function escapeValue($value)
{
 return mysql_real_escape_string($value);
}

// A function to encrypt the password
function encryptValue($value)
{
 return md5($value);
}

The cmpPass function will be used to validate the form’s “Confirm password”

field, which must match the “Password” field. Note that this function declares

$form as a global variable, so that it can be accessed within the function. In

general, using the global keyword is a bad idea; in complicated applications it

may result in a conflict with another variable of the same name. Though we don’t

have a choice with the current version of QuickForm, hopefully this will change

in future.

The escapeValue and encryptValue functions are used to “filter” values after

they have been submitted. As you know from Chapter 3 when we examined SQL

injection attacks, it’s critical that you escape all incoming data before inserting

it into the database, hence the escapeValue function. And the encryptValue
function? We’ll store passwords in the database in an encrypted form, and this

function will perform the necessary encryption. For more on this, see Volume II,

Chapter 1, where we build a user authentication system that includes this feature.

Next, we instantiate the class, create all the form fields, and apply the rules to

them:

File: 7.php (excerpt)

// Instantiate the QuickForm class
$form = new HTML_QuickForm('regForm', 'POST');

275

Sign Up Today

// Register the compare function
$form->registerRule('compare', 'function', 'cmpPass');

// The login field
$form->addElement('text', 'login', 'Desired Username');
$form->addRule('login', 'Please provide a username', 'required',
 FALSE, 'client');
$form->addRule('login', 'Username must be at least 6 characters',
 'minlength', 6, 'client');
$form->addRule('login',
 'Username cannot be more than 50 characters', 'maxlength', 50,
 'client');
$form->addRule('login',
 'Username can only contain letters and numbers',
 'alphanumeric', NULL, 'client');

// The password field
$form->addElement('password', 'password', 'Password');
$form->addRule('password', 'Please provide a password',
 'required', FALSE, 'client');
$form->addRule('password',
 'Password must be at least 6 characters', 'minlength', 6,
 'client');
$form->addRule('password',
 'Password cannot be more than 12 characters', 'maxlength', 50,
 'client');
$form->addRule('password',
 'Password can only contain letters and numbers',
 'alphanumeric', NULL, 'client');

// The field for confirming the password
$form->addElement('password', 'confirmPass', 'Confirm Password');
$form->addRule('confirmPass', 'Please confirm password',
 'required', FALSE, 'client');
$form->addRule('confirmPass', 'Passwords must match',
 'compare', 'function');

// The email field
$form->addElement('text', 'email', 'Email Address');
$form->addRule('email', 'Please enter an email address',
 'required', FALSE, 'client');
$form->addRule('email', 'Please enter a valid email address',
 'email', FALSE, 'client');
$form->addRule('email', 'Email cannot be more than 50 characters',
 'maxlength', 50, 'client');

Chapter 9: Web Page Elements

276

// The first name field
$form->addElement('text', 'firstName', 'First Name');
$form->addRule('firstName', 'Please enter your first name',
 'required', FALSE, 'client');
$form->addRule('firstName',
 'First name cannot be more than 50 characters', 'maxlength',
 50, 'client');

// The last name field
$form->addElement('text', 'lastName', 'Last Name');
$form->addRule('lastName', 'Please enter your last name',
 'required', FALSE, 'client');
$form->addRule('lastName',
 'Last name cannot be more than 50 characters', 'maxlength',
 50, 'client');

// The signature field
$form->addElement('textarea', 'signature', 'Signature');

// Add a submit button called submit and "Send" as the text for
// the button
$form->addElement('submit', 'submit', 'Register');

Note that it’s perfectly fine to add multiple rules to a field, as there may be

multiple requirements which must be met.

Now, we use an if-else condition to see whether the form has validated:

File: 7.php (excerpt)

// If the form is submitted...
if ($form->validate()) {

If it has validated, we use the applyFilter method to tell QuickForm to apply

the escapeValue filtering function defined above to every field of the form:

File: 7.php (excerpt)

 // Apply the escape filter to all fields
 $form->applyFilter('__ALL__', 'escapeValue');

We also apply the filter that encrypts the password:

File: 7.php (excerpt)

 // Apply the encryption filter to the password
 $form->applyFilter('password', 'encryptValue');

277

Sign Up Today

Now all that’s left is to perform the query, and the user is registered:

File: 7.php (excerpt)

 // Instantiate the MySQL class
 $db = &new MySQL($host, $dbUser, $dbPass, $dbName);

 // Construct a query using the submitted values
 $sql = "INSERT INTO user SET
 login='" . $form->getSubmitValue('login') . "',
 password='" . $form->getSubmitValue('password') . "',
 email='" . $form->getSubmitValue('email') . "',
 firstName='" . $form->getSubmitValue('firstName') . "',
 lastName='" . $form->getSubmitValue('lastName') . "',
 signature='" . $form->getSubmitValue('signature') . "'";

 // Perform the query
 $result = $db->query($sql);

 // If all went well, say thanks
 if (!$result->isError()) {
 echo 'Thank you. Registration completed';
 }
} else {
 // If not submitted, display the form
 $form->display();
}
?>

As you can see from the result in Figure 9.4, QuickForm makes it very easy to

build powerful forms. When was the last time you put together a registration

form like this one, building the HTML, defining full validation (even in JavaS-

cript), and handling the re-display of data upon user error in just over 100 lines

of code?

Chapter 9: Web Page Elements

278

Figure 9.4. Signing Up with QuickForm

There’s a lot more you can do with QuickForm, including configuring the HTML

formatting that’s used to display the form, handling other types of form fields

(drop-down menus, checkboxes, etc.), and even grouping fields (such as phone

numbers, where each part of the number is a separate text field). We’ll look at

279

Sign Up Today

dealing with file uploads in the next solution. For an example in which we

modify the appearance of QuickForm, see the “sign up” form developed in Volume

II, Chapter 1.

How do I upload files with PHP?
It’s often handy to be able to allow your site members to upload files to the

site—so that other members can download them, for example. With PHP the

solution is, as always, very easy. Note that full documentation is available in the

PHP Manual[7].

Setting the Maximum Upload Size

PHP has two settings in php.ini that limit the maximum size of file uploads.

The first, post_max_size, controls the maximum amount of data that can

be sent to a script with the POST method. By default this is set to eight

megabytes. The second setting, upload_max_filesize, specifically limits

the size of uploaded files, and is set to two megabytes by default. It may be

necessary to increase these two settings if you expect large file uploads.

See Appendix A for more details.

If you’re familiar with HTML forms, you’ll already know that the addition of a

file upload field to a form is a simple matter. You just have to add the attribute

enctype="multipart/form-data" to the form tag, and add the necessary input
tag to the form:

<input type="file" name="fieldname" />

When file upload is submitted to a PHP script, the file is stored safely in your

Website’s temporary directory (usually /tmp on a Linux system) and is given a

unique temporary file name, so that your PHP script can make use of it. The in-

formation about the file is contained in the $_FILES array, along with a key that

corresponds to the name of the form field (i.e. $_FILES['fieldname']. The in-

formation is stored as another array containing five values:

$_FILES['fieldname']['name']
the original name of the file

[7] http://www.php.net/features.file-upload.php

Chapter 9: Web Page Elements

280

http://www.php.net/features.file-upload.php
http://www.php.net/features.file-upload.php
http://www.php.net/features.file-upload.php

$_FILES['fieldname']['type']
the MIME type[8] of the file

$_FILES['fieldname']['tmp_name']
the temporary name and location of the file, which PHP created when the

file was uploaded

$_FILES['fieldname']['error']
0 if all went well (see the PHP Manual[9] for error codes)

$_FILES['fieldname']['size']
the size of the file in bytes

Here’s an example of the array of information for a file upload, as produced by

PHP’s print_r function:

Array
(
 [name] => php_logo.gif
 [type] => image/gif
 [tmp_name] => /tmp/php1BB.tmp
 [error] => 0
 [size] => 3872
)

Armed with this knowledge, let’s look at a simple script that accepts a GIF file

upload and copies it to the files subdirectory of the current directory:2

File: 8.php

<?php
// Include Magic Quotes filter
require_once 'MagicQuotes/strip_quotes.php';

// If the form has been submitted...
if (isset($_POST['submit'])) {

 // If the file is a GIF image...
 if ($_FILES['image']['type'] == 'image/gif') {

 // Copy the file from temporary storage to final destination
 copy($_FILES['image']['tmp_name'], "./files/" .

[8] http://www.hivemail.com/mime.types.phps

[9] http://www.php.net/features.file-upload.errors
2The current directory is, by default, the location of the PHP script that was requested by the browser.

281

How do I upload files with PHP?

http://www.hivemail.com/mime.types.phps
http://www.php.net/features.file-upload.errors
http://www.hivemail.com/mime.types.phps
http://www.php.net/features.file-upload.errors

 $_FILES['image']['name'])
 or die("Could not copy");

 // Display some information about the file
 echo "File Upload Complete
\n";
 echo "Name: " . $_FILES['image']['name'] . "
\n";
 echo "Size: " . $_FILES['image']['size'] . "
\n";
 echo "Type: " . $_FILES['image']['type'] . "
\n";
 echo "";
 }

// ... otherwise display the form
} else {
?>
<form method="POST"
 action="<?php echo $_SERVER['PHP_SELF']; ?>"
 enctype="multipart/form-data">
Upload a GIF image: <input type="file" name="image" />
<input type="submit" name="submit" value="Submit" />
</form>
<?php
}
?>

Hey presto, instant file upload! See the result for yourself in Figure 9.5.

Chapter 9: Web Page Elements

282

Figure 9.5. PHP Logo Uploaded Successfully

Be Sure it’s an Upload

Perhaps you have a more complicated script in which you passed the tempor-

ary file name to another PHP variable, performed various tricks, and then

forgot you’d left a hole in your code—a hole that allowed a user to modify

the contents of the PHP variable with a different file name! It’s worth using

the PHP function is_uploaded_file to double-check that the uploaded

file really is the right one before you do anything with it, such as copying it

to a public directory where others can see it. In the past, people have tricked

PHP scripts into copying a file containing a password, rather than the image

that was actually uploaded, to a public directory. Be safe, rather than sorry.

Using QuickForm for File Uploads
Let’s put our friend QuickForm back into action, and learn to store the files in

MySQL.

The construction of the form is very similar to the example in “How do I handle

HTML forms in PHP?”:

283

Using QuickForm for File Uploads

File: 9.php (excerpt)

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

// Include the QuickForm class
require_once 'HTML/QuickForm.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// A function to apply mysql_real_escape_string
function escapeValue($value)
{
 return mysql_real_escape_string($value);
}

// Instantiate QuickForm
$form = new HTML_QuickForm('imageUpload', 'POST');

// The file upload field
$form->addElement('file', 'image', 'Select Image:');
$form->addRule('image', 'The maximum file size is 56KB',
 'maxfilesize', 57344);
$form->addRule('image', 'The file must be an image', 'mimetype',
 array('image/gif', 'image/jpeg', 'image/pjpeg',
 'image/png'));
$form->addRule('image', 'No file selected.', 'uploadedfile', NULL,
 'client');

// The submit button
$form->addElement('submit', 'submit', 'Upload');

Note that we’ve applied the mimetype rule, which allows us to pass an array of

allowed MIME types that users can upload3.

Now things get interesting. First, we fetch the details of the file and load its

contents into a PHP variable using PHP’s file_get_contents function.

3Note that JPEG files can be reported as image/jpeg or image/pjpeg, depending on the

browser; thus, both are included in the list of acceptable types.

Chapter 9: Web Page Elements

284

Although calling the applyFilter method escapes all the text values submitted

to the form, it does not escape the values associated with the file upload. We

must, therefore, apply the escapeValue function to each of these values (including

the binary file data) as we retrieve them from the $form object:

File: 9.php (excerpt)

if ($form->validate())
{
 // Apply the escape filter to all fields
 $form->applyFilter('__ALL__', 'escapeValue');

 // Instantiate the MySQL class
 $db = &new MySQL($host, $dbUser, $dbPass, $dbName);

 // Fetch the details of the file
 $name = escapeValue($form->_submitFiles['image']['name']);
 $size = escapeValue($form->_submitFiles['image']['size']);
 $type = escapeValue($form->_submitFiles['image']['type']);

 // Fetch file data
 $contents = file_get_contents(
 $form->_submitFiles['image']['tmp_name']);

 // Escape binary data
 $contents = escapeValue($contents);

 $sql = "INSERT INTO image SET
 name='$name',
 size='$size',
 type='$type',
 contents='$contents'";

 // Perform the query
 $result = $db->query($sql);

 // If all went well, say thanks
 if (!$result->isError()) {
 echo 'File Uploaded Successfully';
 }
} else {
 $form->display();
}
?>

285

Using QuickForm for File Uploads

Note that when fetching the details of the file, we accessed one of QuickForm’s

properties (_submitFiles) directly, which is technically bad practice when using

objects (if the variable name changes in a future version of QuickForm, this will

break my script). Unfortunately, QuickForm doesn’t currently offer a mechanism

to access this information, so we’re forced to resort to this work around.

Now that we’ve uploaded some files and stored them in the database, what about

displaying them?

File: 10.php

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Define SQL statement to fetch image information
// but NOT CONTENTS!!!
$sql = "SELECT image_id, name, size, type FROM image
 ORDER BY name";

// Fetch the result object
$result = $db->query($sql);

// A loop for each row of the result set
while ($row = $result->fetch()) {
 echo '
';
 echo $row['name'] . ' : ' . $row['size'] . ' : ' .
 $row['type'] . '
';
}
?>

The above code lists the images in the database. It then generates some HTML

that uses the img tag to specify another PHP script, and it’s this that actually

displays the image. Note that we’ve been careful not to select the contents of the

image—just the information we need for each one. Otherwise, this would eat up

PHP’s memory very quickly.

Here’s the HTML it generates:

Chapter 9: Web Page Elements

286

mysql.png : 1107 : image/png

php_logo.gif : 3872 : image/gif

sitepoint_arrow.gif : 508 : image/gif

Now, look at 11.php, which shows the code that’s used to generate the image:

File: 11.php

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate the MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// If there's not image, die
if (!isset($_GET['id'])) {
 die('No image selected');
}

// Escape the string, for good practice
$_GET['id'] = mysql_real_escape_string($_GET['id']);

// An SQL statement to get the contents and MIME type of the image
$sql = "SELECT * FROM image WHERE image_id='" . $_GET['id'] . "'";

// Fetch the data
$result = $db->query($sql);
$row = $result->fetch();

// Use a header to tell the browser what MIME type the image is
header('content-disposition: inline; filename=' . $row['name']);
header('content-type: ' . $row['type']);
header('content-length: ' . $row['size']);

// Display the contents
echo $row['contents'];
?>

287

Using QuickForm for File Uploads

We used the header function to send to the Web browser instructions (HTTP

headers) indicating the name, type, and size of the image file we were about to

send. See Chapter 4 for more information on the headers used here.

How do I build effective navigation with
PHP and MySQL?

A solid navigation system is one of the most critical elements of a Website. Get

it right, and you’ll have visitors surfing away for hours. Get it wrong, and you

may f ind yoursel f making a cameo appearance at

http://www.webpagesthatsuck.com/. The good news is that this is well-trodden

ground; the ingredients for making a successful navigation system have been

clearly defined.

Here, we’ll learn how to put together two of the most solid and widely used types

of navigation for a hierarchical category structure: crumb trail navigation and

the tree menu.

Note that the approach to database structuring that I’ve used here is known as

the adjacency list model. This approach is perhaps the easiest to understand

and is widely used. Yet, often it’s not the best way to store hierarchical information

in a database, because extensive processing is required to analyze the data and

reconstruct the tree (using either recursive PHP functions or multiple database

queries). If you need to store large quantities of hierarchical data, a better model

is the modified preorder tree traversal model (also known as nested sets),

described in the article Storing Hierarchical Data in a Database[11].

PEAR::Tree[12] provides a useful class for dealing with nested sets. See the section

called “Further Reading” at the end of this chapter for more information.

Hansel and Gretel
Crumb trail navigation is designed to help users understand where they are

within a site, and help them get back to where they came from. You’ve probably

seen crumb trail navigation somewhere on the Internet; if you visit SitePoint’s

[11] http://www.sitepoint.com/article/1105

[12] http://pear.php.net/Tree

Chapter 9: Web Page Elements

288

http://www.webpagesthatsuck.com/
http://www.sitepoint.com/article/1105
http://pear.php.net/Tree
http://www.webpagesthatsuck.com/
http://www.sitepoint.com/article/1105
http://pear.php.net/Tree

Advanced PHP forum[13], for example, you’ll see crumb trail navigation along

the top, as shown in Figure 9.6.

Figure 9.6. Bread Crumbs at SitePoint

The text between each forward slash is a “crumb” that, when clicked on, takes

the user to a specific location within the site.

They’re called crumbs, by the way, as a reference to the Grimms’ fairy tale Hansel
and Gretel—the story of two children who, you might remember, used bread

crumbs to mark their path through a forest so they could find their way home.

Lost in the Trees
Tree menus are ubiquitous in software applications, having been applied to

everything from interfaces in text-driven DOS applications to the “Start” button

in Windows and Linux equivalents. On the Web, tree menus have been applied

to mixed effect, mainly using JavaScript, which suffers from varying support.

However, there’s nothing to stop you building tree menus based purely on HTML,

in which clicking on a menu item updates the menu.

There are many approaches to dealing with tree menus. To make your life easier,

I’ve put together a set of classes that provide tree data structures in various forms.

I’ll leave it up to you to decide how you’ll build your HTML (or JavaScript) menu

with them.

A Recursive Table Structure
Not only are there various approaches to designing menus themselves, there are

also many strategies for storing the information that’s required to build the menu

in the first place. Some may argue that text files are best, some prefer complex

[13] http://www.sitepointforums.com/forumdisplay.php?forumid=147

289

Lost in the Trees

http://www.sitepointforums.com/forumdisplay.php?forumid=147
http://www.sitepointforums.com/forumdisplay.php?forumid=147

PHP arrays, others champion XML documents, still others plumb for using a

database. Each approach has advantages and disadvantages, although the future

may see XML become the prevalent mechanism for storing this kind of informa-

tion as it becomes an easier format for developers to work with.

Here, we’ll adopt the last approach: storing the data in MySQL. This method

makes building and fetching menus easy—it’s simply a case of inserting new rows

into a table, and selecting them later. It also makes the construction of the final

menu in different “styles” easy; other approaches, such as text files, may tie us

to a particular menu design and can require some heavy duty text editing during

development.

The disadvantage of MySQL is that, without handy stored procedures to help

us, we’ll have to fetch the entire contents of the menu table in one go and use

PHP to manipulate them to reflect the structure we desire. Performing multiple

queries to build a menu can result in a drag on your application, which grows

with the addition of each new menu item. The other problem with MySQL is

the issue of editing and deleting menu items, which will impact the relationships

between “branches” of the menu. We’ll solve the former problem here, and leave

you to work out how to do the latter.

