

Summary of Contents: Volume I
Preface .. ix

1. PHP Basics .. 1

2. Object Oriented PHP ... 23

3. PHP and MySQL ... 65

4. Files ... 111

5. Text Manipulation ... 143

6. Dates and Times .. 171

7. Images ... 209

8. Email ... 237

9. Web Page Elements .. 253

10. Error Handling ... 319

A. PHP Configuration .. 339

B. Hosting Provider Checklist ... 347

C. Security Checklist .. 351

D. Working with PEAR .. 355

Index ... 363

Summary of Contents: Volume II
Preface .. xiii

1. Access Control ... 1

2. XML .. 79

3. Alternative Content Types ... 169

4. Stats and Tracking ... 221

5. Caching ... 241

6. Development Technique .. 269

7. Design Patterns .. 311

A. PHP Configuration .. 355

B. Hosting Provider Checklist ... 363

C. Security Checklist .. 367

D. Working with PEAR .. 371

Index ... 379

The PHP Anthology

Volume II: Applications

by Harry Fuecks

The PHP Anthology, Volume II: Applications
by Harry Fuecks

Copyright © 2003 SitePoint Pty. Ltd.

Editor: Georgina Laidlaw

Technical Editor: Kevin Yank

Cover Design: Julian Carroll

Printing History:

First Edition: December 2003

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the

case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by

the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-

ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 0-9579218-4-5

Printed and bound in the United States of America

http://www.sitepoint.com
mailto:business@sitepoint.com

About The Author

Harry is a technical writer, programmer, and system engineer. He has worked in

corporate IT since 1994, having completed a Bachelor’s degree in Physics. He

first came across PHP in 1999, while putting together a small Intranet. Today,

he’s the lead developer of a corporate Extranet, where PHP plays an important

role in delivering a unified platform for numerous back office systems.

In his off hours he writes technical articles for SitePoint and runs phpPatterns

(http://www.phppatterns.com/), a site exploring PHP application design.

Originally from the United Kingdom, he now lives in Switzerland. In May, Harry

became the proud father of a beautiful baby girl who keeps him busy all day (and

night!)

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content

for Web Professionals. Visit http://www.sitepoint.com/ to access our books,

newsletters, articles and community forums.

http://www.phppatterns.com/
http://www.sitepoint.com/
http://www.phppatterns.com/),
http://www.sitepoint.com/