Let’s look again at the table structure we’ll use:

CREATE TABLE menu (
 menu_id INT(11) NOT NULL AUTO_INCREMENT,
 parent_id INT(11) NOT NULL DEFAULT '0',
 name VARCHAR(255) NOT NULL DEFAULT '',
 description TEXT NOT NULL,
 location VARCHAR(255) NOT NULL DEFAULT '',
 PRIMARY KEY (menu_id),
 UNIQUE KEY location (location)
)

In this table, we use a recursive relationship between rows; each row has its own,

unique menu_id (the primary key for the table), and a field called parent_id
that relates the row to its “parent” row in the same table. This way, we can define

menu items that appear “below” other menu items to create a tree structure. The

default parent_id of 0 is used to define “root” nodes that have no parent (top

level menu items, in other words).

Of the other fields, name is the name of the menu item itself, as it would appear

on the menu. The description allows us to give visitors more information about

each menu item. More important is the location field, which we’ve defined as

Chapter 9: Web Page Elements

290

UNIQUE (i.e. no two rows can have the same value for location). Using this field,

we can define URLs (or fragments of URLs) to which users will be directed when

they click on a menu item. Figure 9.7 shows the table with some sample values.

Figure 9.7. The menu Table

Now that we’ve prepared the table itself, we need some code to read the contents

and construct a list of menu items that we can then “wrap up” in HTML. As

there are a few different “styles” of navigation you may want to use on a site,

we’ll use classes to build the lists we need independent of formatting.

To avoid boring you with minutiae, we won’t explore the entire contents of each

class in detail. Instead, we’ll look at how you can use the API of each class, which

is very simple. That is, after all, the joy of using classes—you don’t have to care

about what’s going on behind the scenes, and can simply concentrate on your

own code.

All the menu classes are contained in a single file, Menu.php, which you’ll find

with the code for this chapter. In contains the following classes:

Menu This is a base class that fetches items from the data-

base and provides a few reusable methods (such as

291

A Recursive Table Structure

getMenu), which are intended for child classes of Menu.

You shouldn’t need to instantiate Menu directly; in-

stead, use one of the children. We’ll take a look at this

in more detail later, as you may need to modify it

should you use a table structure that’s different from

the one we’ve used here.

BreadCrumb (Extends Menu) If you use this, you’ll be provided a

list of “crumbs”, beginning with the “root” crumb.

ChildNodes (Extends Menu) This class creates a list of all menu

items occurring one level below a given menu item. It

could be used to provide “drop down” menus for

crumb trail elements, for example.

ContextMenu (Extends Menu) This class displays all menu items at

the same level as the current menu item, and the

children exsiting one level below the current menu

item. This could be used in conjunction with

BreadCrumb to allow your site’s visitors to traverse

your menu system both “horizontally” and “vertically.”

CollapsingTree (Extends Menu) This class will always display all root

menu items as well as all “open” sub-menus, much like

the “Start” menu in Windows.

FullTree This class simply returns the entire menu structure as

a tree, which could be useful if you were building a

JavaScript-based menu that needed to know the entire

menu structure at once.

MenuItem This is a standalone class which is used to create

MenuItem objects from the Menu classes. You’ll get lots

of these back from the Menu classes, stored in arrays.

They’ll contain data from rows in the table, such as

the important “name” and “location” fields. We’ll take

a closer look at this later; you’ll need to know what’s

happening here should you use a different table

structure in your own applications.

Marker (Extends MenuItem) This is a special form of the

MenuItem class, in that it’s used to mark the beginning

Chapter 9: Web Page Elements

292

and end of a set of menu items that occupy the same

level in the tree structure.

One thing to note about the Menu classes is that they perform a full table scan

on the menu table and fetch the entire contents in one go. Earlier I advised not

to do full table scans, but in this particular instance it’s a choice between the

lesser of two evils, the alternative method being to use many recursive queries,

which will drastically slow your application’s performance.

You need to be aware, however, that the more rows you have in your table, the

more memory PHP will need to handle these classes. As menus don’t change

frequently, you can get around this by using some form of caching—a subject

we’ll discuss in Volume II, Chapter 5.

Now that I’ve introduced you to the classes, the first thing is not to panic! Let’s

look at each one with an example that will show you how easy these classes are

to use.

Feeding the Birds
First up, let’s take a look at the BreadCrumb class. This is how we fetch the menu:

File: 12.php (excerpt)

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Set the base location for this page relative to Web root
// MODIFY THIS!!!
$baseUrl = '/sitepoint/WebPageElements/12.php';

// Fetch the location framement to match against menu table
$location = str_replace($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate new BreadCrumb menu passing the MySQL connection
// and location
$crumbs = &new BreadCrumb($mysql, $location);
?>

Let’s review the code. First, we built the connection to the database as usual. The

next two commands grab the fragment of the URL that allows us to match the

request against our menu table.

293

Feeding the Birds

Note that if you’re trying this code yourself, you’ll need to modify the $baseUrl
variable to fit your environment. With $baseUrl defined, we can fetch the full

URL, relative to the Web root, using $_SERVER['PHP_SELF'], then strip out the

$baseUrl. This leaves us with a string we can match against the location field

in the menu table. I took this approach for the sake of example, as it allowed me

to demonstrate the menu with a single script, while taking advantage of Apache’s

“look back” functionality (which we’ll discuss in more detail later in this chapter).

Using this, we can fetch the path fragment that appears to the right of the script

name in the URL, and insert it into our PHP script. For example, consider this

URL:

http://localhost/sitepoint/WebPageElements/12.php/products/

The actual script name is 12.php; I can examine the additional /products/
fragment to decide on the correct menu to display. You’re not required to do

things this way, though. You might, for example, have multiple PHP scripts that

use the same code—perhaps an include file—to display the correct menu:

http://www.example.com/products/index.php

http://www.example.com/news/index.php

Adopting that approach, you would likely use the PHP variable

$_SERVER['PATH_INFO'] to obtain the script location, and choose a menu based

on that.

But let’s move on with our single-script example that uses a URL suffix for the

menu location. Next comes the line in which all the action happens:

$crumbs = &new BreadCrumb($mysql, $location);

This instantiates the BreadCrumb class and passes it the MySQL object, which it

uses to fetch from the menu table, using the $location variable to find the user’s

current location within the menu. The BreadCrumb class is primed to do all the

work and build the menu automatically.

So where’s the menu? Well, I couldn’t make it too easy, could I? The generation

of the menu in HTML, JavaScript, or whatever, is up to you. All the BreadCrumb
class does is return a list of menu items which you then need to format. Here’s

one way you could do it:

File: 12.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Chapter 9: Web Page Elements

294

http://localhost/sitepoint/WebPageElements/12.php/products/
http://www.example.com/products/index.php
http://www.example.com/news/index.php
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> BreadCrumb Menu Example </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
body, a, li
{
 font-family: verdana;
 font-size: 11px;
}
h1
{
 font-family: verdana;
 font-size: 15px;
 color: navy
}
.breadCrumbs
{
 margin-bottom: 10px;
 border-style: dashed;
 border-width: 2px;
 padding: 4px;
 width: 400px;
}
</style>
</head>
<body>
<h1>Bread Crumbs Menu</h1>
<div class="breadCrumbs">
<?php
// Display the breadcrumbs
while ($item = $crumbs->fetch()) {
 if ($item->isRoot()) {
 echo "location() . "\">" .
 $item->name() . "";
 } else {
 echo " > location() . "\">" .
 $item->name() . "";
 }
}
?>
</div>
Sample Urls:

<a href="<?php echo $baseUrl; ?>/contact/">Contact

<a href="<?php echo $baseUrl; ?>/about/folio/">Folio

295

Feeding the Birds

http://xmlns="http://www.w3.org/1999/xhtml"

<a href="<?php echo $baseUrl; ?>/products/">Products

<a href="<?php echo $baseUrl; ?>/products/books/fiction/">Fiction

</body>
</html>

Simplifying that a little, the actual work of menu construction happens here:

while ($item = $crumbs->fetch()) {
 if ($item->isRoot()) {
 echo "location() . "\">" .
 $item->name() . "";
 } else {
 echo " > location() . "\">" .
 $item->name() . "";
 }
}

The iterator method fetch is used to read through the list of menu items, return-

ing FALSE when it reaches the end (see Volume II, Chapter 7 for more information

about iterators). Each $item returned is an instance of the MenuItem class, which

we’ll look at shortly. In brief, these are the methods used above to build the links

for the menu:

isRoot If this is a root of a menu tree, returns TRUE.

location Returns the location field from the menu table.

name Returns the name field from the menu table.

There’s also the method description, which we could use for a popup description

(e.g. with the link’s title attribute).

Figure 9.8 shows how the resulting links appear in a browser.

Chapter 9: Web Page Elements

296

Figure 9.8. Crumb Trail Navigation

Note that I’ve added some sample URLs to demonstrate the navigation, as bread

crumbs are designed to allow you to find your way back, not your way forward.

Staying in Context
As you’ve already seen, using the BreadCrumb class provides an easy way for vis-

itors to get to locations that occur at higher levels in the navigation hierarchy

than their current position. However, this functionality isn’t of much use unless

we give visitors the ability to delve deep into that hierarchy to begin with. Next,

we’ll put the ContextMenu into action. The code included here concentrates on

the important parts:

File: 13.php (excerpt)

// Set the base location for this page relative to Web root
// MODIFY THIS!!!
$baseUrl = '/sitepoint/WebPageElements/13.php';

// Fetch the location framement to match against menu table
$location = str_replace($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate new BreadCrumb menu passing the MySQL connection
// and location

297

Staying in Context

$crumbs = &new BreadCrumb($db, $location);

// Instantiate the ContextMenu class
$menu = &new ContextMenu($db, $location);

This time, we’ve built both the BreadCrumb class and the ContextMenu class. This

actually doubles the number of queries being performed, which can be avoided

by the creation of yet more classes, but in the interests of simplicity we’ll avoid

it here.

The loop we can use to build the bread crumbs is the same as before. The

ContextMenu is slightly different, though:

File: 13.php (excerpt)

<?php
// Display the context menu
while ($item = $menu->fetch()) {
 if ($item->isStart()) {
 echo "";
 } else if ($item->isEnd()) {
 echo "";
 } else {
 echo "location() . "\">" .
 $item->name() . "");
 }
}
?>

Here, we’ve used two new methods: isStart and isEnd. Only the Marker class

will return TRUE for either of these methods. Marker is a “fake” menu item that

announces the start or end of a set of menu items of the same level. This allows

us to build HTML that has opening and closing tags, such as unordered lists in

the example above.

As shown in Figure 9.9, the context-sensitive menu shows users all the items oc-

curring at the same level within the current branch of the tree, as well as the

children of the item they’re currently viewing. Combined with the crumb trail

navigation, this allows users to get to any location that’s registered in the menu
table.

Chapter 9: Web Page Elements

298

Figure 9.9. Context Sensitive Menu with Bread Crumbs

Drop Down Menu
Using the ChildNodes class, we can attach a drop down menu to the end of the

crumb trail navigation.

File: 14.php (excerpt)

// Set the base location for this page relative to Web root
// MODIFY THIS!!!
$baseUrl = '/sitepoint/WebPageElements/14.php';

// Fetch the location framement to match against menu table
$location = str_replace($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate new BreadCrumb menu passing the MySQL connection
// and location
$crumbs = &new BreadCrumb($db, $location);

// Get the number of breadcrumbs
$size = $crumbs->size();

// Instantiate the ChildNodes class
$menu = &new ChildNodes($db, $location);

299

Drop Down Menu

Notice the size method can be used with any menu class to fetch the number of

items in the menu. In this case, we need to know the number of crumbs so we

can attach the drop down menu in the correct place:

File: 14.php (excerpt)

<?php
// Display the breadcrumbs
$i = 1;
while ($crumb = $crumbs->fetch()) {
 echo "<td class=\"menu\">";
 echo "<a class=\"root\" href=\"" . $baseUrl .
 $crumb->location() . "\">" . $crumb->name() .
 "
";
 // Check if this is now current place to attach the drop down
 if ($i == $size) {
 // Display the child nodes
 while ($item = $items->fetch()) {
 echo "location() . "\">" .
 $item->name() . "
";
 }
 }
 $i++;
 echo "</td>";
}
?>

Figure 9.10 shows the drop down menu in action.

Chapter 9: Web Page Elements

300

Figure 9.10. Crumb Trail with Drop Down Menu

Note that we build the ChildNodes from the current location:

$menu = &new ChildNodes($db, $location);

But it doesn’t have to be this way. We could, for example, do this:

while ($crumb = $crumbs->fetch()) {
 $menu = &new ChildNodes($db, $crumb->location());
}

This builds a child menu for each crumb, rather than using the current value of

$location. The advantage of doing this is that we could display the drop down

menus with JavaScript, for example, to make them expand when visitors move

the mouse over each crumb.

Collapsing Tree Menu
Next up is the CollapsingTree class. The collapsing tree will always display the

root elements of the menu, as well as the children of the current location and all

entries between the current location and the root. This is similar to the “Start”-

type menus in Windows and Linux; as you navigate further down the menu tree,

previous menus you’ve used to navigate stay open. Be aware that this class has

301

Collapsing Tree Menu

the most work to do, so it will be slower than others, though it offers perhaps

the most useful navigation functionality.

The way we fetch the menu is the same as the earlier examples:

File: 15.php (excerpt)

// Set the base location for this page relative to Web root
// MODIFY THIS!!!
$baseUrl = '/sitepoint/WebPageElements/15.php';

// Fetch the location framement to match against menu table
$location = str_replace ($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate new BreadCrumb menu passing the MySQL connection
// and location
$crumbs = &new BreadCrumb($db, $location);

// Instantiate the CollapsingTree class
$menu = &new CollapsingTree($db, $location);

With the menu stored as an object, we can build the page as before. This time,

to render the menu items themselves, we’ll use some other “tricks” to give the

navigation a slightly different appearance:

File: 15.php (excerpt)

// Define some bullet for menu items, in this case just spaces
$bullet = ' ';

// Set the current depth of the menu
$depth = 0;

// Display the collapsing tree menu
while ($item = $menu->fetch()) {
 // If this is the start of a new menu branch, increase the depth
 if ($item->isStart()) {
 $depth++;
 // If this is the end of a menu branch, decrease the depth
 } else if ($item->isEnd()) {
 $depth--;
 // Display a menu item
 } else {
 // Reset the bullets
 $bullets = '';

 // Build the bullets based on the current depth

Chapter 9: Web Page Elements

302

 for ($i = 0; $i <= $depth; $i++) {
 $bullets .= $bullet;
 }

 // Build onMouseOver description
 $mouseOver = " onMouseOver=\"window.status='" .
 addslashes($item->description()) .
 "';return true\" " .
 "onMouseOut=\"window.status='';return true\"";

 // Display the menu item with bullets
 echo $bullets . "location() .
 "\"" . $mouseOver . ">" . $item->name() . "
";
 }
}

Here, we track the depth of the current menu item in the hierarchy by watching

for start and end Markers. Depending on the depth of a menu item, we can

modify the “bullet” for each item; in this case, I’ve used an HTML space entity

(), to give the appearance of indentation4. The result is shown in Fig-

ure 9.11.

Figure 9.11. Collapsing Menu

The collapsing menu is intended for menus that will be entirely rendered with

PHP. For a JavaScript solution, you’ll probably want the next class.

Full Tree Menu
The FullTree class simply fetches the entire menu as a structure that could be

used to build a JavaScript (or other) menu—it suits any system that will need

complete knowledge of the menu. Given browser compatibility issues, I’m no big

4In a practical implementation, it would be better to indent the menu with CSS margins.

303

Full Tree Menu

fan of JavaScript, so I’ll demonstrate the FullTree class using simple (but reliable)

HTML. Having said that, it would be quite feasible to use this class to generate

a menu for use with JavaScript such as that found at http://www.treemenu.com/

or PEAR::HTML_TreeMenu[15].

Firing up the FullTree class is the same as always (I’ll omit the crumb trail this

time):

File: 16.php (excerpt)

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Set the base location for this page relative to Web root
// MODIFY THIS!!!
$baseUrl = '/test/WebPageElements/16.php';

// Fetch the location framement to match against menu table
$location = str_replace($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate the Collapsing Tree class
$menu = &new FullTree($db, $location);

Constructing the menu introduces one other method from the MenuItem class

that you haven’t seen yet:

File: 16.php (excerpt)

// Display the collapsing tree menu
while ($item = $menu->fetch()) {
 // If this is the start of a new menu branch, increase the depth
 if ($item->isStart()) {
 echo '';
 // If this is the end of a menu branch, decrease the depth
 } else if ($item->isEnd()) {
 echo '';
 // Display a menu item
 } else {
 // Display the menu item with bullets
 echo "location() . "\">";
 if ($item->isCurrent()) {
 echo '>> ' . $item->name() . ' <<';
 } else {
 echo $item->name();
 }

[15] http://pear.php.net/HTML_TreeMenu

Chapter 9: Web Page Elements

304

http://www.treemenu.com/
http://pear.php.net/HTML_TreeMenu
http://www.treemenu.com/
http://pear.php.net/HTML_TreeMenu

 echo "";
 }
}

Here, we’ve used the isCurrent method so we can mark the user’s current location

in the menu. I’ll summarize all the methods available from the MenuItem class

in a moment.

Figure 9.12 shows the full tree menu in all its splendor.

Figure 9.12. Full Tree Menu

Handling Different Table Structures
Now, this is all well and good if you’re using the same table structure that I am,

but what if your column names are different? In the class file for the Menu class,

the column names are specified as constants:

File: UI/Menu.php (in SPLIB) (excerpt)

@define('MENU_TABLE', 'menu'); # Name of menu table
@define('MENU_ID', 'menu_id'); # ID of menu item
@define('MENU_PARENT_ID', 'parent_id'); # Parent ID column
@define('MENU_NAME', 'name'); # Name of menu item
@define('MENU_DESCRIPTION', 'description'); # Description of item
@define('MENU_LOCATION', 'location'); # URI of menu

305

Handling Different Table Structures

This gives you the option to override any of these constants from within your

code, and allows you to use a table and columns with different names to those

used here.

Summary
The following is a “mock” script that demonstrates the use of all the Menu classes

and their methods. Each method is described with a comment.

File: 17.php

<?php
// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Build the correct $location variable e.g.
$baseUrl = '/index.php';
$location = str_replace($baseUrl, '', $_SERVER['PHP_SELF']);

// Instantiate the menu, one of the following
$menu = &new BreadCrumb($mysql, $location);
$menu = &new ChildNodes($mysql, $location);
$menu = &new ContextMenu($mysql, $location);
$menu = &new CollapsingTree($mysql, $location);
$menu = &new FullTree($mysql, $location);

// If you need it, find out how many items in the menu
$size = $menu->size();

// Loop through the items
while ($item = $menu->fetch()) {
 if ($item->isStart()) {
 // This is a Marker to show the START of a submenu
 } else if ($item->isEnd()) {
 // This is a Marker to show the END of a submenu
 } else {
 if ($item->isCurrent()) {
 // This is a menu item corrsponding to the current location
 }
 $item->id(); // The menu_id from table menu
 $item->parent_id(); // The parent_id from table menu
 $item->name(); // The name field from table menu
 $item->description(); // The description field from table menu
 $item->location(); // The location field from table menu
 }

Chapter 9: Web Page Elements

306

}
?>

How do I make “search engine friendly”
URLs in PHP?

In a typical PHP application, you might have URLs that look like this:

http://www.example.com/article.php?id=123&page=4

The id GET variable in the URL identifies an article from your database, while

the page variable tells the script which page of the article to display. There’s one

small problem here, though; many search engines ignore GET variables, skipping

everything that appears after the ? in the URL. Google and AllTheWeb are two

exceptions to this rule, but even they are “cautious” about what they will and

won’t index.

To solve this problem, and simultaneously develop a URL structure that’s easier

for humans to work with, it’s preferable to have URLs like this:

http://www.example.com/article/123/4

There are two steps to achieving this improved URL format:

� convert the query string variable(s) (?id=123&page=4) to a path-style format

(/123/4)

� mask the name of the PHP script (/article.php) so that it looks like a

standard directory (/article)

In the sections that follow, I’ll introduce and demonstrate the techniques that

will let you accomplish this on an Apache server.

Further reading for building Search Engine Friendly URLs and Apache’s

mod_rewrite is provided in the section called “Further Reading”.

Doing Without the Query String
To Web developers like you and I, query strings like ?id=123&page=4 are perfectly

easy to read. But typical Web users—and many search engines—are baffled by

this mixture of symbols and information.

307

How do I make “search engine friendly” URLs in PHP?

http://www.example.com/article.php?id=123&page=4
http://www.example.com/article/123/4

One particularly nice feature of the popular Apache server is that, when presented

with a URL like http://www.example.com/article.php/123/4, it’s smart enough to

recognize that article.php is the filename and everything that follows it

(/123/4), which we’ll call the URL suffix, can be ignored. The trick, of course,

is to get PHP to see that URL suffix and read the values contained therein.

Fortunately, while Apache is conveniently blind to the URL suffix, PHP is not.

PHP provides a few variables which can be useful to gather this information,

namely $_SERVER['PATH_INFO'], $_SERVER['PHP_SELF'],

$_SERVER['REQUEST_URI'] and $_SERVER['SCRIPT_NAME']. The following script

demonstrates them in action:

File: 18.php

<?php
// Examine some pre-defined variables
echo '$_SERVER[\'PATH_INFO\']: ' . @$_SERVER['PATH_INFO'] .
 '
';
echo '$_SERVER[\'PHP_SELF\']: ' . @$_SERVER['PHP_SELF'] .
 '
';
echo '$_SERVER[\'REQUEST_URI\']: ' . @$_SERVER['REQUEST_URI'] .
 '
';
echo '$_SERVER[\'SCRIPT_NAME\']: ' . @$_SERVER['SCRIPT_NAME'] .
 '
';
?>

If you put this file on your server and load it as, say, http://www.example.com/php-

anth/WebPageElements/18.php, the output it produces is:

$_SERVER['PATH_INFO']:
$_SERVER['PHP_SELF']: /phpanth/WebPageElements/18.php
$_SERVER['REQUEST_URI']: /phpanth/WebPageElements/18.php
$_SERVER['SCRIPT_NAME']: /phpanth/WebPageElements/18.php

At first glance, these variables aren’t especially inspiring. But look what happens

when we add a URL suffix and query string to the URL, such as http://www.ex-

ample.com/phpanth/WebPageElements/18.php/this/is?a=test:

$_SERVER['PATH_INFO']: /this/is
$_SERVER['PHP_SELF']: /phpanth/WebPageElements/18.php/this/is
$_SERVER['REQUEST_URI']:
 /phpanth/WebPageElements/18.php/this/is?a=test
$_SERVER['SCRIPT_NAME']: /phpanth/WebPageElements/18.php

Now we’re talking! In particular, $_SERVER['PATH_INFO'] looks like the best

place to grab the values hidden in the URL suffix. Unfortunately, when we imple-

Chapter 9: Web Page Elements

308

http://www.example.com/article.php/123/4,
http://www.example.com/php-anth/
http://www.ex-ample

ment the second part of our URL simplification (by hiding the name of the PHP

script), PHP will no longer create this variable for us, so we can’t rely on it at

this stage.

To help fetch variables from the URL suffix, I’ve created the class PathVars for

you. This class automatically analyzes the URL requested by the browser and

fetches all the values in the URL suffix. The class uses the $_SERVER['RE-
QUEST_URI'] variable to see the URL suffix, which, though it may not seem like

the obvious choice, is the only one of the four variables above that remains reliable

when we hide the name of the PHP script later.

To save you having to read through the code of the PathVars class (you can find

it in the code archive if you want), I’ll simply show it to you it in action. To begin

with, we instantiate the PathVars class, giving it the value of

$_SERVER['SCRIPT_NAME'], which is the actual path of the script:

File: 19.php (excerpt)

<?php
// Include the PathVars class
require_once 'Url/PathVars.php';

echo '$_SERVER[\'REQUEST_URI\'] is ' . $_SERVER['REQUEST_URI'] .
 '
';
echo '$_SERVER[\'SCRIPT_NAME\'] is ' . $_SERVER['SCRIPT_NAME'] .
 '
';

// Instaniate PathVars
$pathVars = &new PathVars($_SERVER['SCRIPT_NAME']);

PathVars compares the script path it is given with the value of

$_SERVER['REQUEST_URI'] and produces a list of values, which you can then

access:

File: 19.php (excerpt)

echo "Iterate over Extracted Variables
\n";
while ($var = $pathVars->fetch()) {
 echo $var . "
\n";
}

echo "Fetch Variable 3 by Index
\n";
echo $pathVars->fetchByIndex(3);
?>

309

Doing Without the Query String

You have the option of using fetch to iterate through the extracted path variables,

or you can use fetchByIndex, which returns the variable for which you supplied

the index. You can also use size to find out how many variables the object has

found. Finally, fetchAll can be used to return the complete array of path vari-

ables. Figure 9.13 shows the output if we’re given a URL such as http://www.ex-

ample.com/phpanth/WebPageElements/19.php/this/is/?a=test/of/the/class/.

Figure 9.13. Extracted Path Variables

In particular, note that the PathVars class detected and ignored the query string

style segment of the URL (?a=test). This was achieved by design, so that the

presence of a query string (e.g. a session identifier automatically generated by

PHP) does not interfere with the variables in your URL suffix.

Hiding PHP Scripts with ForceType
Having successfully moved query string variables to the URL suffix, all we need

to do to achieve search-engine friendly URLs is to hide the filename of the PHP

script. That is, we want to transition from http://www.example.com/art-
icle.php/123/4 to http://www.example.com/article/123/4. There are actually

two distinct ways to do this; in this section I’ll explain the most straightforward

of the two, and I’ll cover the second method in the next. As with the method for

reading URL suffixes, both techniques rely on useful features of the Apache Web

server.

Chapter 9: Web Page Elements

310

http://www.ex-ample
http://www.example.com/art-icle
http://www.example.com/article/123/

The most obvious way to change the filename that appears in the URL is to re-

name the file; that is, we could simply rename the script article.php to article.

Of course, without the .php extension, Apache has no way of knowing that the

file is a PHP script. By default, therefore, it will simply send the unparsed PHP

code straight to the browser—definitely not what we want!

To correct this, we need to tell Apache specifically to treat the file as a PHP script.

This can be done easily with a .htaccess file, but you first need to make sure

Apache is configured to allow it. If you’re working on your own server, you simply

need to ensure that AllowOverride is set to All in Apache’s httpd.conf file. If

you’re working with a Web host, you’ll need to ask them to do the honours. Once

that’s done, drop the following code into a file named .htaccess, and save it in

the same directory as the script you want to rename:

File: forcetype/.htaccess

<Files article>
 ForceType application/x-httpd-php
</Files>

This directive tells Apache to treat the file named article as a PHP script.

Simple, right?

To try this out yourself, check out the forcetype directory in the code archive

for this chapter. I’ve set it up with a script called article and a .htaccess file

that identifies it as a PHP script. Here’s the code for article:

File: forcetype/article

<?php
// Include the PathVars class
require_once 'Url/PathVars.php';

// Create instance of PathVars
$pathVars = new PathVars($_SERVER['SCRIPT_NAME']);

echo 'This is the article script
';

if ($pathVars->fetchByIndex(0)) {
 echo 'The article ID is ' . $pathVars->fetchByIndex(0);
}
?>

Try loading it with an article ID in the URL suffix (e.g. http://www.ex-

ample.com/phpanth/WebPageElements/forcetype/article/123). If Apache is cor-

311

Hiding PHP Scripts with ForceType

http://www.ex-ample

rectly configured to allow the ForceType directive in the .htaccess file, it should

correctly display the ID.

Hiding PHP Scripts by Rewriting URLs
Although ForceType is a neat solution that does the trick, there is an alternative

that offers more power and completely eliminates the need for any part of the

PHP script filename to appear in the URL. That alternative is mod_rewrite. This

is an optional Apache module that will need to be installed on your server, and

as with ForceType, you’ll need AllowOverride All set for your Website in ht-
tpd.conf.

Generally speaking, mod_rewrite lets you detect browser requests for particular

URLs and instruct Apache to treat them as if they were for a different URL en-

tirely. In the simplest case, you could tell Apache to detect requests for, say,

/article and treat them as if they were requests for /article.php. Of course,

this is no different from what we achieved with ForceType above, so let’s go one

step further and see just how flexible mod_rewrite really is!

Instead of detecting a specific URL, we can use mod_rewrite to detect any URL

and point the request at a single PHP file. Let’s look at a sample .htaccess file

that does this:

File: rewrite/.htaccess

RewriteEngine On
RewriteRule !(\.gif|\.jpe?g|\.css|\.php|^images/.*|^files/.*)$ ind
ex.php [nocase,last]

The RewriteEngine line simply tells Apache to switch on mod_rewrite processing

for this directory; RewriteRule is where the real action is. The above RewriteRule
tells Apache to send all requests to index.php except for requests for .gif, .jpg,

.jpeg, .css, .php files, or anything from the subdirectories images and files,

which it should allow to proceed normally.

Obviously, index.php becomes a very important script! Here’s what it might

look like:

File: rewrite/index.php

<?php
// Include the PathVars class
require_once 'Url/PathVars.php';

// MODIFY THIS FOR YOUR CONFIGURATION!!!

Chapter 9: Web Page Elements

312

$baseUrl = '/phpanth/WebPageElements/rewrite/';

// Create instance of PathVars
$pathVars = new PathVars($baseUrl);

// What's the first path variable?
switch ($pathVars->fetchByIndex(0)) {
 case 'download':
 // Examine the second path variable
 if ($pathVars->fetchByIndex(1)) {
 echo 'Downloading file ' . $pathVars->fetchByIndex(1);
 } else {
 echo 'Download <a href="' . $baseUrl .
 'download/myStuff.zip">myStuff.zip
';
 }
 break;
 case 'article':
 // Examine the second path variable
 if ($pathVars->fetchByIndex(1)) {
 echo 'Viewing article ' . $pathVars->fetchByIndex(1);
 } else {
 echo 'View <a href="' . $baseUrl .
 'article/123">Article 123
';
 }
 break;
 default:
 echo 'This is the home page
';
 echo '<a href="' . $baseUrl .
 'download/">Downloads
';
 echo 'Articles
';
 break;
}
?>

In this code, I’ve used the PathVars class to allow index.php to handle most of

the requests on the site. Here are some of the URLs it might be asked to handle:

http://www.example.com/phpanth/WebPageElements/rewrite/

PathVars doesn’t find any parameters in the URL suffix. The script will dis-

play the home page of the site.

http://www.example.com/phpanth/WebPageElements/rewrite/down-

load/myStuff.zip

PathVars detects the parameters download and myStuff.zip in the URL

suffix. The script will send the specified file to the browser as a download.

313

Hiding PHP Scripts by Rewriting URLs

http://www.example.com/phpanth/WebPageElements/rewrite/
http://www.example.com/phpanth/WebPageElements/rewrite/down-load/

http://www.example.com/phpanth/WebPageElements/rewrite/article/123

PathVars detects the parameters article and 123 in the URL suffix. The

script will display the article with ID 123 for viewing.

URL Rewriting and PathVars

Pay special attention to the way PathVars is instantiated in this example:

// MODIFY THIS FOR YOUR CONFIGURATION!!!
$baseUrl = '/phpanth/WebPageElements/rewrite/';

// Create instance of PathVars
$pathVars = new PathVars($baseUrl);

One side-effect of URL rewriting is that $_SERVER['SCRIPT_NAME'] and

$_SERVER['REQUEST_URI'] can no longer be compared in order to find

the URL suffix. The former contains the actual name of the PHP script, while

the latter contains the URL that the browser actually requested.

For this reason, when you use PathVars in a URL rewriting setup like this,

you need to supply the constructor with the path to the directory that con-

tains .htaccess, instead of simply passing it $_SERVER['SCRIPT_NAME']
as we’ve done before.

To put it simply, when using URL rewriting, give PathVars the portion of

the URLs that you want it to ignore.

Note also that we’ve made use of the $baseUrl variable when building links,

rather than $_SERVER['PHP_SELF']. The latter would include index.php in the

links again, which we don’t want.

Designing URLs
PHP based Websites are typically a collection of applications that perform dif-

ferent tasks, each with its own identifiable URL. For example:

http://www.example.com/forums/

a forum

http://www.example.com/blog/

a Web log (or “blog”)

http://www.example.com/downloads/

a download manager

Chapter 9: Web Page Elements

314

http://www.example.com/phpanth/WebPageElements/rewrite/article/123
http://www.example.com/forums/
http://www.example.com/blog/
http://www.example.com/downloads/

Each of these URLs is the root of an application. If a site is well constructed,

these will be integrated so that, for example, if downloading a file requires a user

name and password, the same user name and password is used for the forum.

Within each application, there are views that correspond to the different page

types your site’s visitors will see. For example:

http://www.example.com/forums/discussion/php

a view of the PHP discussion forum

http://www.example.com/forums/discussion/php/34

a view of a message in the PHP forum

Each view has a default appearance but may be able to accept additional para-

meters. For example:

http://www.site.com/forums/discussion/php/?sort=popularity

orders the posts in terms of their popularity

http://www.site.com/forums/discussion/php/?sort=date&numposts=10

shows the latest ten posts on the forum

See what I’m suggesting here? Applications and views are identified by a URL

suffix, while parameters used by that view are identified by standard query string

variables.

Making this division between views and parameters can really help in structuring

the PHP that powers the site. Determining which application and view a visitor

to your site has requested requires a fixed number of variables that can be iden-

tified by their relative position within the URL. By contrast, a particular view

will often make use of a number of parameters, not all of which will be present

at the same time. Parameters, therefore, are best identified with name/value pairs,

which a query string makes possible.

Using URL suffix values in your code requires a little planning. Consider again

this URL:

http://www.site.com/forums/discussion/php/

You can only access the variables by their index—the position in which they ap-

pear in the URL. With the above URL you might use PathVars to retrieve an

array containing the variables:

315

Designing URLs

http://www.example.com/forums/discussion/php
http://www.example.com/forums/discussion/php/34
http://www.site.com/forums/discussion/php/?sort=popularity
http://www.site.com/forums/discussion/php/?sort=date&numposts=10
http://www.site.com/forums/discussion/php/

Array
(
 [0] => forums
 [1] => discussion
 [2] => php
)

In terms of your code, you need to have some kind of decision logic that passes

the handling of each variable to code that knows what to do with it. In this ex-

ample,

1. From the “root” PHP script of your site (e.g. index.php), examine path

variable 0 to find out which code to pass this job to. In this case, it’s the

forums code.

2. From the forums code, examine path variable 1 to find out which code

within the forum application should deal with this. In this case, it’s the dis-

cussion code.

3. In the discussion code, examine path variable 2 to find out which discussion

should be displayed.

In each case, the code delegates the work to some other code until it reaches the

point where it’s time to do some real work (e.g. the discussion code performs a

database query to select all threads in the requested discussion, and displays them

as an HTML table).

How you actually handle the delegation of work is a matter of preference and

experience. You might simply use an include statement to load the correct PHP

script each time a decision is made. More complex, but often more flexible ap-

proaches use object orientation, where the decision-making process is based on

the selection of the correct class to deal with each step.

Either way, this takes your Website down the road to becoming a framework—a

structured environment to which you add the code for your applications, which

the framework executes on demand. While considering how you’ll do this, it’s

worth investigating some of the other PHP frameworks available, such as eZ

publish[16], Phrame[17] and Ambivalence[18] for further insight into the design

issues you’ll need to take into account.

[16] http://developer.ez.no/

[17] http://phrame.sourceforge.net/

[18] http://amb.sourceforge.net/

Chapter 9: Web Page Elements

316

http://developer.ez.no/
http://developer.ez.no/
http://phrame.sourceforge.net/
http://amb.sourceforge.net/
http://developer.ez.no/
http://phrame.sourceforge.net/
http://amb.sourceforge.net/

Further Reading
� Object Oriented PHP: Paging Result Sets: http://www.sitepoint.com/article/662

This article provides a basic introduction to object oriented programming and

uses in its final example a paging result set similar to the one in this chapter.

� Building an Extensible Menu Class:
http://www.devshed.com/Server_Side/PHP/ExtensibleMenuClass/

This article presents an alternative view of building a menu class that uses

MySQL to do most of the work, rather than PHP.

� Storing Hierarchical Data in a Database: http://www.sitepoint.com/article/1105

A detailed look at the adjacency model and nest set approaches is presented

in this article.

� PEAR::Tree Tutorial:
http://www.phpkitchen.com/article.php?story=20030427152620585

See this article for an explanation of the use of PEAR::Tree, which provides

an API for dealing with nested set data structures.

� Search Engine-Friendly URLs: http://www.sitepoint.com/article/485

This article explains the ins and outs of search engine friendly URLs.

� Apache’s ForceType directive: http://www.devarticles.com/art/1/143/2

This tutorial provides more detail on how to use the ForceType directive.

� mod_rewrite: A Beginner’s Guide to URL Rewriting:
http://www.sitepoint.com/article/910

Apache’s mod_rewrite is examined here.

� eZ Publish: PHP’s Killer App: http://www.sitepoint.com/article/917

This three part series examines the eZ publish framework from scratch.

317

Further Reading

http://www.sitepoint.com/article/662
http://www.devshed.com/Server_Side/PHP/ExtensibleMenuClass/
http://www.sitepoint.com/article/1105
http://www.phpkitchen.com/article.php?story=20030427152620585
http://www.sitepoint.com/article/485
http://www.devarticles.com/art/1/143/2
http://www.sitepoint.com/article/910
http://www.sitepoint.com/article/917
http://www.sitepoint.com/article/662
http://www.devshed.com/Server_Side/PHP/ExtensibleMenuClass/
http://www.sitepoint.com/article/1105
http://www.phpkitchen.com/article.php?story=20030427152620585
http://www.sitepoint.com/article/485
http://www.devarticles.com/art/1/143/2
http://www.sitepoint.com/article/910
http://www.sitepoint.com/article/917

318

Error Handling10
In Chapter 1, I introduced PHP’s in-built error handling mechanism, and we

discussed that errors in general are usually broken into four basic types:

Syntax Errors The script fails to obey the basic language rules of PHP

and cannot be executed.