For Natalie and Masha

viii

Table of Contents
Preface ... xiii

Who should read this book? .. xiv

What’s covered in this book? ... xiv

The Book’s Website .. xv

The Code Archive ... xv

Updates and Errata .. xvi

The SitePoint Forums .. xvi

The SitePoint Newsletters .. xvi

Your Feedback .. xvii

Acknowledgements ... xvii

1. Access Control ... 1
How do I use HTTP authentication with PHP? 3

Heads Up .. 3

Not by the Hairs of my Chin… .. 6

How do I authenticate users with sessions? 8

Session Security ... 9

Getting Started .. 11

Authentication in Action .. 21

Room for Improvement .. 24

How do I build a user registration system? 25

More Classes! ... 25

Missing Pieces .. 36

How do I protect my site from auto sign ups? 37

Here’s One I Wrote Earlier ... 38

How do I deal with members who forget their passwords? 46

Password Reminder .. 46

New Password .. 51

How do I let users change their passwords? 55

How do I build a permissions system? .. 61

How do I store sessions in MySQL? ... 71

How do I track who is online? .. 73

Further Reading ... 76

2. XML .. 79
SAX, DOM and PHP ... 80

Installation Issues .. 82

About DOM .. 83

How do I parse an RSS feed with PHP and SAX? 85

How do I parse an RSS feed with PHP and DOM? 102

How do I generate an RSS document with PHP and DOM? 111

RSS Generated .. 114

How do I perform XPath queries with PHP? 123

A Note on Default Namespaces .. 127

Dynamic Content with XPath .. 128

How do I transform XML with PHP? 135

XML to SQL .. 138

How do I build an XML-RPC service with PHP? 141

The Server ... 142

The Client ... 146

How do I consume SOAP Web services with PHP? 150

How do I build a SOAP server with PHP? 157

Security and Authentication in Web Services 165

Further Reading ... 166

3. Alternative Content Types .. 169
How do I render PDF documents with PHP? 169

PDF To Go… ... 170

PDF Strategy ... 176

How do I convert HTML to PDF? .. 177

Parsing HTML with SAX?!? ... 177

Laying the Foundations .. 181

Putting it Together ... 186

How do I render SVG with PHP? ... 200

SVG Network Clock .. 202

How do I render WML with PHP? ... 205

HAWHAW ... 208

WML, Sessions and Security .. 214

How do I render XUL with PHP? ... 215

Further Reading ... 220

4. Stats and Tracking ... 221
What information can I gather about my site’s visitors? 222

IP Addresses .. 224

How do I store visitor statistics with PHP? 225

Logging Strategy .. 226

Installing phpOpenTracker ... 228

The phpOpenTracker API .. 231

How do I recognize returning visitors? 232

How do I track exit links? .. 234

How do I record search engine queries? 236

Installing the phpOpenTracker Search Engine Plug-in 236

The PHP Anthology

x

How do I exclude search engines from my logs? 237

How do I get reports on my site’s statistics? 238

Further Reading ... 240

5. Caching ... 241
How do I prevent Web browsers caching a page? 242

How do I capture server side output for caching? 245

Using Output Buffering for Server Side Caching 247

Chunked Buffering ... 248

How do I implement a simple server side caching system? 254

Cache_Lite Options ... 257

Purging the Cache .. 259

Caching Function Calls .. 260

How do I control client side caching with PHP? 262

Page Expiry .. 263

Page Modification Time ... 264

Further Reading ... 268

6. Development Technique .. 269
How do I optimize my code? .. 269

Most Probable First .. 271

The for Loop .. 274

Don’t Be Greedy .. 275

Lazy Inclusion ... 275

Quotes ... 276

Reference or Copy? .. 276

Xdebug .. 277

How do I structure my application into layers? 277

The Principles of N-Tier ... 278

But What’s the point? .. 279

How do I read API documentation? ... 283

Private, Protected and Public .. 286

Practice Makes Perfect ... 287

How do I generate API documentation? 291

Choose your Weapons ... 292

How do I set up automated tests of my code? 298

Test Infected .. 300

Test Drive .. 300

Mock Objects .. 306

Further Reading ... 310

7. Design Patterns ... 311
The Factory Method .. 313

xi

The Iterator Pattern ... 323

But, What’s the Point? ... 326

Iterator APIs .. 333

The Strategy Pattern .. 334

The Adapter Pattern .. 342

The Observer Pattern ... 347

Further Reading ... 353

A. PHP Configuration ... 355
Configuration Mechanisms ... 355

Key Security and Portability Settings 357

Includes and Execution Settings ... 359

Error-Related Settings .. 361

Miscellaneous Settings ... 362

B. Hosting Provider Checklist ... 363
General Issues .. 363

PHP-Related Issues .. 365

C. Security Checklist ... 367
The Top Security Vulnerabilities .. 367

D. Working with PEAR ... 371
Installing PEAR ... 372

The PEAR Package Manager .. 375

Installing Packages Manually .. 376

Index ... 379

The PHP Anthology

xii

Preface
If I had one goal in mind while writing The PHP Anthology, it was to demonstrate

just how easy it is to create intricate and powerful Web applications with an object

oriented approach. In many cases, the more common procedural approach would

result in unmanageable and bug-ridden “spaghetti code.”

In The PHP Anthology, Volume I: Foundations, I laid the groundwork by introducing

that approach and demonstrating its application to some relatively simple issues

in Web development. With Volume II, I hope to blow your socks off by tackling

some traditionally complex problems with those same principles—to great effect.

In examining the solutions here, you’ll see how putting together your application

with well designed classes is much like stacking building blocks, each fitting per-

fectly atop the other. Thanks to the principles of object oriented programming

(OOP), different “blocks” of code needn’t be concerned with the specifics of the

other blocks in the structure.

One particular example in Chapter 3 looks at converting HTML content to

Adobe’s Portable Document Format (PDF), using no less than eight separate

classes in conjunction to fetch content from a database, parse the HTML, and,

finally, output the PDF. The solution involves a number of steps, but, by breaking

it down into manageable components in the form of classes, the complexity is

reduced to the simple interactions between them.

Other issues tackled in this volume, either head-on, or as a side-effect of specific

solutions, include:

� Layered application structure and the principles of N-Tier design

� Providing and consuming Web services using XML-RPC and SOAP

� Professional development techniques, such as API documentation and unit

testing

� Software design patterns, and how to apply them in PHP

When dealing with these more advanced subjects, my goal is not to provide all

the answers (many are worthy of books in themselves), but to open doors to new

concepts for you to explore further on your own.