Semantic Errors In executing the code, PHP encountered a situation

that is illegal in terms of the “grammar” of PHP, such

as passing a string to a function that expects an array.

Environment Errors A problem has been encountered in the environment

used by the PHP script during execution, such as the

MySQL server being unavailable.

Logic Errors The script executes correctly as far as the PHP engine

is concerned, but does not do what the designer expec-

ted.

In this chapter, we’ll look at the mechanisms PHP provides to extend the native

error reporting mechanism and give you greater control over how errors are

handled. The benefit of these mechanisms is generally realized in dealing with

environment errors; the mechanisms provide your code the opportunity to

gracefully exit execution, and allow you to hide errors from your site’s visitors

while receiving private notifications of the errors.

Error Handling in PHP 5

The soon-to-be-released PHP 5 will include a new error handling mechanism

that should radically improve the way errors are handled in PHP 4. PHP 5

will provide a try-catch control structure that’s common to languages such

as Java. It’s worth keeping in mind the fact that this change is on the horizon,

so that you can easily modify your code when the time comes. Those modi-

fications might simply involve a search and replace operation for all instances

where you used trigger_error. Or perhaps they’ll be more elaborate,

passing all calls to trigger_error through a single function you’ve defined

yourself, which will allow you to switch to the new mechanism for generating

errors simply by modifying that function.

How do I implement a custom error
handler with PHP?

By now you’re probably well acquainted with PHP’s native error reporting; pos-

sibly you’re acquainted with it more closely than you’d like, thanks to those in-

evitable syntax errors. PHP 4 provides for generating and handling errors addi-

tional mechanisms that you can control; these are described in the PHP Manu-

al[1]. Being able to generate your own error messages allows you to add additional

error reporting to your application, helping you track down problems and bugs

after they occur. Meanwhile, the ability to create your own error handler allows

you to log error messages and control the output delivered to your site’s visitors.

Error Levels
Once a PHP script has been parsed to rule out syntax errors, PHP can generate

three categories of error while running a script:

Errors fatal errors that result in PHP halting further execution of the

script

Warnings general environment errors from which PHP can recover

[1] http://www.php.net/errorfunc

Chapter 10: Error Handling

320

http://www.php.net/errorfunc
http://www.php.net/errorfunc
http://www.php.net/errorfunc

Notices potential problems that PHP doesn’t really care about, but

which may reflect bugs in your code

An understanding of this categorization will prove useful when it comes to gen-

erating your own errors.

The error reporting level determines which of the above categories of error will

cause PHP to display an error message. The default error reporting level for a

PHP installation is set by the error_reporting option in php.ini. For example,

setting it to E_ALL tells PHP to report all error types:

error_reporting = E_ALL

Except for this special case, telling PHP to use a particular error level will see

PHP report errors from that level only; the levels must be combined using bitwise

operators if you want PHP to report multiple error types. For example, to report

all error types except notices, the setting is often configured as follows:

error_reporting = E_ALL & ~E_NOTICE

You can determine the current error reporting level within a PHP script using

the error_reporting function:

File: 1.php

<?php
echo error_reporting();
?>

This will display the current level as an integer (e.g. 2047 for E_ALL). You can

also set the error level using the error_reporting function. For example:

File: 2.php

<?php
error_reporting(E_ALL ^ E_NOTICE); // Report all except notices
echo error_reporting(); // Displays 2039
?>

In the above example, we tell PHP to report all errors except notices, using the

bitwise XOR operator, ^, to subtract the E_NOTICE error level from the E_ALL
error level.

Some other illustrative examples follow:

321

Error Levels

File: 3.php

<?php
error_reporting(E_ALL); // Report all errors
error_reporting(2047); // Report all errors
error_reporting(0); // Turn off error reporting
?>

Generally, you won’t need to change the error levels beyond the examples above.

Which Error Reporting Level?

When developing your code, always set the error level to its highest value, E_ALL (or

2047). This will inform you of all errors. In particular, it’ll display notices that help you

find uninitialized variables—the source of many a logic error. This error level will also

ensure maximum portability for others using your code, who may prefer to run PHP at

this level and not see any error messages generated by your work.

The best way to set this error level is in php.ini, using the error_reporting setting.

If this is not possible, the next best solution is to use a .htaccess file with the following

command:

php_value error_reporting 2047

However you do it, it’s important to apply the setting globally to all your code.

Remember, too, that the simple fact that you’ve told PHP not to report certain errors

doesn’t mean they aren’t happening! Be careful when developing code and use full error

reporting.

An important thing to note is that the error reporting level applies to the in-built

PHP error handler, not to error handlers you define yourself (which we’ll be

looking at shortly). In other words, you can switch off error reporting as far as

the default PHP error reporting mechanism is concerned, while still catching errors

with an error handler you’ve defined yourself.

One more mechanism that is available for controlling error behavior is the error

suppression operator, @, which can be used to suppress error messages generated

by PHP functions and expressions. For example:

File: 4.php

<?php
// Use error reporting operator
if (!@mysql_connect('localhost', 'wronguser', 'wrongpassword')) {
 echo 'Error connecting to MySQL Server: ' . mysql_error();

Chapter 10: Error Handling

322

}
?>

Assuming the user name and password shown here are incorrect, mysql_connect
would display an error message if the error suppression operator wasn’t used. In

this example, I’ve suppressed the PHP-generated error in order to display my

own.

The error suppression operator doesn’t apply to functions alone:

File: 5.php

<?php
if (@$_GET['name'] == 'Bill') {
 echo 'This page is not available to you';
} else {
 echo 'Welcome';
}
?>

If not for the presence of the error suppression operator here, PHP would display

an error upon finding that the $_GET['name'] variable was not defined, provided

the error reporting level was set to display notices. In this example, we use the

error suppression operator to tell PHP that we understand this variable will not

be defined in some cases, and therefore, we do not need to be reminded of this

fact.

I recommend you use the error suppression operator sparingly, applying it only

in situations where you want to control the error reporting yourself. To illustrate,

for the previous example, I’d recommend you specifically check that

$_GET['name'] is defined before using it:

<?php
if (isset($_GET['name']) && $_GET['name'] == 'Bill') {
 echo 'This page is not available to you';
} else {
 echo 'Welcome';
}
?>

Taking this approach to writing your code (and performing checks on all incoming

data in general) will result in applications that are more reliable and secure.

Overuse of the error suppression operator will result in code that’s very hard to

debug.

323

Error Levels

Generating Errors
As we saw above, there are three error levels that you can use to report messages

about errors in your code: errors, warnings, and notices. The medium for the

generation of error messages is the function trigger_error[2], which can be

placed anywhere in your code and, on execution, will result in PHP reporting

errors of the level you specify. Your choices are E_USER_ERROR, E_USER_WARNING
and E_USER_NOTICE, the “user” in this sense being you—the PHP developer.

Here’s a simple example:

File: 6.php

<?php
if (!@mysql_connect('localhost', 'wronguser', 'wrongpassword')) {
 trigger_error('Error connecting to MySQL Server: ' .
 mysql_error(), E_USER_ERROR);
}

echo 'Hello World!';
?>

Here, we’ve used the error suppression operator to suppress the normal error

message so that we can display a more useful message using trigger_error. The

second argument we’ve supplied to trigger_error, which is optional, is the level

at which we want the error reported; the default level is E_USER_NOTICE.

It’s worth considering from a theoretical standpoint exactly what we’ve done

here. The normal error level that PHP would use if mysql_connect failed would

be a warning, because it regards this as an environmental error that does not im-

pede the running of the script. However, we’ve suppressed the normal warning

message and increased the severity to an error. Since errors are considered fatal

to a PHP script, this halts PHP’s execution of the script. The instruction to echo
“Hello World!” will not be executed in this case, yet the warning that PHP would

have normally produced would have allowed it to execute.

Why did we do this? Well, if the script that follows the database connection at-

tempt relied on that database connection to produce useful output, it doesn’t

make much sense to let the script continue on its merry way if the database

connection fails. While some applications might be able to make do without the

database connection, we can use trigger_error to stop those that can’t in their

tracks.

[2] http://www.php.net/trigger_error

Chapter 10: Error Handling

324

http://www.php.net/trigger_error
http://www.php.net/trigger_error

Strategy for Generating Errors
How you use trigger_error in your code is completely up to you, but to get

the most out of it, it’s a good idea to have in mind some kind of strategy that

will allow you to handle correctly the errors your code generates. When selecting

the type of error to trigger, think about what the error means from the perspective

of a user of your application, rather than what it means to the PHP engine. The

following is intended to represent best practice for using the different error levels:

E_USER_ERROR This is the most critical level of error you have avail-

able to you, being a fatal error that stops PHP execut-

ing the rest of your code. From the perspective of

someone using your application, a fatal error is one

that caused the application to fail to perform its duty

on a fundamental level. For instance, the script is un-

able to connect to the MySQL server that stores the

content your application wants to render.

E_USER_WARNING At this level, your application can continue execution,

though something went wrong with the operation the

user requested. A good approach to using this error

level is to apply it when users do something that’s

beyond the limits of your application. For example,

they might have requested a URL at which no content

exists, or passed data of the wrong type to a script (for

instance, they passed a string via a $_GET variable,

which is expected to contain integer values). Obvi-

ously, this should be applied within reason; in general,

triggered errors cannot be handled as effectively as

returned values in your code (see the section called

“Triggered Errors vs. Conditional Execution” below).

E_USER_NOTICE This level is suitable for providing information to users

and administrators of your site. If someone, while at-

tempting to log into a secure area of your site, gets the

user name/password combination wrong three times

in a row, it may be a good time to trigger an

E_USER_NOTICE error. This error would result in an

email being sent to your site’s administrators warning

them of a potential attempt at cracking the user au-

thentication system. You might also use

325

Strategy for Generating Errors

E_USER_NOTICE to display on all pages of your site a

message that states, “At 1PM today the site will be

down for ten minutes due to routine maintenance.”

Note that errors triggered at these levels may not be the only errors generated

when your application executes. The PHP–generated error types, E_PARSE,

E_ERROR, E_WARNING, and E_NOTICE will also be “in force” unless you specifically

disable them, or suppress them with the error suppression operator. This means

you can distinguish between “PHP level” errors and “application level” errors,

which helps make error handling flexible.

Custom Error Handler
Now that you’re acquainted with PHP’s error levels and have seen the

trigger_error function in action, it’s time to look at how to implement a custom

error handler.

PHP provides you with the ability to specify your own error handler with which

you can catch errors and respond to them as you choose, perhaps displaying a

friendly message to your site’s visitors while updating an error log with a detailed

message for your site’s administrators. The mechanism that allows you to do this

is a PHP function that will be used as a callback—a function that will be called

automatically by PHP. With the function defined, we instruct PHP to use the

error handler with the set_error_handler[3] function, which takes as its argu-

ment the name of your custom error handling function. Note that it is possible

to use class methods as custom error handlers but the code required to do this

is a pretty ugly hack, so we’ll avoid using classes in this case.

Be warned that you cannot handle errors that cause PHP to halt execution imme-

diately, namely the E_PARSE and E_ERROR levels. The E_ERROR level would be

used in circumstances where PHP has run out of available memory (perhaps

parsing a huge XML document with the DOM extension) and is forced to halt

immediately. As for E_PARSE—well, you weren’t editing a file on a live Web

server, were you?

Here’s a simple example of a custom error handler geared to deal with an

E_USER_ERROR:

[3] http://www.php.net/set_error_handler

Chapter 10: Error Handling

326

http://www.php.net/set_error_handler
http://www.php.net/set_error_handler

File: 7.php

<?php
/**
 * Custom Error handler
 *
 * @param int error level number
 * @param string error message
 * @param string php script where error occurred
 * @param int line number in script where error was triggered
 * @param array current state of all global variables
 */
function myErrorHandler($errLvl, $errMsg, $errFile, $errLine,
 $errContext)
{
 // Switch statement watching for specific error levels
 switch ($errLvl) {
 case E_USER_ERROR:
 $error = "<h2>Custom Error Message</h2>
 E_USER_ERROR in $errFile on line $errLine

 $errMsg";
 break;
 }
 echo $error;
}

// Set the custom error handler
set_error_handler('myErrorHandler');

// Trigger an error
if (!@mysql_connect('localhost', 'wronguser', 'wrongpassword')) {
 trigger_error('Error connecting to MySQL Server: ' .
 mysql_error(), E_USER_ERROR);
}
?>

In this example, we begin by creating the custom error handling function. The

parameters defined in the function are all those that will be passed as arguments

when an error is triggered. You don’t have to use (or even define) them all, but

the order in which they appear must replicate that shown here. The first paramet-

er, $errLvl is the number representing the level of this error. We’ve used this as

the basis of the switch statement, which in this example is geared to catching

only E_USER_ERROR reports. The second parameter, $errMsg, is the error message

which, in this case, we provided as the first argument for the trigger_error
function. The parameter $errFile contains the name of the PHP script where

the error occurred; $errLine is the line number in that file where the error oc-

327

Custom Error Handler

curred. Finally, $errContext, which we haven’t made use of in this example,

contains an array with the names and values of all global variables at the point

at which the error happened. This information may be useful for debugging in

some cases, as it contains the $_SERVER variable, for example, where the details

of the visitor’s browser can be found.

With the custom error handling function defined, all we need to do is use

set_error_handler to tell PHP about the new handler.

Executing this script generates the following HTML:

<h2>Custom Error Message</h2>
E_USER_ERROR in /home/username/www/errorhandling/6.php on
line 31

Error connecting to MySQL Server: Access denied for user:
'wronguser@localhost' (Using password: YES)

One important thing to note is there are two error messages being generated by

the example, the E_WARNING produced by the mysql_connect function, which

we’ve suppressed with the error suppression operator, and the E_USER_ERROR
we’ve generated with trigger_error. As mentioned earlier, the error suppression

operator and the error_reporting function only apply to the built-in PHP error

handler, not to custom error handlers you define. This means the custom handler

will actually catch both errors, as demonstrated by the following script:

File: 8.php

<?php
/**
 * Custom Error handler
 *
 * @param int error level number
 * @param string error message
 * @param string php script where error occurred
 * @param int line number in script where error was triggered
 * @param array current state of all global variables
 */
function myErrorHandler($errLvl, $errMsg, $errFile, $errLine,
 $errContext)
{
 // Switch statement watching for specific error levels
 switch ($errLvl) {
 case E_USER_ERROR:
 $error = "<h2>Custom Error Message</h2>
 E_USER_ERROR in $errFile on line $errLine

 $errMsg";

Chapter 10: Error Handling

328

 break;
 // Catch all other errors
 default:
 $error = "<h2>Default Error Message</h2>
 Level $errLvl in $errFile on line $errLine

 $errMsg";
 break;
 }
 echo $error;
}

// Set the custom error handler
set_error_handler('myErrorHandler');

// Attempt to disable E_WARNING messages (applies to in built
// handler only)
error_reporting(E_ALL ^ E_WARNING);

// Trigger an error
if (!@mysql_connect('localhost','wronguser','wrongpassword')) {
 trigger_error('Error connecting to MySQL Server: ' .
 mysql_error(), E_USER_ERROR);
}
?>

Although we’ve attempted to disable the E_WARNING message—both with the

error_reporting function and the error suppression operator—the above example

will report both errors.

Triggered Errors vs. Conditional Execution
PHP’s custom error handling mechanism effectively introduces another level of

error handling to your applications, this time, at a global level. It is important to

understand the ramifications of this approach before we use this mechanism.

Until now, you’ve probably built error handling into your code at call time. Here’s

a typical example:

<?php
// Some function which updates the database
function updateUserDetails($name, $password, $email)
{
 // If update succeeds...
 return TRUE;

329

Triggered Errors vs. Conditional Execution

 // If update failed
 return FALSE;
}

// If a form was submitted
if (isset($_GET['submitUserDetailsForm'])) {
 // Perform "call time" error checking
 if (updateUserDetails($_GET['name'], $_GET['password'],
 $_GET['email'])) {
 echo 'Update succeeded';
 } else {
 echo 'Update failed. Please try again';
 }
}
?>

This code (which is meant to illustrate a common pattern, not a working example)

shows how error handling is usually built into applications. The code that calls

the updateUserDetails function checks the value it gets back from the function,

either TRUE or FALSE, and responds appropriately.

The custom error handling mechanism in PHP does not allow for this pattern.

Let’s see the equivalent for the above example:

<?php
// Some function which updates the database
function updateUserDetails($name, $password, $email)
{
 // If update failed
 trigger_error('Update failed', E_USER_WARNING);
}

// If a form was submitted
if (isset($_GET['submitUserDetailsForm'])) {
 updateUserDetails($_GET['name'], $_GET['password'],
 $_GET['email']);
}
?>

The code that calls the updateUserDetails function now has no way to check

whether the function succeeded. Rather, your custom error handler has to respond

to the function, and given that it is defined completely independent of

updateUserDetails or the code that calls it, getting it to respond correctly will

be difficult. There are ways to tie custom error handling more closely to your

Chapter 10: Error Handling

330

application, but, in general, they involve complex workarounds and hacks, which,

in the end, result in code that’s difficult to maintain and easy to break.

With PHP 4, developers are left with a problem when it comes to dealing with

errors, in that conditional error checking acts only at the point where the error

occurs, while custom error handling operates at a global level, and is disconnected

from the logical flow of your code. As mentioned at the start of this chapter, PHP

5 introduces a new error handling mechanism, known as exception handling,

which will allow you to handle errors both at the point at which they occur and
at a global level. For now, it’s best not to go overboard with PHP’s custom error

handling; instead, regard it simply as your site’s “watchdog”, making sure errors

that occur are logged so that when you next have time, you can correct them. A

good interim solution for PHP 4 is the PEAR::Error class, part of the core PEAR

installation. Using PEAR::Error, your code should be fairly easy to modify when

the time comes to take advantage of the new error handling to be included in

PHP 5. Suggested reading for PEAR::Error may be found at the end of this

chapter.

How do I log and report errors?
Where custom error handlers becomes useful is in creating from errors logs that

you can access later, referring to them as you tune your application. To make life

easier, PHP comes with the function error_log, which can be used for things

like writing log files or sending emails containing error reports. This function can

be used from inside a custom error handler to store error data. For example:

File: 9.php

<?php
/**
 * Custom Error handler
 *
 * @param int error level number
 * @param string error message
 * @param string php script where error occurred
 * @param int line number in script where error was triggered
 * @param array current state of all global variables
 */
function myErrorHandler($errLvl, $errMsg, $errFile, $errLine,
 $errContext)
{
 $time = date('YmdHis');
 $errMsg = htmlspecialchars($errMsg);
 $error = <<<EOD

331

How do I log and report errors?