My hope is that this book will enrich your understanding of PHP and motivate

you to raise your development practices to a professional level, allowing you to

change your job description from “PHP hacker” to “PHP developer.”

Who should read this book?
This book, The PHP Anthology, Volume II: Applications, builds on the first book,

The PHP Anthology, Volume I: Foundations, to provide practical solutions that are

commonly required in many of today’s online applications. So, if you build

Websites and Web applications with PHP, then this book is for you.

For less experienced PHP developers, reading The PHP Anthology, Volume I:
Foundations before you start this book is a good idea, as many of the solutions

presented here build on knowledge introduced in that volume. It should be pos-

sible for the PHP veteran to begin with this second book, referring to the code

archive to fill in any gaps.

What’s covered in this book?
In summary, here’s what you’ll find in each of the chapters in this volume:

Chapter 1: Access Control

Beginning with basic HTTP authentication, then moving on to application

level authentication, this chapter looks at ways to control access to your site.

Later solutions look at implementing a user registration system and creating

a fine-grained access control system with users, groups and permissions.

Chapter 2: XML

With XML rapidly becoming an essential part of almost all Web-based ap-

plications, this chapter begins by exploring the SAX and DOM APIs to help

parse an RSS feed, before examining the generation of your own RSS feed

with DOM. Following that, we’ll see how XPath can be used to reduce the

coding effort involved in parsing XML, then move on to XML transformations

with XSLT. Finally, this chapter shows how Web services can be built using

PHP, XML-RPC and SOAP.

Chapter 3: Alternative Content Types

With the wide range of media now in use on the Internet, there’s often a

need to be able to use PHP to render content types other than (X)HTML.

This chapter begins by looking at PDF generation using pure PHP, and how

to convert content that contains embedded HTML markup into PDF form.

Preface

xiv

Following that, we’ll look at generating SVG images with PHP, and learn

how to “WAP enable” a Website quickly and efficiently. Finally, this chapter

looks at how XUL can be applied to build more powerful administrative in-

terfaces to your application, reducing load on your server and speeding ad-

ministrative tasks.

Chapter 4: Stats and Tracking

Here, we look at the all-important process of gathering statistical information

about visitors to your site. We’ll experiment with various mechanisms you

can use to capture data, and help you lay the foundations that can become

critical in improving the experience you offer site users.

Chapter 5: Caching

This chapter takes the fundamental view that “HTML is fastest,” and shows

you how you can take advantage of caching on both the client and server

sides to reduce bandwidth usage and dramatically improve performance.

Chapter 6: Development Technique

The goal of this chapter is to examine some of the techniques that have proved

themselves in helping development projects succeed. The discussion covers

common optimizations you might apply to your code, a summary of N-Tier

application design, how to add API documentation to your work, and how

to reduce bugs with unit testing.

Chapter 7: Design Patterns

The notion of software Design Patterns has been widely accepted as a useful

approach to application design. This chapter introduces them as a concept,

then illustrates their implementation with five common patterns applied to

“real” problems in PHP: The Factory Method, The Iterator Pattern, The

Strategy Pattern, The Adapter Pattern, and the Observer Pattern.

The Book’s Website
Located at http://www.sitepoint.com/books/phpant1/, the Website supporting

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains complete code for all

the examples presented in the book.

xv

The Book’s Website

http://www.sitepoint.com/books/phpant1/
http://www.sitepoint.com/books/phpant1/,

Besides the PHP scripts themselves, the archive contains a number of shared

libraries, which are bundled in the SPLIB directory. In order for the scripts that

rely on these libraries to work as intended, you’ll need to add this directory to

PHP’s include_path (see “How do I include one PHP script in another?” in

Volume I, Chapter 1 for full details on include_path). Doing this will also make

it easier to use these libraries in your own projects.

For full instructions on how to install and use the code archive, consult the

readme.txt file in the archive.

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at

least one or two mistakes before the end of this one. The Errata page on the

book’s Website will always have the latest information about known typograph-

ical and code errors, and necessary updates for new releases of PHP and the

various Web standards.

The SitePoint Forums
If you’d like to communicate with me or anyone else on the SitePoint publishing

team about this book, you should join SitePoint’s online community[2]. As I

mentioned above, the PHP forums[3], in particular, can offer an abundance of

information above and beyond the solutions in this book.

In fact, you should join that community even if you don’t want to talk to us, be-

cause there are a lot of fun and experienced Web designers and developers hanging

out there. It’s a good way to learn new stuff, get questions answered in a hurry,

and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters in-

cluding The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read

about the latest news, product releases, trends, tips, and techniques for all aspects

of Web development. If nothing else, you’ll get useful PHP articles and tips, but

if you’re interested in learning other technologies, you’ll find them especially

[2] http://www.sitepointforums.com/

[3] http://www.sitepointforums.com/forumdisplay.php?forumid=34

Preface

xvi

http://www.sitepointforums.com/
http://www.sitepointforums.com/forumdisplay.php?forumid=34
http://www.sitepointforums.com/
http://www.sitepointforums.com/forumdisplay.php?forumid=34

valuable. Go ahead and sign up to one or more SitePoint newsletters at

http://www.sitepoint.com/newsletter/—I’ll wait!

Your Feedback
If you can’t find your answer through the forums, or if you wish to contact us

for any other reason, the best place to write is <books@sitepoint.com>. We have

a well-manned email support system set up to track your inquiries, and if our

support staff is unable to answer your question, they send it straight to me.

Suggestions for improvements as well as notices of any mistakes you may find

are especially welcome.

Acknowledgements
First and foremost, I’d like to thank the SitePoint team for doing such a great

job in making this book possible, for being understanding as deadlines inevitably

slipped past, and for their personal touch, which makes it a pleasure to work with

them.

Particular thanks go to Kevin Yank, whose valuable technical insight and close

cooperation throughout the process has tied up many loose ends and helped

make The PHP Anthology both readable and accessible. Thanks also to Julian

Szemere, whose frequent feedback helped shape the content of this anthology,

and to Georgina Laidlaw, who managed to make some of my “late at night” mo-

ments more coherent.

A special thanks to the many who contribute to SitePoint Forums[5]. There’s a

long list of those who deserve praise for their selflessness in sharing their own

practical experience with PHP. It’s been fascinating to watch the PHP forums

grow over the last three years, from discussing the basics of PHP’s syntax, to,

more recently, the finer points of enterprise application architecture. As a whole,

I’m sure SitePoint’s PHP community has made a very significant contribution

to making PHP a popular and successful technology.

Finally, returning home, I’d like to thank Natalie, whose patience, love, and un-

derstanding throughout continue to amaze me. Halfway through writing this

book, our first child, Masha, was born; writing a book at the same time was not

always easy.

[5] http://www.sitepointforums.com/

xvii

Your Feedback

http://www.sitepoint.com/newsletter/
http://www.sitepointforums.com/
http://www.sitepoint.com/newsletter/�I�ll
http://www.sitepointforums.com/

xviii

Access Control1
One of the side effects of building your site with PHP, as opposed to plain HTML,

is that you’ll be building dynamic Web applications rather than static Web pages.

Your site will let you “do” things that weren’t possible with plain HTML. But

how can you ensure that only you, or those to whom you give permission, are

able to “do things,” and prevent the Internet’s raging hordes from running riot

on your site?

In this chapter, we’ll be looking at the mechanisms you can employ with PHP

to build authentication systems and control access to the parts of your site you

regard as private.

One word of warning before I go any further: any system you build, which involves

the transfer of data from a Web page over the Internet, will send that information

in clear text by default.1 What this means is that if someone is “listening in” on

the network between the client’s Web browser and the Web server, which is

possible using a tool known as a packet sniffer, they will be able to read the user

name and password sent via your form. The chances of this happening are fairly

small, as typically only trusted organizations like ISPs have the access require to

intercept packets. However, there is still a risk, and it’s one you should take ser-

iously.

1Web servers that require Secure Socket Layer (SSL) connections will safely encrypt the data during

transit. This is the best way to protect sensitive data in today’s Web applications.

In addition to strategies for building access control systems for your site, in this

chapter you’ll find plenty of references to useful information (there are more in

Appendix C). I can’t stress enough the importance of a little healthy paranoia in

building Web-based applications. The SitePoint Forums frequently receive visits

from would-be Website developers who got their fingers burned when it came to

site security.

This chapter requires the following MySQL tables, in addition to the user table

from Volume I, Chapter 9. Note that you’ll find the SQL code to create all of

these, along with sample data, in the code archive in the sql/ directory.