###START ERROR###
Level: $errLvl
File: $errFile
Line: $errLine
Time: $time

$errMsg
###END ERROR###

EOD;
 error_log($error, 3, 'log/errors.log');
 switch ($errLvl) {
 case E_USER_ERROR:
 echo 'System is temporarily unavailable. ' .
 'Please try again later';
 break;
 }
}

// Set the custom error handler
set_error_handler('myErrorHandler');

// Trigger an error
if (!@mysql_connect('localhost', 'wronguser', 'wrongpassword')) {
 trigger_error('Error connecting to MySQL Server: ' .
 mysql_error(), E_USER_ERROR);
}
?>

The custom error handler now logs errors in a format that’s easy to parse using

PHP’s string functions. It logs these errors to the errors.log file, which looks

like this:

###START ERROR###
Level: 256
File: c:\htdocs\phpanth\errorhandling\8.php
Line: 39
Time: 20031012233727

Error connecting to MySQL Server: Access denied for user:
'wronguser@127.0.0.1' (Using password: YES)
###END ERROR###

Chapter 10: Error Handling

332

mailto:wronguser@127.0.0.1'

Email Overload

Although error_log is capable of sending emails containing error messages,

be careful! You may find a lot more in your inbox than you bargained for.

You can control the frequency of error reporting with the php.ini values

ignore_repeated_errors and ignore_repeated_source—see Ap-

pendix A for details.

Of course, you’re not tied to using the error_log function as the only way to

create log files. You may decide it’s better to write your own classes for logging

errors, or consider using PEAR::Log[4], which provides many more options for

capturing data from your application.

How do I display errors gracefully?
Now that you’ve seen how to define your own custom error handler, I can show

you how to use PHP’s output buffering (which I’ll discuss in detail in Volume

II, Chapter 5, and which is described in the PHP Manual[5]) so that your produc-

tion Website gracefully informs users of “temporary difficulties” without slapping

ugly error messages across partially rendered HTML pages. The following example

demonstrates the approach and provides a more thorough custom error handler

that’s capable of dealing with multiple error levels:

File: 10.php (excerpt)

<?php
/**
 * Custom Error handler
 *
 * @param int error level number
 * @param string error message
 * @param string php script where error occurred
 * @param int line number in script where error was triggered
 * @param array current state of all global variables
 */
function myErrorHandler($errLvl, $errMsg, $errFile, $errLine,
 $errContext)
{
 switch ($errLvl) {
 // Handle ERRORs
 case E_USER_ERROR:
 // Stop and clean the second buffer

[4] http://pear.php.net/package/Log

[5] http://www.php.net/manual/en/ref.outcontrol.php

333

How do I display errors gracefully?

http://pear.php.net/package/Log
http://www.php.net/manual/en/ref.outcontrol.php
http://pear.php.net/package/Log
http://www.php.net/manual/en/ref.outcontrol.php

 ob_end_clean();
 // Clean out the main buffer
 ob_clean();
 // Display an error message
 echo '
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Temporary Interruption </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<h2>Temporary Interruption</h2>
The site is currently down for non-scheduled maintenance.

Please try again shortly
</body>
</html>';
 // End and flush the main buffer
 ob_end_flush();
 // Stop execution
 exit();
 break;
 // Handle WARNINGs
 case E_USER_WARNING:
 // Clean out the main buffer
 ob_clean();
 // Display an error message
 echo 'Warning: ' . $errMsg;
 break;
 // Handle NOTICEs
 case E_USER_NOTICE:
 // Display an error message
 echo 'Notice: ' . $errMsg;
 break;
 }
}

This custom error handler is capable of dealing with three error levels,

E_USER_ERROR, E_USER_WARNING, and E_USER_NOTICE. You’ll notice that the way

it handles the output buffer is a little different at each level. An E_USER_ERROR
message, which, you’ll remember, is a fatal error, results in the handler clearing

out both output buffers (there are two, the reason for which will become obvious

in a moment), and displaying a message about the site being down; this completely

Chapter 10: Error Handling

334

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

eliminates any HTML that may already have been sent to the buffer. An

E_USER_WARNING error will result in the second buffer being wiped and replaced

with the error message; as a result, the body of the HTML page is replaced with

an error message. The E_USER_NOTICE behavior adds the notice error to the second

buffer—it’s simply appended to the existing HTML.

Look at the body of the page now:

File: 10.php (excerpt)

// Set the custom error handler
set_error_handler('myErrorHandler');
// Start an output buffer for ERRORs
ob_start()
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Custom Error Handling with Buffering </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<h2>Example Errors</h2>
<?php
// Start a second output buffer for NOTICES and WARNINGs
ob_start();
?>

Above, after instructing PHP to use our custom error handler, we’ve nested one

output buffer inside another so that the header and footer of the page are in a

separate buffer to the body.

File: 10.php (excerpt)

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?triggerError=error">
Trigger a Fatal Error

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?triggerError=warning"
>Trigger a Warning

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?triggerError=notice">
Trigger a Notice

<?php
// Generate sample errors
if (isset($_GET['triggerError'])) {
 switch ($_GET['triggerError']) {

335

How do I display errors gracefully?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

 case 'error':
 trigger_error('A fatal error', E_USER_ERROR);
 break;
 case 'warning':
 trigger_error('You have been warned!', E_USER_WARNING);
 break;
 case 'notice':
 trigger_error('Please take note!', E_USER_NOTICE);
 break;
 }
}
// Finish and display the second buffer
ob_end_flush();
?>

</body>
</html>
<?php
// Finish the main buffer
ob_end_flush();
?>

In the body of the page, inside the second buffer, we’ve used trigger_error to

demonstrate the handler, using the $_GET variable triggerError.

As you execute the script, you’ll notice that a fatal error results in a completely

different page being rendered (as defined in the custom error handler for

E_USER_ERROR); a warning error replaces the three links with the warning message,

and an error notice is added below the three links.

With some care, it’s possible to combine custom handlers with output control

to handle errors in a manner that’s graceful from the point of view of visitors to

your site. Be aware, though, that it’s best to keep this kind of code down to earth

rather than building anything too complex, for the reasons discussed in “How

do I implement a custom error handler with PHP?”, in the section called

“Triggered Errors vs. Conditional Execution”.

Further Reading
� Error Handling in PHP:

http://www.devshed.com/Server_Side/PHP/ErrorHandling

This two part series takes an in depth look at PHP’s custom error handling

features and how they can be combined with output buffering.

Chapter 10: Error Handling

336

http://www.devshed.com/Server_Side/PHP/ErrorHandling
http://www.devshed.com/Server_Side/PHP/ErrorHandling

� Error Handling: http://www.derickrethans.nl/errorhandling/talk.html

Derick Rethans, one of PHP’s leading developers, gives a succinct analysis of

error handing techniques from HTTP status pages to debugging and profiling

PHP code in this great tutorial.

� PEAR-Error in detail:
http://www.php-mag.net/itr/online_artikel/psecom,id,330,nodeid,114.html

Alexander Merz examines PEAR::Error in this freely available article published

in PHP Magazine.

337

Further Reading

http://www.derickrethans.nl/errorhandling/talk.html
http://www.php-mag.net/itr/online_artikel/psecom,id,330,nodeid,114.html
http://www.derickrethans.nl/errorhandling/talk.html
http://www.php-mag.net/itr/online_artikel/psecom,id,330,nodeid,114.html

338

Appendix A: PHP Configuration
This is a quick reference to configuring PHP that covers the most important

general settings you need to be aware of, either when running applications in a

live environment, or because they impact security or the way you write code.

Configuration Mechanisms
The primary mechanism for configuring PHP is the php.ini file. As the master

file, this provides you with control over all configuration settings. Entries generally

take the format:

setting = value

Be sure to read the comments provided in the file before making changes, though.

There are a few tricks, such as include_path using a colon (:) as a seperator on

Unix, and a semicolon (;) on Windows.

Most Web hosts will not provide you access to your php.ini file unless you have

root access to the system (which is typically not the case if you’re using a cheap

virtual hosting service). Your next alternative is to use .htaccess files to configure

PHP (assuming the Web server is Apache).

An .htaccess file is a plain text file that you place in a public Web directory to

determine the behavior of Apache when it comes to serving pages from that dir-

ectory; for instance, you might identify which pages you’ll allow public access to.

Note that the effect of an .htaccess file is recursive—it applies to subdirectories

as well.

To configure PHP with .htaccess files, your hosting provider must have the

Apache setting AllowOverride Options or AllowOverride All applied to your

Web directory in Apache’s main httpd.conf configuration file. Assuming that

is done, there are two Apache directives you can use to modify PHP’s configura-

tion:

php_flag
used for settings that have boolean values (i.e. on/off or 1/0) such as

register_globals

php_value
used to specify a string value for settings, such as you might have with the

include_path setting

Here’s an example .htaccess file:

Switch off register globals
php_flag register_globals off

Set the include path
php_value include_path ".;/home/username/pear"

The final mechanism controlling PHP’s configuration is the group of functions

ini_set and ini_alter, which let you modify configuration settings, as well as

ini_get, which allows you to check configuration settings, and ini_restore,

which resets PHP’s configuration to the default value as defined by php.ini and

any .htaccess files. Using ini_set, here’s an example which allows us to avoid

having to define our host, user name and password when connecting to MySQL:

ini_set('mysql.default_host', 'localhost');
ini_set('mysql.default_user', 'harryf');
ini_set('mysql.default_password', 'secret');

if (!mysql_connect()) {
 echo mysql_error();
} else {
 echo 'Success';
}

Be aware that PHP provides for some settings, such as error_reporting, altern-

ative functions that perform effectively the same job as ini_set. Which you

prefer is a matter of taste.

Note that certain settings, such as register_globals, can only be usefully

modified by php.ini or .htaccess, because such settings influence PHP’s beha-

vior before it begins executing your scripts.

Furthermore, some configuration settings can be changed only in php.ini, such

as extension_dir, which tells PHP the directory in which PHP extensions can

be found. For a complete reference on controlling settings, refer to the PHP

Manual[1].

[1] http://www.php.net/ini_set

Appendix A: PHP Configuration

340

http://www.php.net/ini_set
http://www.php.net/ini_set
http://www.php.net/ini_set

Key Security and Portability Settings
Table A.1 shows the most important PHP settings that relate to the security and

portability of your PHP scripts.

341

Key Security and Portability Settings

Table A.1. Key Security and Portability Settings

NotesSetting

Automatically creates global variables from in-

coming HTTP request variables, such as GET

register_globals
(default: off)

and POST. For security and portability, it is

highly recommended that you switch this off.

See http://www.php.net/register_globals for more

details.

Automatically escapes quotes in incoming HTTP

request variables with a backslash, helping pre-

magic_quotes_gpc
(default: off)

vent SQL injection attacks. If you know what

you’re doing, it’s usually better to switch this

functionality off and handle this escaping your-

self when inserting into a database, given the

problems this feature can cause you with forms,

as well as the performance overhead they intro-

duce. See Chapter 1 for information on making

your scripts compatible with this feature.

Allows you to use variable references at call time

(e.g. htmlentities(&$string)). To keep code

call_time_pass_reference
(default: off)

clean and understandable, and to ensure portab-

ility, keep this functionality switched off.

Allows you to start a block of PHP code with

just <? instead of the longer <?php. Also lets you

short_open_tag
(default: on)

write out PHP expressions with <?=, which is

identical to <?php echo. While convenient,

these shortcuts are not XML compliant, and can

cause the PHP processor to become confused

when it encounters XML processing instructions

such as <?xml version="1.0"?>. Many people

have short_open_tag switched off, so, for

maximum portability, avoid the shortcuts and

switch this feature off during development.

Allows ASP style tags (<% … %>) as an alternat-

ive to the PHP open and close tags

asp_tags
(default: off)

(<?php … ?>). Few people use these, so, for

maximum portability, it’s best to avoid them,

and switch this feature off during development.

Appendix A: PHP Configuration

342

http://www.php.net/register_globals
http://www.php.net/register_globals

NotesSetting

When developing, and for maximum portability,

it’s best to set this to E_ALL, so that PHP will

inform you of situations where, for example, a

$_GET variable your code relies upon has not

been initialized. This forces you to write code

that is more secure and contains fewer logic er-

rors, in order to avoid warnings. This also en-

sures that your code will run neatly on other

servers configured this way.

error_reporting
(default: E_ALL & ~E_NOTICE)

Determines whether PHP sends error messages

to the Web browser. When running your applic-

ation in a live environment, it’s generally better

to switch this off, instead using PHP’s logging

mechanism to capture errors to a file, for ex-

ample.

display_errors
(default: on)

Allows you to restrict all PHP file operations to

a given directory or below. This can be a good

idea to prevent a script that is used to display

the contents of files, for example, from being

used to access sensitive files elsewhere on your

server.

open_basedir
(default: not set)

Allows you to specify remote file locations for

use with functions like fopen (e.g.

fopen('http://www.sitepoint.com/','r');).

It’s a handy tool but is also potentially a security

risk for a badly written script. Switch it off if

you know you don’t need it.

allow_url_fopen
(default: on)

Includes and Execution Settings
Table A.2 shows the most important PHP settings that relate to includes, and

how well your PHP scripts run.

343

Includes and Execution Settings

http://fopen('http://www.sitepoint.com/','

Table A.2. Includes and Execution Settings

NotesSetting

Allows you to specify relative and absolute paths that

PHP should search when you use one of the include
include_path
(default: '.')

related commands. Make sure you have at least the

current directory (.) specified, or most third party scripts

will fail to work. On Unix systems, the list of directories

is separated by colons (:), while on Windows the separ-

ator is a semi colon (;).

PHP will execute the file(s) specified before executing

any requested script. Useful for performing site-wide

auto_prepend_file
(default: not set)

operations such as security, logging, defining error

handlers, stripping backslashes added by the magic

quotes feature, and so on. Useful for applications that

you’re sure you will only use yourself, but unsuitable

for use in code you intend to distribute. Those unable

to modify php.ini settings with .htaccess files will be

unable to use such code. The list separator is the same

as that used for the include_path setting.

The twin of auto_prepend_file, executed after a reques-

ted script is executed.

auto_append_file
(default: not set)

Specifies the maximum execution time (in seconds) for

which a PHP script run via a Web server may be allowed

max_execution_time
(default: 30)

to execute. Generally, it’s best to leave this as the default

setting and use the set_time_limit function to extend

the limit on a per-script basis. A value of 0 for either

removes any limitations on script execution time.

The amount of memory PHP has available to it at

runtime. Usually, the default is fine, but when handling

memory_limit
(default: 8M)

very large XML documents, for example, or dealing with

images, you may need to increase it. The bigger this

value, and the more memory a script actually uses, the

less memory is available for other applications running

on your server.

Appendix A: PHP Configuration

344

NotesSetting

The maximum amount of data that PHP will accept via

an HTTP POST (e.g. a form that uploads an image).

You may need to increase this if you have an application

that will allow users to upload bigger files.

post_max_size
(default: 8M)

Error-Related Settings
Table A.3 shows the most important PHP settings that relate to the way PHP

handles errors, in addition to display_errors and error_reporting, which are

described in Table A.1.

Table A.3. Error-Related Settings

NotesSetting

Allows you to log errors to a text file, in conjunction

with error_log (below). Useful for a live site where

you’ve switched off the display of errors to visitors.

log_errors
(default: off)

A filename to which errors are logged when log_errors
is switched on.

error_log
(default: not set)

Using this, if the same error occurs from the same PHP

script on the same line, the error will only be reported

once per script execution. Helps prevent massive log

files resulting from errors that occur in loops, when log-

ging to a text file.

ignore_repeated_errors
(default: off)

Similar to ignore_repeated_errors, but, in this case,

it suppresses repeated errors of the same type throughout
a PHP script.

ignore_repeated_source
(default: 30)

Make sure this is switched on, especially if you’re using

experimental versions or non-stable releases of PHP,

otherwise you may end up crashing your server once

leaked memory has eaten up all available space.

error_reporting must be set to report warnings for

this setting to apply.

report_memleaks
(default: on)

345

Error-Related Settings

Miscellaneous Settings
Table A.4 shows additional important settings that you should be aware of in

your PHP configuration.

Table A.4. Miscellaneous Settings

NotesSetting

If storing sessions in files on a Windows-based system,

you will need to modify this setting to an available dir-

ectory to which PHP can write session files.

session.save_path
(default: /tmp)

Use cookies to store the session ID on the client, rather

than placing the session ID in the URL (which can

present a greater risk to security).

session.use_cookies
(default: 1)

The path under which compiled PHP extensions can be

found. On Windows-based systems, it might be some-

thing like this:

extension_dir = C:\php-4.3.2\extensions\

extension_dir
(default: './')

On Windows based systems only, this is used to identify

all the extensions which should be loaded. The exten-

sions specified should reside in the extension_dir path

(above). For example:

extension = php_xslt.dll

extension

Appendix A: PHP Configuration

346

http://C:\php-4.3.2\extensions\

Appendix B: Hosting Provider
Checklist

PHP, and, more generally, the LAMP combination of Linux, Apache, MySQL

and PHP/Perl/Python, is widely available via literally thousands of Web hosts at

very affordable prices. You can easily get quality Web hosting that will suit 90%

of your needs for under $10 a month per site. That said, all PHP installations

are not created equal, and depend largely on the configuration settings defined

in php.ini as well as the extensions the host has installed for you. There are also

a number of general issues relating to the amount of control you’re given over

your own environment, and these are important if you don’t want big trouble

later on.

This is a summary of the key issues you should investigate before paying for a

hosting service. Contact potential providers and have them respond on each of

these points. Follow up by asking for opinions from other people who know/have

used the service in question. There are many online forums where you’ll find

people who are able to offer advice. Be aware, though, that the ratio of “know-

ledgable” to “ignorant” is stacked highly in favor of ignorance; gem up on tech-

nical detail so you’re able to verify that the answers you were given were actually

well-informed.

Some of the points I’ve provided here may seem a little extreme, but once you’ve

been around the block a few times, you’ll probably want to get value for your

money, rather than spending your Saturday mornings fixing the problems your

host made for you on Friday night.

General Issues
� Require Linux and Apache (1.3)

From the point of view of performance and reliability, this is the best combin-

ation. Avoid any host using Apache 2.x (it’s not yet completely stable with

PHP). Ask for details of the Linux distribution. Although Red Hat and Suse

are popular, you may find hosts using Debian (or, better yet, Rock Linux)

know more about what they’re doing.

� Does the host provide you with SSH access to the server?

SSH gives you a secure connection to the server to perform tasks from the

Linux command line or transfer files with SCP (secure copy). Avoid any host

who allows you to use telnet (a fundamentally insecure way to connect to a

server over the Internet). For Windows users, Putty[1] makes an excellent

command line tool over SSH, while WinSCP[2] provides a secure file transfer

mechanism using an SSH connection. Oh, and don’t transfer files with ftp—it’s

as insecure as telnet.

� Is the host a reseller or do they maintain the server themselves?