First, you’ll need a table for storing temporary sign up information:

CREATE TABLE signup (
 signup_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 confirm_code VARCHAR(40) NOT NULL DEFAULT '',
 created INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (signup_id),
 UNIQUE KEY confirm_code (confirm_code),
 UNIQUE KEY user_login (login),
 UNIQUE KEY email (email)
)

You’ll need a table for storing groups2:

CREATE TABLE collection (
 collection_id INT(11) NOT NULL auto_increment,
 name VARCHAR(50) NOT NULL default '',
 description TEXT NOT NULL,
 PRIMARY KEY (collection_id)
)

Next, there’s a lookup table between users and groups:

CREATE TABLE user2collection (
 user_id INT(11) NOT NULL default '0',
 collection_id INT(11) NOT NULL default '0',

2Note that I’ve called this table collection. The name “group” would cause problems, as GROUP
is a keyword in SELECT query syntax.

Chapter 1: Access Control

2

 PRIMARY KEY (user_id, collection_id)
)

Don’t forget this table for storing permissions:

CREATE TABLE permission (
 permission_id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(50) NOT NULL DEFAULT '',
 description TEXT NOT NULL,
 PRIMARY KEY (permission_id)
)

And finally, you’ll need this lookup table between groups and permissions:

CREATE TABLE collection2permission (
 collection_id INT(11) NOT NULL DEFAULT '0',
 permission_id INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (collection_id, permission_id)
)

How do I use HTTP authentication with
PHP?

Hypertext Transfer Protocol[1] (HTTP) defines its own authentication mechan-

isms, namely “Basic” and “Digest” authentication, which are defined in RFC

2617[2]. If you run PHP on an Apache server, you can take advantage of the

basic authentication mechanism (digest authentication is on the list of features

yet to be released) using PHP’s header function and a couple of predefined

variables. A general discussion of these features is provided in the PHP Manual[3].

Heads Up
The first thing to understand is what actually happens when your browser sends

a request to a Web server to give it a Web page. HTTP is the protocol for com-

munication between a browser and a Web server. When your Web browser sends

a request to a Web server, it uses an HTTP request to tell the server which page

it wants. The server then replies with an HTTP response that describes the type

and characteristics of the document being sent, then delivers the document itself.

[1] ftp://ftp.isi.edu/in-notes/rfc2616.txt

[2] ftp://ftp.isi.edu/in-notes/rfc2617.txt

[3] http://www.php.net/features.http-auth

3

How do I use HTTP authentication with PHP?

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt
http://www.php.net/features.http-auth
http://ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://ftp://ftp.isi.edu/in-notes/rfc2617.txt
http://www.php.net/features.http-auth

For example, a client might send the following request to a server:

GET /subcat/98 HTTP/1.1
Host: www.sitepoint.com

Here’s what it might get back from the server:

HTTP/1.1 200 OK
Date: Tue, 25 Feb 2003 15:18:24 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
X-Powered-By: PHP/4.3.1
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>SitePoint : Empowering Web Developers Since 1997</title>
…

Don’t believe me? Try it for yourself:

File: 1.php

<?php
// Connect to sitepoint.com
$fp = fsockopen('www.sitepoint.com', '80');

// Send the request
fputs($fp,
 "GET /subcat/98 HTTP/1.1\r\nHost: www.sitepoint.com\r\n\r\n");

// Fetch the response
$response = '';
while (!feof($fp)) {
 $response .= fgets($fp, 128);
}
fclose($fp);

// Convert HTML to entities
$response = htmlspecialchars($response);

// Display the response
echo nl2br($response);
?>

Chapter 1: Access Control

4

http://www.sitepoint.com
http://Apache/1.3.27
http://PHP/4.3.1
http://PHP/4.3.1
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"
http://www.sitepoint.com
http://fsockopen('www.sitepoint.com',
http://www.sitepoint.com\r\n\r\n");

Authentication headers are additional headers used by a server to instruct the

browser that it must send a valid user name and password in order to view the

page.

In response to a normal request for a page secured with basic HTTP authentica-

tion, a server might respond with headers like these:

HTTP/1.1 401 Authorization Required
Date: Tue, 25 Feb 2003 15:41:54 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
X-Powered-By: PHP/4.3.1
WWW-Authenticate: Basic realm="PHP Secured"
Connection: close
Content-Type: text/html

No further information is sent, but notice the status code HTTP/1.1 401 Author-
ization Required and the WWW-Authenticate header. Together, these indicate

that the page is protected by HTTP authentication, and is not available to an

unauthorized user. How a visitor’s browser goes about dealing with this inform-

ation may vary, but, usually, the user will see a small pop-up dialog box like that

shown in Figure 1.1.

Figure 1.1. Let Me In!

The dialog prompts site visitors to enter their user names and passwords. If visitors

using Internet Explorer enter these login details incorrectly three times, the

browser will display the “Unauthorized” message instead of displaying the prompt

again. In other browsers, such as Opera, users may be able to continue trying

indefinitely.

5

Heads Up

http://Apache/1.3.27
http://PHP/4.3.1
http://PHP/4.3.1

Notice that the realm value specified in the WWW-Authenticate header is displayed

in the dialog box. A realm is a “security space” or “zone” within which a partic-

ular set of login details are valid. Upon successful authentication, the browser

will remember the correct user name and password combination and automatically

re-send it in any future request to that realm. When the user navigates to another

realm, however, the browser displays a fresh prompt once again.

In any case, the user must provide a user name and password to get the page.

The browser then sends those credentials with a second page request like this:

GET /admin/ HTTP/1.1
Host: www.sitepoint.com
Authorization: Basic jTSAbT766yN0hGjUi

The Authorization header contains the user name and password encoded with

base64 encoding which, it is worth noting, is not secure—but at least makes it

unreadable for humans.

The server will check to ensure that the credentials are valid. If they are not, the

server will send the Authorization Required response again, as shown previously.

If the credentials are valid, the server will send the requested page as normal.

Not by the Hairs of my Chin…
Now that you have a rough idea of how HTTP authentication works, how might

you secure a PHP page with it? When PHP receives an Authorization header

from a Web browser, it automatically decodes the user name and password

combination and stores the values in the variables $_SERVER['PHP_AUTH_USER']
and $_SERVER['PHP_AUTH_PW'] for the user name and password, respectively.

Here’s how you could secure a simple page:

File: 2.php

<?php
// An array of allowed users and their passwords
$users = array(
 'harryf' => 'secret',
 'littlepig' => 'chinny'
);

// If there's no Authentication header, exit
if (!isset($_SERVER['PHP_AUTH_USER'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');

Chapter 1: Access Control

6

http://www.sitepoint.com

 exit('This page requires authentication');
}

// If the user name doesn't exist, exit
if (!isset($users[$_SERVER['PHP_AUTH_USER']])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

// Is the password doesn't match the username, exit
if ($users[$_SERVER['PHP_AUTH_USER']] != $_SERVER['PHP_AUTH_PW'])
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

echo 'You\'re in';
?>

First, the script checks to see if an authentication has been sent by the browser;

if it hasn’t, the script sends the Authorization Required headers and terminates.

If login details were submitted, it checks that the submitted user name actually

exists. If we hadn’t checked this, we’d get a PHP notice stating that the array key

didn’t exist when performing the third check on particular PHP configurations

(see Volume I, Chapter 10). The third check ensures that the user name and

password combination in the $users array matches the details sent by the Web

browser.

Note that we could also have checked the user name and password against a table

in a database—something we’ll look at in “How do I authenticate users with

sessions?”.

When to Send Headers

In PHP, the moment your script outputs anything that’s meant for display,

the Web server finishes sending the headers and begins to send the content

itself. You cannot send further HTTP headers once the body of the HTTP

message—the Web page itself—has begun to be sent. This means that if you

use the header function or session_start after the body has begun, you’ll

get an error message like this:

Warning: Cannot add header information - headers already
sent by (output started at…

7

Not by the Hairs of my Chin…

Remember, any text or whitespace outside the <?php … ?> tags causes

output to be sent to the browser. If you have whitespace before a <?php tag

or after a ?> tag, you won’t be able to send headers to the browser past that

point.

This type of authentication is handy in that it’s easy to implement, but it’s none

too pretty in terms of the user experience. It does present a useful authentication

mechanism for use with Web services, however—something we’ll see in Chapter 2.

Note that PEAR provides the Auth_HTTP[4] package, which you should consider

if you’re planning to use HTTP authentication in earnest, as it will help you

avoid making critical errors. For a detailed discussion of PEAR, consult Ap-

pendix D.

How do I authenticate users with
sessions?

Sessions are a mechanism that allows PHP to preserve state between executions.

In simple terms, sessions allow you to store variables from one page and use them

on another. So if a visitor tells you his name is “Bob” (via a form) on one page,

sessions will help you remember his name and allow you to, for instance, place

on all the other pages of your site personal messages such as, “Where would you

like to go today, Bob?” (don’t be surprised if Bob leaves pretty quickly, though).