Resellers can provide significant value if you need help at a basic technical

level (if, for example, you call yourself a newbie), but they generally have the

same level of control over the server as you. Going “straight to the source”

means you won’t have to deal with delays when there are system problems,

as you’ll likely be dealing directly with those who maintain the server. The

down side is that they tend to be less “newbie tolerant” so you may get an-

swers—but not ones you can understand

� To what degree does the host “overload” the server?

Many Web hosting companies create far more accounts on a server than the

maximum for which the system is specified. The best metric is the uptime

command (to which you require access); this will tell you the server load av-

erages over 1, 5 and 15 minutes. Ideally, the server should never have load

averages above 1. Obviously, the problem isn’t as simple as this, but once you

see your server hit averages in excess of 5, you’ll begin to experience significant

delays in your PHP-based applications.

� What is the hosting provider’s policy on running scripts and programs

from the command line?

MySQLDump is a very handy tool for backing up your database, but it’s no

good if you can’t run it. Some hosts automatically kill any command line ap-

plication that executes for longer than a given time.

� Does the host provide you access to cron, the Unix utility that allows

you to schedule batch jobs?

If so, make sure the host allows command line scripts to be executed. Some

hosts have taken to implementing cron so that it executes scripts via a Web

[1] http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

[2] http://winscp.sourceforge.net/eng/

Appendix B: Hosting Provider Checklist

348

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.sourceforge.net/eng/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.sourceforge.net/eng/

URL. This is no use if the script in question uses the MySQLDump application

to back up your database—a PHP script executed via Apache will typically

run as a user, which will not have the correct permissions required for the job.

PHP-Related Issues
� Can you see the output of phpinfo on the server you will actually be

assigned to?

Some hosts may claim this is a security risk, but expert hosts know that secur-

ity by obscurity is no substitute for real security. The information provided

by phpinfo is not a security risk to hosting providers that know what they’re

doing, and have Linux, Apache, and firewalls correctly set up. What phpinfo
tells you is the best way to confirm the facts.

� Is PHP installed as an Apache module (not the CGI variant)?

This provides much better performance.

� Is the Apache setting AllowOverride set to Options or All?

This will let you modify php.ini settings with .htaccess files.

� Is PHP Safe Mode disabled?

The safe_mode option in php.ini is, in theory, a way to make PHP secure,

and prevent users from performing certain tasks or using certain functions

that are security-sensitive. Safe Mode is nothing but a large headache if you’re

doing any serious work in PHP.

� Check the upgrade policy of your host.

Ask the host how much warning you will get before upgrades are performed.

Check that they will provide you with a copy of the php.ini file they’ll be

using for the upgrade (before it happens). The number of hosts that, overnight,

switch from register_globals = on to register_globals = off is consid-

erable. Make sure you test your applications on your development system

against the new version before the host performs the upgrade.

� Ask for a list of installed PHP extensions.

Confirm that these extensions match the requirements of your applications.

Few hosts, for example, bother to provide the XSLT extension. Confirm also

349

PHP-Related Issues

that the host guarantees all extensions will remain available between PHP

upgrades.

� Will PHP be available for use from the command line?

If not, you might alternately require access to Perl or Python, or the ability

to run shell scripts, if you’re happy with those languages. Usually, running a

serious Website will require that you have the ability to run routine batch

jobs (with cron), for tasks like backups, mailing you the PHP error log, and

so on.

� Last but not least, throw in one or two questions that will test your hosting

providers’ knowledge of PHP. Although it may not be their job to write PHP

code, when you find yourself in the position of knowing a lot more about

PHP than your host, the end result is depressing. It’s important to have a

host that understands your needs.

Appendix B: Hosting Provider Checklist

350

Appendix C: Security Checklist
Given that online PHP applications are exposed to essentially anyone and

everyone, security should be one of, if not the top concern as you develop your

applications. To some extent, the ease with which PHP applications can be de-

veloped is also one of its greatest weaknesses, in that, for beginners who aren’t

aware of the possible dangers, it’s very easy to deploy an application for which

the line of security resembles swiss cheese.

Make sure you’re informed, and, if in any doubt, ask. The Open Web Application

Security Project (OWASP)[1] is a corporate-sponsored community focused on

raising awareness of Web security, and is an excellent source of information on

potential dangers. They recently published a “Top 10” list of common security

flaws in Web applications, the relevant points of which I’ve summarized here.

The Top Security Vulnerabilities
� Unvalidated data

Never trust anything you get from a Web browser. The browser is completely

outside of your control, and it’s easy to fake values like the HTTP referrer.

It’s also easy to fake a hidden field in a form.

More importantly, when dealing with forms, for example, validate the data

carefully. Use a “deny all, permit a little” policy. For example, if a registration

form has a field for the user name, allow only alphabetical characters and

perhaps the numbers 0–9, rather than simply rejecting particular special

characters. Use regular expressions to limit data to exactly what you require.

Packages like PEAR::QuickForm, as you saw in Chapter 9, provide built-in

mechanisms for validating forms and do a lot to help cover weaknesses you

might otherwise neglect.

Also, where things like include files are concerned, watch out for logic like

this:

include($_GET['page']);

Make sure you check the value of $_GET['page'] against a list of files your

code is designed to include:

[1] http://www.owasp.org/

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/

$pages = array(
 'news.php', 'downloads.php', 'links.php'
);

if (in_array($_GET['page'], $pages)) {
 include $_GET['page'];
} else {
 include 'not_found.php';
}

Without such checks, it’s very easy for an attacker to use code similar to this

to execute other PHP scripts—even ones you didn’t write.

� Broken access control

Fundamental logic of this form is easy to get wrong if you don’t know what

you’re doing. For example, often, developers check a user name/password

combination against a database using logic like this:

if ($numRows != 0) {
 // allow access ...
}

That means they let users in even if they found more than one matching entry

in the database, which, if your site also has security holes like command injec-

tion flaws (see below), may provide attackers access to a lot more than you

were expecting. It’s easy to make mistakes in situations you think are secure

when, in fact, the logic can be bypassed easily. In general, use respected third

party libraries such as PEAR::Auth[2] and PEAR::LiveUser[3] wherever pos-

sible. Also, investigate Web testing frameworks such as SimpleTest[4], which

provide the ability to test your site from the point of view of a Web browser.

� Session and Cookie Vulnerabilities

Watch out for session hijacking possibilities. On sites where you really need

secure authentication (e.g. ecommerce sites), use SSL to serve the site to the

browser, to ensure the conversation is encrypted and that no one is listening

in. If you’re passing session IDs via the URL, as you will for WML-based sites,

make sure that you’re not placing the session ID in URLs that point to remote

sites. Also, when passing visitors to a remote site, forward them via an inter-

mediate script that strips out any possible HTTP referrer information that

[2] http://pear.php.net/package/Auth

[3] http://pear.php.net/package/LiveUser

[4] http://www.lastcraft.com/simple_test.php

Appendix C: Security Checklist

352

http://pear.php.net/package/Auth
http://pear.php.net/package/LiveUser
http://www.lastcraft.com/simple_test.php
http://pear.php.net/package/Auth
http://pear.php.net/package/LiveUser
http://www.lastcraft.com/simple_test.php

contains the session ID. In general, it’s better to handle sessions with cookies.

If you’re working with your own cookie-based authentication, store an

identifying session ID in the cookie only, not the user name and password.

� Cross Site Scripting (XSS)

By using the legitimate mechanisms your site provides, it’s possible for attack-

ers to post on your site, for example, JavaScript that results in other users

giving away their session IDs, thereby allowing the attacker to hijack their

session. Less serious, but equally embarrassing, is simply posting HTML that

“scrambles” the layout of your page, perhaps closing a table tag prematurely.

Use a “deny all, permit a little” approach, or, better yet, employ a separate

markup language such as BBCode (see Chapter 5), while eliminating HTML

with PHP functions like strip_tags and htmlentities. If you really want

to allow HTML to be posted, consider building a filter based on

PEAR::XML_HTMLSax[5] (see Volume II, Chapter 2).

� Command Injection

Command injection occurs when an attacker is able to influence the way PHP

interacts with external systems, such as the file system or a database. An SQL

injection is a prime example, which occurs when an attacker uses a form or

URL to modify a database query. This was discussed in some detail in

Chapter 3. The bottom line is: escape all data you receive from a user before

you use it in a query.

� Error Handling

An experienced attacker will be able to gain a lot of important information

about your system from your error messages. Although this comes under the

heading of “security by obscurity” (which is no substitute for having a really
secure application), for a live site, it’s a good idea to instruct PHP to log error

messages to a file, rather than display them to the browser. See Appendix A

for details.

� Insecure Use of Cryptography

First of all, when it comes to cryptography, don’t roll your own. Second, re-

member that if it’s an algorithm that’s meant to be decoded, then someone

(other than you) is also capable of decoding it. Remember that, strictly

speaking, MD5 is not an encryption algorithm (i.e. you cannot decrypt an

[5] http://pear.php.net/package/XML_HTMLSax

353

The Top Security Vulnerabilities

http://pear.php.net/package/XML_HTMLSax
http://pear.php.net/package/XML_HTMLSax

MD5 string to obtain the original data); it’s a message digest algorithm. But

if you don’t need to decrypt a value then use MD5, which is available through

PHP’s md5 function. This allows you to compare the encrypted versions of

two pieces of data (e.g. a stored password and that entered by a user), which

avoids the risks involved in working with encrypted values that could possibly

be decrypted by an attacker.

� Administration Flaws

Allowing an attacker to gain the same access you have to your site is clearly

bad news. Avoid FTP and telnet in favor of SCP/SFTP and SSH, respectively.

Linux distributions usually have the required client tools pre-installed. For

Windows, check out putty[6] for SSH access and WinSCP[7] for SCP/SFTP.

FTP and telnet expose your password to network sniffers. Make sure that any

Web administration tools your host provides are used only over an SSL con-

nection. If you’re using third party software, such as phpBB, change the default

administrator password immediately, and stay informed about potential se-

curity flaws.

� Configuration and Patching

When installing PHP, the configuration file php.ini-recommended makes

the best starting point to make sure you’ve got the package configured cor-

rectly.

If you’re using a hosting company, they should take care of most of the issues

for you, such as patching software as vulnerabilities are announced. Still, it’s

worth staying up to date on your own, using sites like Security Focus[8] and

others listed at DMOZ[9].

More information is available at PHP Advisory[10] although, sadly, the site is

no longer being maintained.

[6] http://www.chiark.greenend.org.uk/~sgtatham/putty/

[7] http://winscp.sourceforge.net/eng/

[8] http://www.securityfocus.com/incidents/

[9] http://dmoz.org/Computers/Security/Mailing_Lists/

[10] http://www.phpadvisory.com/

Appendix C: Security Checklist

354

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.sourceforge.net/eng/
http://www.securityfocus.com/incidents/
http://dmoz.org/Computers/Security/Mailing_Lists/
http://www.phpadvisory.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.sourceforge.net/eng/
http://www.securityfocus.com/incidents/
http://dmoz.org/Computers/Security/Mailing_Lists/
http://www.phpadvisory.com/

Appendix D: Working with PEAR
PEAR[1], the PHP Extension and Application Repository, is the brainchild

of Stig Bakken, and was inspired by Perl’s CPAN[2].

As a project, it was originally conceived in 1999 and reached its first stable release

in January 2003. It serves two purposes. First, it provides a library of PHP classes

for solving common “architectural” problems, a number of which you’ve seen in

this book. Second, under the title “PECL” (PHP Extension Code Library), PEAR

provides a repository for extensions to PHP. PECL was originally intended to

store “non standard” extensions that lay more on the fringes of PHP, but it has

since evolved into the default repository for all extensions not included in the

core PHP distribution. Here, I’ll be concentrating on the PHP classes that PEAR

provides.

Those who submit work and maintain the PEAR repository are all volunteers.

Originally a small community of developers, the release of the first stable version

of PEAR has seen their numbers grow significantly, and receive a greater focus

from the PHP community as a whole. There’s still a lot of work to be done to

raise the standards to that of PHP itself, documentation being a key area in which

there’s still much room for improvement. If you’re struggling, a good place to

start is PHPKitchen’s list of PEAR Tutorials[3]. That said, PEAR already offers

significant value in terms of reducing the effort required in developing PHP ap-

plications.

But what does PEAR actually mean to you? Considering the capabilities of

PEAR::SOAP, which was covered in Volume II, Chapter 2, attempting to write

your own SOAP implementation first, then writing the “application” code that

will use it is clearly a waste of time. Browsing the list of packages[4], you’ll see

that PEAR provides you many more classes, categorized by subject, to help prevent

you having to reinvent wheels. It’s important to understand the focus of PEAR

classes is architectural issues, not application-level classes. In other words, PEAR

is not Hotscripts; you won’t find complete applications there; rather, you’ll find

code that can be reused in many different applications. Also important is that

the PEAR developer community does its best to maintain and support the library,

compared to, say, projects available via SourceForge[5], which are often individual

[1] http://pear.php.net/

[2] http://www.cpan.org/

[3] http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962

[4] http://pear.php.net/packages.php

[5] http://www.sourceforge.net/

http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962
http://pear.php.net/packages.php
http://www.sourceforge.net/
http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962
http://pear.php.net/packages.php
http://www.sourceforge.net/

endeavours and come to a sudden end once the individuals in question stop

contributing their time. Otherwise, there is some emphasis on maintaining a degree

of standardization throughout the library. For example, all error handling should

be performed using PEAR::Error, and the code should be documented using the

PHPDoc standard, which means you should be able to extract the API document-

ation using PHPDocumentor[6] (see Volume II, Chapter 6) if you can’t find it

on the PEAR Website.

Be warned: the degree of integration between the packages within PEAR is cur-

rently fairly low when compared to, say, the Java class library. This means, in

some cases, that you’ll be confronted with decisions like whether to use

PEAR::HTML_QuickForm’s validation functionality, or PEAR::Validate, or both.

It’s a good idea to invest some time investigating which fits your development

style up-front, rather than jumping straight in and using a PEAR class for a crit-

ical part of your application, only to discover later that it wasn’t the best fit for

the problem.

One important point to be clear on is that referring to “PEAR” can actually mean

one of two things: the repository as a whole, or the PEAR front end (also known

as the package manager), which provides tools for installing and upgrading the

PEAR packages you use.

Note that it’s not a requirement that you use the PEAR package manager to install

PEAR packages. If you need to, you can download them directly from the PEAR

Website and manually extract them to your PHP’s include path. Make sure you

check the dependencies listed on the site (these being other required packages)

and be aware that most packages implicitly require PEAR “base” package[7] for

tasks like error handling.

Installing PEAR
These days, the foundations of PEAR are provided with PHP distribution itself,

but Web hosts typically fail to provide customers with their own default PEAR

installation, so it’s worth knowing how to go about doing this from scratch. The

process can differ slightly between Unix and Windows based systems.

Step one is to make sure you can run PHP scripts via the command line. This is

always possible if you type the full path to the PHP binary. For a Unix based

system, you’d use the following:

[6] http://www.phpdoc.org/

[7] http://pear.php.net/package/PEAR

Appendix D: Working with PEAR

356

http://www.phpdoc.org/
http://pear.php.net/package/PEAR
http://www.phpdoc.org/
http://pear.php.net/package/PEAR

/usr/local/bin/php /home/username/scripts/my_script.php

For Windows, you’d use something like this:

c:\php\cli\php.exe c:\scripts\my_script.php

Note that in the Windows path above, we used the executable in the cli (com-

mand line interface) subdirectory of the PHP installation, this executable behaving

slightly differently from that used by Apache to handle Web pages. PHP binary

releases for Windows since 4.3.0 place the cli version of the PHP executable in

this directory.

It’s possible to make PHP much easier to use from the command line, though,

by making some changes to your system’s environment variables. For an in-depth

discussion see Replacing Perl Scripts with PHP Scripts[8] on PHPBuilder[9].

Next, point your browser at http://pear.php.net/go-pear, where you’ll see a PHP

script. This script is used to install the PEAR package manager—the basis you’ll

need in order to install other PEAR packages. Download this to your computer

(File, Save As) as go-pear.php. From here, you have a number of options.

Storing go-pear.php somewhere under your Web server’s document root directory

will allow you to run the script as a Web page. This behavior is still experimental,

though, so there are no guarantees it’ll work correctly. If you do use this approach,

make sure that the script is not publicly available!

Better is to execute the go-pear.php script via the command line, for example:

/usr/local/bin/php /home/username/pear/go-pear.php

Or, on Windows:

c:\php\cli\php c:\pear\go-pear.php

This will start an interactive command line interface, which will ask you questions

about how you would like PEAR installed. Note that the “installation prefix” is

the directory in which PEAR (as well as any packages you install later) will be

installed, and is referred to as $prefix, while $php_dir is the path to your PHP

installation (in which go-pear.php will put PEAR-related documentation by

default, unless you specify otherwise). Windows users should be aware that

[8] http://www.phpbuilder.com/columns/jayesh20021111.php3

[9] http://www.phpbuilder.com/

357

Installing PEAR

http://www.phpbuilder.com/columns/jayesh20021111.php3
http://www.phpbuilder.com/
http://pear.php.net/go-pear
http://pear.php.net/go-pear,
http://www.phpbuilder.com/columns/jayesh20021111.php3
http://www.phpbuilder.com/

changing the installation prefix pops up a Windows “Browse” dialog box, through

which you can specify the required directory.

With the installation options set to your requirements, the go-pear.php script

will connect to the PEAR Website, and download all the packages required to

set up the package manager (it also asks if you require additional packages, which

are well worth having). Packages are installed in a subdirectory pear of the dir-

ectory you specified as the installation prefix (so, in the above examples you’d

end up with c:\pear\pear or /home/username/pear/pear).

Finally, if you let it, the go-pear.php installer will attempt to modify your in-
clude_path in php.ini. To do this manually, assuming you used the directories

above, you’d specify the following:

include_path = ".:/home/username/pear/pear"

For Windows users, the path is as follows:

include_path = ".;c:\pear\pear"

Finally, to use the PEAR package manager from the command line, you need to

set up some environment variables. For Windows users these can be automatically

added to your Windows registry by right clicking on the file PEAR_ENV.reg and

choosing Run. They may also be manually configured as environment variables

via the Windows Control Panel. Users with Unix-based systems can configure

them to be set up every time you log in, by editing the file .profile in your

home directory (/home/username):

Envinment variables
export PHP_PEAR_SYSCONF_DIR=/home/username/pear
export PHP_PEAR_INSTALL_DIR=/home/username/pear/pear
export PHP_PEAR_DOC_DIR=/home/username/pear/pear/docs
export PHP_PEAR_BIN_DIR=/home/username/pear
export PHP_PEAR_DATA_DIR=/home/username/pear/pear/data
export PHP_PEAR_TEST_DIR=/home/username/pear/pear/tests
export PHP_PEAR_PHP_BIN=/usr/local/bin/php

Finally, you need to add the PEAR command line script to your system path,

which, on Windows, can be achieved through the System Control Panel applica-

tion (on the Advanced tab, click Environment Variables), by appending ;c:\pear
to the PATH variable.