The basic mechanism of sessions works like this: first, PHP generates a unique,

thirty-two character string to identify the session. It then passes the value to the

browser; simultaneously, it creates a file on the server and includes the session

ID in the filename. There are two methods by which PHP can inform a browser

of its session ID: by adding the ID to the query string of all relative links on the

page, or by sending it as a cookie. Within the file that’s stored on the server,

PHP saves the names and values of the variables it has been told to store for the

session.

When the browser makes a request for another page, it tells PHP which session

it was assigned via the URL query string, or by returning the cookie. PHP then

looks up the file it created when the session was started, and so has access to the

data stored within the session.

[4] http://pear.php.net/AUTH_HTTP

Chapter 1: Access Control

8

http://pear.php.net/AUTH_HTTP
http://pear.php.net/AUTH_HTTP

Once the session has been established, it will continue until it is specifically des-

troyed by PHP (in response to a user clicking “Log out,” for example), or the

session has been inactive for longer than a given period of time (24 minutes by

default), at which point it becomes flagged for garbage collection and will be de-

leted the next time PHP checks for outdated sessions.

The following HTTP response headers show a server passing a session cookie to

a browser, as a result of the session_start function in a PHP script:

HTTP/1.1 200 OK
Date: Wed, 26 Feb 2003 02:23:08 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
X-Powered-By: PHP/4.3.1
Set-Cookie: PHPSESSID=ce558537fb4aefe349bb8d48c5dcc6d3; path=/
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
…

Note that I’ve said sessions are stored on the server as files. It’s also possible to

store sessions using other means, such as a database or even shared memory. This

can be useful for displaying “Who is Online” type information as well as load

balancing multiple Web servers using a single session repository, allowing visitors

to (unknowingly) swap servers while maintaining their session.

Session Security
Sessions are very useful, but there are some important security considerations

you should take into account when using them in your applications:

� By default, all a browser has to do to gain control of a session is pass a valid

session ID to PHP. In an ideal world, you could store the IP address that re-

gistered the session, and double check it on every new request that used the

associated session ID. Unfortunately, some ISPs, such as AOL, assign their

users a new IP on almost every page request, so this type of security mechanism

would soon start throwing valid users out of the system. As such, it’s important

to design your application in a manner that assumes that one of your users

will eventually have his or her session “hijacked.” The user’s account is only

exposed as long as the session hasn’t expired, so your focus should be on

preventing the hijackers from doing serious damage while they’re in the system.

9

Session Security

http://Apache/1.3.27
http://PHP/4.3.1
http://PHP/4.3.1
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

This means, for example, that for logged-in users to change their accounts’

passwords, they should be asked to provide their old passwords—obviously,

hijackers won’t know these. Also, be careful with the personal information

you make available to users (such as credit card details), and if you give users

the opportunity to make significant changes to their accounts, for instance,

changing a shipping address, be sure to send a summary notification to their

email address (this will alert users whose sessions have been hijacked).

To keep the session ID completely hidden, you’ll need to use SSL to encrypt

the conversation. What’s more, you should only use the cookie method of

passing the session ID. If you pass it in the URL, you may give away the ses-

sion ID upon referring the visitor to another site, thanks to the referrer
header in the HTTP request.

� The files PHP creates for the purpose of storing session information are, by

default, stored in the temporary directory of the operating system under which

PHP is running. On Unix based systems such as Linux, this will be /tmp. And,

if you’re on a shared server, this will mean that other users on the server can

read the files’ contents. They may not be able to identify which virtual host

and PHP script are the owners of the session but, depending on the informa-

tion you place there, they may be able to guess.

This is a serious cause for concern on shared PHP systems; the most effective

solution is to store your sessions in a database, rather than the server’s tem-

porary directory. We’ll look more closely at custom session handlers later in

this chapter, but a partial solution is to set the session.save_path option

to a directory that’s not available to the public. You’ll need to contact your

hosting company in order to have set the correct permissions for that directory,

so that the ‘nobody’ or ‘wwwuser’ user with which PHP runs has access to

read, write, and delete files in that directory.

Session IDs and Cross-Site Scripting

One final warning: using a common Web security exploit, cross-site

scripting (XSS), it’s possible for an attacker to place JavaScript on your site

that will cause visitors to give away their session ID to a remote Website,

thereby allowing their sessions to be hijacked. If you allow your visitors to

post any HTML, make sure you check and validate it very carefully (see

Appendix C for more on XSS and Volume I, Chapter 5 for an HTML filtering

mechanism).