On Unix-based systems, add the following to your .profile script:

export PATH=$PATH;/home/username/pear

Appendix D: Working with PEAR

358

Once you’ve done all that, you’re ready to move on and use the package manager

in one of its many incarnations.

The PEAR Package Manager
Assuming you set PEAR up correctly, you can now use the command line interface

to the PEAR package manager to install packages. For example, from the command

line, type:

pear install HTML_Common

That will install the package HTML_Common from the PEAR Website. The

package names for the command line are the same as those on the Website.

The PEAR Package Manager uses XML_RPC to communicate with the PEAR

Website. If you’re behind a proxy server or firewall, you will need to tell PEAR

the domain name of the proxy server with:

pear config-set http_proxy proxy.your-isp.com

To unset the variable at some later stage, simply use:

pear config-set http_proxy ""

Now to add QuickForm to the installed PEAR packages, you simply need to type:

pear install HTML_QuickForm

Should another release of QuickForm be made after you’ve installed it, you can

upgrade the version with:

pear upgrade HTML_QuickForm

If, for some reason, you later decide you don’t need QuickForm any more, you

can remove it using:

pear uninstall HTML_QuickForm

For a list of all PEAR commands, simply type pear.

Now, if you don’t like command lines, there’s also an (experimental) Web-based

front end to PEAR (as well as a PHP-GTK front end, which is beyond the scope

of this discussion). To use it, you first need to install it from the command line

359

The PEAR Package Manager

http://proxy.your-isp.com

(note that if you executed go-pear.php through your Web server, the Web-based

front end is also installed for you). Type the following commands:

pear install Net_UserAgent_Detect
pear install Pager
pear install HTML_Template_IT
pear install PEAR_Frontend_Web

Note the first three packages are required by PEAR_Frontend_Web. With that

done, you can launch the front end from your Web server using the following

simple script:

<?php
// Optional if include path not set
ini_set('include_path', 'c:\htdocs\PEAR');

require_once 'PEAR.php';

// For Windows users
$pear_user_config = 'c:\windows\pear.ini';
// For Unix users
$pear_user_config = '/home/username/pear/pear/PEAR/pear.conf';

$useDHTML = TRUE; // Switch off for older browsers

require_once 'PEAR/WebInstaller.php';
?>

Installing Packages Manually
It’s possible to install packages manually (although this involves more work), but

it’s important to watch the include paths carefully when doing so. First of all,

create a directory that will be the base of all the PEAR classes you install. This

directory must be in your include path. Next, install the main PEAR pack-

age[11]—download the latest stable version and extract it directly to the directory

you’ve created, so that PEAR.php is in the root of this directory.

Installing further packages can be completed in more or less the same fashion,

but you need to be careful which directory you extract to. For example, looking

at PEAR::DB, the main DB.php file goes alongside the PEAR.php file in the root

of the PEAR class directory, while further PEAR::DB-related files go in the sub-

directory DB. The best way to check is to look at the package.xml file that comes

[11] http://pear.php.net/package/PEAR

Appendix D: Working with PEAR

360

http://pear.php.net/package/PEAR
http://pear.php.net/package/PEAR
http://pear.php.net/package/PEAR

with every PEAR package. This contains an element called filelist, which lists

all the files contained in the package and the location at which they should be

installed. For each file, check the baseinstalldir attribute which, if specified,

tells you where, relative to the root PEAR class directory, the file should be placed.

The name attribute specifies the path and filename relative to the baseinstalldir
(or just the root PEAR class directory if there’s no baseinstalldir attribute),

where each file should be placed.

361

Installing Packages Manually

362

Index
This index covers both volumes of The
PHP Anthology. Page references in anoth-

er volume are prefixed with the volume

number and appear in italics (e.g. II-
123 refers to page 123 of Volume II).

Symbols
$_FILES array, 280

$GLOBALS array, II-91
$this variable, 31, 37, II-97
% (wildcard character), 95

& (reference) operator, 42, 69, II-124
(see also references)

-> (arrow) operator, 32

.= (string append) operator, II-309

.forward files, 248

.htaccess files, 16, 18, 20, 118, 128, 204,

311, 322, II-72, II-81, II-229
:: operator, 29

= (assignment) operator, II-309
@ (error suppression) operator, 163, 322,

324

@ doc tags, II-285, II-293
__clone method, 48

A
abstract classes, 60, II-84
acceptance testing, II-298
access control, II-1, II-13, II-21

(see also methods, access control)

(see also permissions)

security concerns, II-1, II-24
adjacency list model, 288

aggregation, 56, 59

aliases (see SELECT queries, aliases)

allow_call_time_pass_reference direct-

ive, 20, 47

alpha blending, 223

alternative content types, II-169
Apache, 308, 310

API documentation, II-xiii, II-283
generating, II-291
reading, II-287

apostrophes

escaping (see magic quotes)

in SQL statements (see quotes in

SQL statements)

application programming interfaces

(APIs), 25, 35, 78

Application Programming Interfaces

(APIs)

(see also API documentation)

applications, 314

archives (see compressed files)

arguments, 5

array pointers, II-324
arrays, 256

converting to strings, 151

creating from strings, 150

strings as, 152

ASP tags (<% %>), 18

asp_tags directive, 18

authentication (see access control)

authentication headers (see HTTP au-

thentication)

auto log ins, II-232
auto sign ups

protecting against, II-37
auto_append_file directive, 204

AUTO_INCREMENT columns, 94

auto_prepend_file directive, 203, 204,

II-72, II-260
automated testing (see unit testing)

AWStats, II-225

B
backing up MySQL databases, 98

BACKUP TABLE queries, 101, 102

bad word filters (see censoring bad

words)

bar graphs (see graphs, bar graphs)

base64 encoding, II-6
BBCode, 153

binary files

reading in Windows, 116

bitwise operators, 321

black box testing, II-299
bread crumb (see crumb trail naviga-

tion)

buffered queries (see unbuffered quer-

ies)

buffering (see output buffering)

bzip2, 100

C
caching, 202, 293, II-156, II-175, II-241

(see also template caching)

chunked, II-248, II-255
client side, II-242, II-262
downloads, II-244
function calls, II-260
preventing, II-243
security concerns, II-256
server side, II-242, II-247, II-254
Web services, II-260

calendars, 190

daily schedule, 198

days in a month, 195

months in a year, 194

call-time pass-by-references, 20, 47

callback functions, 326, II-87, II-90,

II-93
cascading constructors, 52

censoring bad words, 157

charts (see graphs)

CHECK TABLE queries, 103

child classes, 48

chunked buffering (see output buffer-

ing, chunked)

class declarations, 28

class scope (see scope)

classes, 25, 26, 29, 154

(see also output in classes)

click path analysis, II-223, II-225, II-238
code archive, xii, II-xv
code optimization

lazy includes, II-275
quotes, II-276
references, II-276
SQL queries, II-275

collections, II-323
composition, 58, 59, II-158
compressed files

(see also PEAR, PEAR::Archive_Tar)

creating, 138

extracting, 139

concrete classes, 60

conditional GET, II-264
configuration information

methods for storing, 17

storing in files, 127

constants, II-13, II-228
constructors, 31

not cascaded in PHP, 52

context menus, 292, 297

cookies, II-8, II-214, II-232
vs. sessions, II-232

corrupt databases (see repairing corrupt

MySQL databases)

COUNT (see MySQL functions,

COUNT)

cron, 205, 206

(see also crontab)

(see also pseudo-cron)

crontab, 101

cross-site scripting (XSS) attacks, 148,

163, II-10
crumb trail navigation, 53, 288, 293

Index

364

custom error handlers (see errors,

handling)

custom error pages, 333

custom session handlers, II-10
custom tags (see BBCode)

D
Data Access Objects (DAO), 104

database indexes, 96

database persistence layers (see persist-

ence layers)

databases, 65, 216

(see also MySQL)

backing up (see backing up MySQL

databases)

storing dates in, 172

dates

day of the week, 182

day of the year, 186

days in month, 183

first day in the month, 187

leap years, 185

number suffix, 188

storing in MySQL, 172

week of the year, 183

dates and times

in HTTP, II-264
DELETE queries

counting rows affected, 93

derived data, II-226
design patterns, 21, II-xiii, II-311

adapter pattern, II-190, II-342
factory method, II-313
iterator pattern, II-323, II-333

(see also iterators)

observer pattern, II-25, II-347
strategy pattern, II-334

development techniques, II-xiii
directories

reading, 123

dispatch maps, II-160

doc tags (see @ doc tags)

DocBlocks, II-294
Document Object Model (DOM),

II-80, II-102, II-110, II-112, II-114
(see also XPath)

DOM (see Document Object Model

(DOM))

DOM inspector, II-79
downloads (see files, downloads)

drop-down menus, 299

E
echo statements, II-201, II-245, II-246
Eclipse PHP library, II-290, II-334
ECMAScript (see JavaScript)

email, 237, II-29
attachments, 239

complex messages, 238

embedded images, 240, 243

HTML, 243

mailing lists, 251

multipart, 245

multiple recipients, 245

PHP setup, 237

receiving, 247

email addresses

temporary, II-25
encapsulation, II-286
encryption, 275, II-46, II-51

(see also MD5 digests)

enctype attribute, 280

enterprise application architecture, 21

entity references (see XML entity refer-

ences)

environment errors, 10, 319

error reporting levels, 321, 322

(see also errors, levels)

error_reporting directive, 321, 322

(see also error reporting levels)

errors, 320, 324, 325

(see also environment errors)

365

(see also logic errors)

(see also semantic errors)

(see also syntax errors)

displaying, 333

generating, 324, 325

handling, 11, 320, 326, 329, 331, II-31,

II-139
in PHP 5, 320

levels, 320, 324

(see also notices)

(see also warnings)

logging, 331

suppressing, 322

(see also @ (error suppression)

operator)

types of, 8, 319

escape characters, 19, 84

(see also magic quotes)

event handlers, II-80, II-87
exception handling, 331

(see also try-catch statements)

execution time limits, 132, II-195
(see also PHP functions,

set_time_limit)

exit statements, II-20
extends keyword, 49

Extensible Markup Language (see

XML)

extensions (see PHP extensions)

Extreme Programming, 11, II-298
eXtremePHP, II-334

F
fatal errors (see errors)

fields (see member variables)

file handles, 116

file pointers (see file handles)

File Transfer Protocol (FTP), 131

(see also PEAR, PEAR::NET_FTP)

security concerns, 131

files, 111

(see also compressed files)

(see also directories)

accessing remotely, 129, 130

appending to, 119

as a database replacement, 118

downloads, 135

caching issues, II-244
security concerns, 136

getting information about, 121

permissions, 120, II-10
security concerns, 120

reading, 112, 116, 117

security concerns, 111

transferring (see File Transfer Pro-

tocol (FTP))

uploads, 280

(see also maximum upload size)

displaying, 286

security concerns, 283

with QuickForm, 283

writing, 119

folders (see directories)

fonts

.afm, II-175
in PDF documents, II-175
using in dynamic images, 224, II-41

for statements, 263, II-274
ForceType directive, 310

foreach statements, 10, 107, 247, II-88,

II-125, II-129, II-324
forgotten passwords (see passwords,

retrieving)

form field values, 145

escaping (see special characters)

formatting values for output, 152

forms, 268

generating with QuickForm, 269

guidelines, 269

security concerns, 269

validating (see validating submitted

data)

Index

366

FPDF, II-170, II-190
FTP (see File Transfer Protocol (FTP))

FULLTEXT searches, 96, II-280
function reference, 4

function scope (see scope)

functions

(see also arguments)

(see also PHP functions)

(see also return values)

signatures, 5, II-286

G
GD image library, 209, 225

GET (see HTTP request methods)

GIF files

patent issues, 210

global keyword, 275

global scope (see scope)

global variables (see superglobal vari-

ables)

graphs, 225

bar graphs, 226

pie charts, 228

gray box testing, II-299
groups (see user groups)

gzip, 100

GZIP files (see compressed files)

H
HAWHAW, II-208, II-289
HDML, II-208
heredoc syntax, 27

hierarchical data, 288, 289

hierarchical menus (see tree menus)

HTML

converting to PDF, II-177
in email (see email, HTML)

parsing, II-81, II-177
HTML tags

replacing with BBCode, 153

stripping out of text, 147, 163

HTML2FO, II-200
HTTP authentication, II-3, II-5,

II-6
HTTP headers, 135, 288, II-175, II-215,

II-242, II-243, II-262
and output buffering, II-246
authorization, II-6
cache-control, II-243, II-263
content-disposition, 136, II-244
content-length, 136

content-type, 136, 210, 217, II-120, II-201
etag, II-263
expires, II-243, II-263, II-264
if-modified-since, II-263, II-264, II-266
last-modified, II-175, II-244, II-263,

II-264, II-266
location, II-20, II-234
pragma, II-243
referrer, II-10
when to send, II-7
www-authenticate, II-5

HTTP request headers, II-4
HTTP request methods, 268, II-163
HTTP response headers, II-4, II-9
httpd.conf, 312

hyperlink URLs

URL encoding, 143

I
if-else statements, 9, 68, 277, II-132,

II-148, II-195, II-271, II-282, II-334
ignore_repeated_errors directive, 333, 333

images

getting dimensions of, 212

getting type of, 214

overlaying with text, 224, II-40
palette-based, 213

preventing “hot linking”, 230

resampling, 213

resizing, 213

scaling proportionally, 214

367

true color, 213

watermarking, 223

include, 12, 15, 69

(see also require)

include files (see includes)

include_once, 12, 14

(see also require_once)

include_path directive, 16, II-171
includes, 12, 15, 127

(see also code optimization, lazy in-

cludes)

(see also include_path directive)

across directories, 15

incoming mail (see email, receiving)

indexes (see database indexes)

inheritance, 48, 52, 190, 264, II-84
deep structures, 55

ini files (see configuration information,

storing in files)

INSERT queries, 80, 81, 96

counting rows affected, 93

retrieving new row ID, 94

instances (see instantiation)

instantiation, 30

interfaces, 60, II-353
(see also application programming

interfaces (APIs))

IP addresses, II-24, II-224, II-232
iterators, 296, II-98, II-108, II-183, II-323,

II-338

J
JavaScript, II-10

form validation with, 269, 270, 271

interaction with SVG, II-203
JpGraph library, 225

L
language filters (see censoring bad

words)

layered application design (see N-Tier

design)

lazy fetching, II-69
LIKE operator, 95

LIMIT clauses, 89, 91, 259, II-280
line breaks

preserving in HTML, 146

link identifiers, 68

link URLs (see URL encoding)

LiveHttpHeaders, II-262
logging errors (see errors, logging)

logic errors, 11, 319

lookup tables, II-61

M
magic quotes, 19, 84, 269, II-17, II-31

(see also quotes in SQL statements)

magic_quotes_gpc directive, 19, 84, 85,

II-17
(see also magic quotes)

mailing lists (see email, mailing lists)

maximum upload size, 280

MD5 digests, II-16
member functions (see methods)

member variables, 31

access control, II-286
meta tags, II-242, II-243

expires, II-243
pragma, II-243
problems with, II-243

methods, 28

(see also static methods)

access control, II-286
accessing member variables, 32

calling other methods, 37

signatures, II-286
MIME (see Multipurpose Internet Mail

Extensions (MIME))

MML, II-208
mock objects, II-306
mod_rewrite, 231, 312, 314

Index

368

Mozilla, II-79, II-215
Multipurpose Internet Mail Extensions

(MIME), 210

MIME types, 211, 215, 216, 239, 284 (see

application/vnd.mozilla.xul+xml)

image/bmp, 211

image/gif, 211

image/jpeg, 211

image/png, 211

image/xml+svg, 211

text/html, 211

myisamchk, 103

MySQL, 17, 24, 66, 66, 78, 290, II-2,

II-254, II-279, II-343
(see also unbuffered queries)

backing up (see backing up MySQL

databases)

connecting to, 67, 69

displaying data from, 255

fetching data from, 73, 75

inserting rows of data, 80

storing dates in, 172

updating rows of data, 80

MySQL column types

DATE, 174

DATETIME, 174

TIME, 174

MySQL functions

COUNT, 90, 260

DATE_FORMAT, 178

UTC_TIMESTAMP, 178

MySQL manual, 103

MySQL timestamps, 174, 177

mysqldump, 98, 100, 101

N
N-Tier design, II-xiii, II-200, II-277
namespaces (see XML namespaces)

navigation systems, 288

nested buffers (see output buffering,

nested)

nested sets, 288

new keyword, 33

new lines (see line breaks)

notices, 321, 323, 324, 325

number suffixes, 188

NuSOAP, II-157

O
object oriented programming, x, 21,

23, II-311
basics, 26

Object Oriented Programming

performance concerns, II-271
objects, 25, 29

interaction, 56

optimizing code, II-269
for loops, II-274
most probable first, II-271

ORDER BY clauses, 256

output buffering, 333, II-245, II-247
chunked, II-248

(see also caching, chunked)

nested, II-254
output in classes, 33

overriding, 50

calling overridden methods, 51

P
packet sniffers, II-1
paged results, 259

parameters (see arguments)

parent classes, 49

calling methods of, 51

parent keyword, 51

parse errors, 9

passing by reference, 42

(see also references)

passing by value, 42

passwords

changing, II-55
generating, II-51

369

http://application/vnd.mozilla.xul+xml

retrieving, II-46
pausing script execution, 247, II-24
PDF (see Portable Document Format

(PDF))

PEAR, ix, 16, 23, 253

(see also phpOpenTracker)

Auth_HTTP, II-8
PEAR::Archive_Tar, 138

PEAR::Cache, II-261
PEAR::Cache_Lite, II-156, II-254,

II-257, II-259, II-260, II-264
PEAR::DB, 89, 105, II-262, II-280, II-343
PEAR::DB_DataObject, 89, 104

PEAR::Error, 331

PEAR::File, 118, 119

PEAR::HTML_QuickForm, 241, 269,

II-22, II-26, II-31, II-37, II-48, II-55,

II-218
PEAR::HTML_Table, 201, 255

PEAR::HTML_TreeMenu, 304

PEAR::Image_GraphViz, II-238
PEAR::Log, 333

PEAR::Mail_Mime, 247, 249

PEAR::mailparse, 249

PEAR::NET_FTP, 133

PEAR::Pager_Sliding, 263

PEAR::PHPUnit, II-301
PEAR::SOAP, II-152, II-157, II-160
PEAR::Tree, 288

PEAR::Validate, 159, 163, 167

PEAR::XML_fo2pdf, II-200
PEAR::XML_HTMLSax, 149, II-81,

II-177, II-187, II-191
PEAR::XML_SaxFilters, II-102
PEAR::XML_Tree, II-238

PEAR::DB, II-319
performance

measuring, 204

permissions, II-61
(see also files, permissions)

perror, 103

persistence layers, 89, 104, 104

PHP

language features, 4

language fundamentals, 3

mailing lists, 7

related Websites, 7

usage statistics, 2

PHP Classes, 23, 154, II-342
PHP extensions, 4

ClibPDF, II-170
DOM XML, II-82, II-83, II-102, II-112
IMAP, 247

Java, II-200
Mailparse, 247

Msession, II-262, II-280
PDFlib, II-170
Xdebug, II-270, II-277
XML, II-82, II-87
XML-RPC, II-142
XSLT, II-82, II-135

PHP function

mysql_num_fields, 90

PHP functions

addslashes, 85, 85, II-144
apache_request_headers, II-262
apache_response_headers, II-262
array_map, 19

base64_encode, II-235
checkdnsrr, 161

clearstatcache, 123

closedir, 123

count, II-274
date, 122, 176, 182, 185, 186, 188, 194, 202,

203, II-250, II-264
define, II-13
die function, 68

dir, 124, 220, II-83, II-331
domxml_new_doc, II-102
domxml_open_file, II-102
domxml_open_mem, II-102
each, II-273, II-325

Index

370

error_log, 331

error_reporting, 321, II-102, II-171
eval, II-153
explode, 150

fclose, 123

feof, 117

fgets, 117

fgetss, 118

file, 112, 117, II-87
file_exists, 121

file_get_contents, 113, 116, 117, 284

fileatime, 122

filemtime, 122

filesize, 117, 121, 129

flush, II-227
fopen, 116, 119, 123, 130

fread, 116, 117, 123

fscanf, 118

fsockopen, 130, II-87
ftp_chdir, 133

ftp_connect, 132

ftp_login, 132

ftp_nlist, 133

ftp_pwd, 133

get_magic_quotes_gpc, 19, 85

getallheaders, II-262, II-266
gethostbyaddr, II-223
getimagesize, 212, 213, 233

gmdate, II-264
header, 211, 288, II-7, II-243, II-246
highlight_file, 125

highlight_string, 125

htmlspecialchars, 145, 156, 269

imagecolorallocate, 224

imagecopy, 224

imagecopyresampled, 213

imagecopyresized, 213

imagecreatefromjpeg, 212

imagecreatetruecolor, 212, 213

imagefontload, 224

imagejpeg, 213, II-43

imageloadfont, II-41
imagestring, 224, II-41
implode, 151

ini_set, 16, II-72
is_dir, 122

is_file, 122

is_readable, 122

is_string, II-304
is_uploaded_file, 283

is_writable, 122

mail, 237, 238, II-287
md5, II-16, II-51, II-258
microtime, 204

mktime, 176, 176

mysql_affected_rows, 93

mysql_close, 68

mysql_connect, 24, 68, 323

mysql_error, 78

mysql_escape_string, 85, II-17
mysql_fetch_array, 24, 73, 74, 75

mysql_fetch_object, 75

mysql_insert_id, 94

mysql_num_rows, 89, 93

with unbuffered queries, 75

mysql_query, 24, 73, 74, 80, 86

mysql_real_escape_string, 85

mysql_result, 75

mysql_select_db, 24, 68

mysql_unbuffered_query, 75

nl2br, 146

ob_clean, II-250
ob_end_clean, II-246, II-254
ob_end_flush, II-246, II-248, II-254
ob_get_contents, II-246, II-250
ob_start, II-246, II-254
opendir, 123

parse_ini_file, 17, 107, 128

preg_quote, 158

print_r, 249, 281

printf, 118, 152

pspell_suggest, II-54

371

putenv, 203

and IIS, 203

rawurldecode, 144

rawurlencode, 144

readdir, 123

readfile, 115, 117, II-227
session_register, II-11
session_start, II-7, II-9, II-11,

II-246
session_unregister, II-11
set_cookie, II-246
set_error_handler, 326, 328

set_time_limit, 132, 207, 247

sleep, 247, II-24
sprintf, 152

str_replace, 150

strip_tags, 118, 147, 153, 156, 163, 167,

II-210
stripslashes, 19, 84

strpos, 5, 149

strtotime, II-266
substr, 149

system, 98, 138

time, 176, 202, 203

trigger_error, 79, 320, 324, 325, II-97
trim, 151

urldecode, 144

urlencode, 144

warning, 324

wordwrap, 149

xml_parse_into_struct, II-87, II-88
xml_parser_create, II-87
xml_parser_free, II-88
xml_parser_set_option, II-87
xml_set_character_data_handler,

II-93
xml_set_element_handler, II-93
xml_set_object, II-97, II-101
xslt_create, II-137
xslt_errno, II-137
xslt_error, II-137

xslt_process, II-137
PHP license, 154

PHP manual, 2

searching, 4

short cuts, 5

PHP source code

displaying online, 125

security concerns, 125

php.ini, 3, 11, 16, 18, 20, 47, 84, 105,

125, 128, 203, 204, 205, 226, 237, 280, 321, 322,

II-72, II-81, II-82, II-260, II-270
PHPDoc, II-284
PHPDocumentor, 159

phpDocumentor, II-293
PHPMailer, 238, 243, 245, II-26, II-48,

II-287
phpOpenTracker, II-221, II-227, II-234,

II-238
API, II-231
installation, II-228
search engine plug-in, II-236

PHPSESSID variable, II-214
phpSniff, II-222
PhpUnit, II-300
pie charts (see graphs, pie charts)

PNG (see Portable Network Graphics

(PNG))

points, II-172
polymorphism, 35, 60, 63

Portable Document Format (PDF),

II-169
from HTML, II-177
generating, II-176, II-196
page origin, II-173
rendering, II-169

Portable Network Graphics (PNG), 210

portable PHP code, 16

POST (see HTTP request methods)

post_max_size directive, 280

PostgreSQL, 66, 78, II-343
print statements, II-245

Index

372

private methods, 39

procedural programming, 23

processing instructions (see XML pro-

cessing instructions)

proxy servers, II-224
pseudo-cron, 205

(see also cron)

public methods, 39

Q
QuickForm (see PEAR,

PEAR::HTML_QuickForm)

quotes (see code optimization, quotes)

quotes in SQL statements, 83, 84

R
R&OS PDF, II-170
raw data, II-226
RDF (see RSS)

realms, II-6
redirection, II-20

(see also HTTP headers, location)

refactoring, 28

reference counting, 48

references, 20, 39, 45, II-276
(see also call-time pass-by-references)

(see also passing by reference)

improving performance with, 47

in PHP 5, 48

returning from functions/methods,

46

to new objects, 46

register_globals directive, 18, II-11,

II-18
registering users (see user registration

systems)

regular expressions, 153, 158, II-44, II-340
REPAIR TABLE queries, 103

repairing corrupt MySQL databases, 103

require, 12

(see also include)

require_once, 12, 14, 17, II-276, II-283
(see also include_once)

reserved characters, 144

resource identifiers, 74

RESTORE TABLE queries, 101

result pagers (see paged results)

return commands

in constructors, 31

return values, 5

for constructors, 31

reusable code, 20, 23

rich clients, II-215
RLIKE operator, 96

robots (see visitor statistics, excluding

search engines)

RSS, II-79, II-85, II-102
aggregation, II-122
generating, II-114
validation, II-122

RTFM, 2

(see also PHP manual)

S
SAX (see Simple API for XML (SAX))

Scalable Vector Graphics (SVG), II-169,

II-200
rendering with PHP, II-205

scope, 34

script execution time (see timing PHP

scripts)

search engine friendly URLs, 307

search engine queries, II-236
searching and replacing text in strings,

149

searching MySQL databases, 95

(see also FULLTEXT searches)

Secure Socket Layer (SSL), II-1
security, 3

SELECT queries, 80

aliases, 91, II-62
counting rows returned, 89, 92

373

with MySQL, 90

with PHP, 89

optimizing, II-275
searching with, 95

sorting results, 256

semantic errors, 10, 319

sendmail, 237

session variables, II-45
session.save_path directive, II-10, II-72
sessions, 231, II-8, II-11, II-12, II-55,

II-154, II-214
(see also custom session handlers)

(see also tracking online users)

on multiple servers, II-280
security concerns, II-9, II-57
storing in MySQL, II-71, II-73
vs. cookies, II-232

short tags (<? ?>), 18, II-81
short_open_tag directive, 18, 205, II-81
SHOW TABLES queries, 101

Simple API for XML (SAX), 163, II-80,

II-82, II-87, II-88, II-110, II-177
Simple Mail Transfer Protocol (SMTP),

237

Simple Object Access Protocol (see

SOAP)

SimpleTest, II-301
sliding page numbers, 263

SMTP (see Simple Mail Transfer Pro-

tocol (SMTP))

SOAP, II-xiii, II-141, II-150, II-226
(see also WSDL)

(see also XML-RPC)

building a client, II-152, II-164
building a server, II-157
vs. XML-RPC, II-142

source code (see PHP source code)

special characters, 145, 145, 156

(see also reserved characters)

(see also unsafe characters)

spiders (see visitor statistics, excluding

search engines)

SQL injection attackes, 275

SQL injection attacks, 19, 20, 81, 86,

II-144
standalone PHP scripts, 249

standard input, 249

static methods, 29, 159

statistics (see visitor statistics)

stdClass, II-100
string functions, 149

(see also PHP functions)

strings

converting to arrays, 150

creating from arrays, 151

treating as arrays, 152

trimming whitespace, 151

writing formatted values to, 152

Structured Query Language (SQL), 73,

II-134
(see also DELETE queries)

(see also INSERT queries)

(see also quotes in SQL statements)

(see also SELECT queries)

(see also UPDATE queries)

(see also variables, in SQL queries)

generating automatically, 104

generating from XML, II-138
resolving problems with, 78

subclasses (see child classes)

superclasses (see parent classes)

superglobal variables, 18

SVG (see Scalable Vector Graphics

(SVG))

switch statements, 88, 256, 327, II-58,

II-60, II-89, II-130, II-322, II-334
syntax errors, 9, 319

syntax highlighting (see PHP source

code, displaying online)

system integration testing, II-298

Index

374

T
table relationships, 66, 94

tables

alternating row colors, 257

generating with PHP, 255

TAR files (see compressed files)

template caching, II-245
text content

in HTML documents, 143

thumbnail images

creating, 211, 214

time limits (see execution time limits)

time zones, 202

timestamps, 172

(see also MySQL timestamps)

(see also Unix timestamps)

timing PHP scripts, 204

tokenizer extension, 9

tokens, 9

tracking online users, II-73
tree menus, 289, 301, 303

try-catch statements, 320

U
unbuffered queries, 74, 89

Unified Modelling Language (UML),

26, 38, 57, 59, 63, 190, II-84, II-318,

II-322, II-340, II-351
generating code from, II-293

unit testing, 11, II-xiii, II-298, II-300
Unix timestamps, 173, 175, II-186

generating, 176

storing in MySQL, 174

unsafe characters, 144

UPDATE queries, 80, 81

counting rows affected, 93

importance of WHERE clause, 81

upload_max_filesize directive, 280

URL encoding, 144

URL rewriting (see mod_rewrite)

URLs (see search engine friendly URLs)

designing, 314

user agent string, II-223
user groups, II-61
user registration systems, II-25, II-37

V
validating submitted data, 159, II-335

with QuickForm, 270, 272, 274

var command, 31

variable functions, 62

variables, 40

(see also passing by value)

(see also passing by reference)

formatting for output, 152

in SQL queries, 87

nonexistent, 163

session variables, 231

views, 315

visitor statistics

excluding search engines, II-237
exit links, II-234
gathering, II-225
logging, II-226
reports, II-238
returning visitors, II-232
search engine queries, II-236

W
WAP (see Wireless Application Pro-

tocol (WAP))

warnings, 320, 324, 325

watermarks, 223

Web bug, II-230
Web services, II-xiii, II-79, II-141, II-150,

II-202
caching, II-260
consuming, II-150
deploying, II-150
security concerns, II-165

Web Services Description Language

(see WSDL)

375

Webalizer, II-238
WHERE clauses, 89, 91, II-275
while statements, 9, 74, 117, 193, 257,

II-212, II-248, II-326, II-328
white box testing, II-299
whitespace

trimming, 151

Wireless Application Protocol (WAP),

II-205
Wireless Markup Language (WML),

II-135, II-169, II-205, II-279, II-289
(see also HAWHAW)

cards, II-206
generating, II-208
viewing with Opera, II-205

WML (see Wireless Markup Language

(WML))

word wrap (see wrapping text)

wrapping text, 149

WSDL, II-142, II-150, II-157, II-160
editor, II-151

X
Xdebug (see PHP extensions, Xdebug)

XML, 17, 18, 290, II-79, II-205, II-238
(see also XPath)

(see also XSLT)

converting to SQL, II-138
generating, II-80, II-111, II-112

XML entity references, II-93
XML namespaces, II-81, II-127

default namespace, II-127
XML processing instructions, 18, II-81,

II-93, II-201
XML Schema, II-81, II-142
XML User interface Language (XUL),

II-169, II-215
XML-RPC, II-xiii, II-141

(see also SOAP)

building a client, II-146
building a server, II-142

fault codes, II-144
vs. SOAP, II-142

XP (see Extreme Programming)

XPath, II-81, II-123, II-128, II-134, II-139
predicates, II-136

XQuery, II-134
XSL Formatting Objects (XSL-FO),

II-200
XSLT, II-79, II-135, II-138

error handling, II-139
XSS (see cross-site scripting (XSS) at-

tacks)

XUL (see XML User interface Language

(XUL))

Z
ZIP files (see compressed files)

Index

376

	The PHP Anthology, Volume I: Foundations
	Summary of Contents
	Cover Page Volume I: Foundations
	Copyright
	About The Author
	About SitePoint
	Dedication

	Summary of Contents (linked)
	Table of Contents (linked)
	Preface
	Who should read this book?
	What’s covered in this book?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	1. PHP Basics
	Where do I get help?
	Reading the Manual
	Section I: Getting Started
	Section II: Language Reference
	Section III: Features
	Section IV: Function Reference
	Further Help

	How do I fix an error that PHP finds in my script?
	Syntax Errors
	Semantic Errors
	Environment Errors
	Logic Errors

	How do I include one PHP script in another?
	Mutual Inclusion
	Path Finding

	How do I write portable PHP code?
	Keep All Configuration Central
	Use the Full <?php ?> Tags
	register_globals off
	Magic Quotes
	Call-Time Pass-By-Reference Off
	Write Reusable Code

	Further Reading

	2. Object Oriented PHP
	What are the basics of object oriented PHP?
	Classes and Objects
	Understanding Scope
	A Three Liner

	How do references work in PHP?
	What Are References?
	Using a Reference
	The Importance of References
	Good and Bad Practices
	Performance Issues
	References and PHP 5

	How do I take advantage of inheritance?
	Overriding
	Inheritance in Action

	How do objects interact?
	Aggregation
	Composition
	Spotting the Difference
	Polymorphism

	Further Reading

	3. PHP and MySQL
	How do I access a MySQL database?
	A Basic Connection
	Reusable Code

	How do I fetch data from a table?
	Fetching with Classes

	How do I resolve errors in my SQL queries?
	How do I add or modify data in my database?
	Inserting a Row
	Updating a Row
	Another Class Action

	How do I solve database errors caused by quotes/apostrophes?
	The Great Escape
	SQL Injection Attacks

	How do I create flexible SQL statements?
	How do I find out how many rows I’ve selected?
	Counting Rows with PHP
	Counting Rows with MySQL
	Row Counting with Classes
	Counting Affected Rows

	After inserting a row, how do I find out its row number?
	Class Insert ID

	How do I search my table?
	Select What You LIKE
	FULLTEXT Searches

	How do I back up my database?
	How do I repair a corrupt table?
	Do I really need to write SQL?
	Further Reading

	4. Files
	How do I read a local file?
	File Handles
	Saving Memory

	How do I modify a local file?
	How do I get information about a local file?
	How do I examine directories with PHP?
	How do I display the PHP source code online?
	How do I store configuration information in a file?
	How do I access a file on a remote server?
	How do I use FTP from PHP?
	How do I manage file downloads with PHP?
	File Distribution Strategy

	How do I create compressed ZIP/TAR files with PHP?
	Further Reading

	5. Text Manipulation
	How do I solve problems with text content in HTML documents?
	Dynamic Link URLs
	Form Fields and HTML Content
	Line Breaks in HTML
	Tag Stripping
	It’s a Wrap

	How do I make changes to the contents of a string?
	Search and Replace
	Demolitions
	Short Back and Sides, Please
	Formatting

	How do I implement custom formatting code?
	How do I implement a bad word filter?
	How do I validate submitted data?
	How do I filter out undesirable HTML code?
	Further Reading

	6. Dates and Times
	How do I store dates in MySQL?
	Unix Timestamps
	MySQL Timestamps
	Timestamps in Action

	How do I solve common date problems?
	Day of the Week
	Week of the Year
	Number of Days in a Month
	Leap Years
	Day of the Year
	First Day in the Month
	A Touch of Grammar

	How do I build an online calendar?
	A Roman Calendar
	PHP Filofax

	How do I deal with time zones?
	How do I time a PHP script?
	How do I schedule batch jobs with PHP?
	Installing Pseudo-cron

	Further Reading

	7. Images
	MIME Types
	How do I create thumbnail images?
	The Thumbnail Class

	How do I add a watermark to an image?
	How do I display charts and graphs with PHP?
	Bar Graph
	Pie Chart

	How do I prevent “hot linking” of images?
	Further Reading

	8. Email
	How do I simplify the generation of complex emails?
	How do I add attachments to messages?
	How do I send HTML email?
	How do I mail a group of people?
	How do I handle incoming mail with PHP?
	A Solution Looking for a Problem?

	Further Reading

	9. Web Page Elements
	How do I display data in a table?
	PEAR Shaped Tables

	How do I build a result pager?
	Sliding Page Numbers

	How do I handle HTML forms in PHP?
	Guidelines for Dealing with Forms
	Forms in Action with QuickForm
	QuickForm Validation Rule Types
	Sign Up Today

	How do I upload files with PHP?
	Using QuickForm for File Uploads

	How do I build effective navigation with PHP and MySQL?
	Hansel and Gretel
	Lost in the Trees
	A Recursive Table Structure
	Feeding the Birds
	Staying in Context
	Drop Down Menu
	Collapsing Tree Menu
	Full Tree Menu
	Handling Different Table Structures
	Summary

	How do I make “search engine friendly” URLs in PHP?
	Doing Without the Query String
	Hiding PHP Scripts with ForceType
	Hiding PHP Scripts by Rewriting URLs
	Designing URLs

	Further Reading

	10. Error Handling
	How do I implement a custom error handler with PHP?
	Error Levels
	Generating Errors
	Strategy for Generating Errors
	Custom Error Handler
	Triggered Errors vs. Conditional Execution

	How do I log and report errors?
	How do I display errors gracefully?
	Further Reading

	Appendix A: PHP Configuration
	Configuration Mechanisms
	Key Security and Portability Settings
	Includes and Execution Settings
	Error-Related Settings
	Miscellaneous Settings

	Appendix B: Hosting Provider Checklist
	General Issues
	PHP-Related Issues

	Appendix C: Security Checklist
	The Top Security Vulnerabilities

	Appendix D: Working with PEAR
	Installing PEAR
	The PEAR Package Manager
	Installing Packages Manually

	Index (only Volume I links work)
	Back cover
	Errata at www.sitepoint.com
	RR