Remember the golden rules: never rely on client side technologies (such as JavaS-
cript) to handle security and never trust anything you get from a browser.

Chapter 1: Access Control

10

Getting Started
I hope that introduction hasn’t made you so paranoid about using sessions that

you’ll never touch them. In general, sessions offer a mechanism that is both simple

to use and powerful—it’s an essential tool for building online applications.

The first development trick you need to know is that you should always access

session variables using their predefined global variable $_SESSION, not the func-

tions session_register and session_unregister. These functions fail to work

correctly when PHP’s register_globals setting has been disabled, which is the

way you should be programming with PHP (see Appendix A for details).

To start off slowly, here’s a simple example of how sessions can be used:

File: 3.php

<?php
session_start();

// If session variable doesn't exist, register it
if (!isset($_SESSION['test'])) {
 $_SESSION['test'] = 'Hello World!';
 echo '$_SESSION[\'test\'] is registered.
' .
 'Please refresh page';
} else {
 // It's registered so display it
 echo '$_SESSION[\'test\'] = ' . $_SESSION['test'];
}
?>

The first order of business in a script that uses sessions is to call session_start
to load any existing session variables.

This script registers the session variable the first time the page is displayed. The

next time (and all times thereafter, until the session times out through inactivity),

the script will display the value of the session variable.

That’s a simple example of how sessions can be used. We’ll use them to store the

value of a user name and password shortly, but first, we need to put together

some classes that will collaborate to deal with both sessions and authentication.

Don’t panic! The classes themselves may get fairly complex, but using them from

an external script will be easy.

11

Getting Started

First, let’s develop a class for sessions. All code will use this class to access sessions,

rather than using the $_SESSION variable directly. This has the advantage that if

we ever want to switch to an alternative session handling mechanism, such as

one we’ve built ourselves, we simply need to modify the class, rather than rewriting

a lot of code. We can provide an interface to the $_SESSION variable with a few

simple methods:

File: Session/Session.php (in SPLIB)

<?php
/**
 * A wrapper around PHP's session functions
 * <code>
 * $session = new Session();
 * $session->set('message','Hello World!');
 * echo ($session->get('message'); // Displays 'Hello World!'
 * </code>
 * @package SPLIB
 * @access public
 */
class Session {
 /**
 * Session constructor

 * Starts the session with session_start()
 * Note: that if the session has already started,
 * session_start() does nothing
 * @access public
 */
 function Session()
 {
 session_start();
 }

 /**
 * Sets a session variable
 * @param string name of variable
 * @param mixed value of variable
 * @return void
 * @access public
 */
 function set($name, $value)
 {
 $_SESSION[$name] = $value;
 }

 /**

Chapter 1: Access Control

12

 * Fetches a session variable
 * @param string name of variable
 * @return mixed value of session varaible
 * @access public
 */
 function get($name)
 {
 if (isset($_SESSION[$name])) {
 return $_SESSION[$name];
 } else {
 return false;
 }
 }

 /**
 * Deletes a session variable
 * @param string name of variable
 * @return void
 * @access public
 */
 function del($name)
 {
 unset($_SESSION[$name]);
 }

 /**
 * Destroys the whole session
 * @return void
 * @access public
 */
 function destroy()
 {
 $_SESSION = array();
 session_destroy();
 }
}
?>

Next, we build an authentication class, called Auth, which will use the MySQL
class we saw in earlier chapters, as well as the above Session class.

We begin by defining a few constants that will make it easy to customize this

class for different environments:

13

Getting Started

File: AccessControl/Auth.php (in SPLIB) (excerpt)

// Name to use for login variable e.g. $_POST['login']
@define('USER_LOGIN_VAR', 'login');
// Name to use for password variable e.g. $_POST['password']
@define('USER_PASSW_VAR', 'password');

Modify these constants to match your user login table
// Name of users table
@define('USER_TABLE', 'user');
// Name of login column in table
@define('USER_TABLE_LOGIN', 'login');
// Name of password column in table
@define('USER_TABLE_PASSW', 'password');

The first two constants are for the names of the user name and password fields

of the login form we’ll build in a moment. The next three provide details of the

table in which user information is stored.

Next come the properties and constructor for the class:

File: AccessControl/Auth.php (in SPLIB) (excerpt)

/**
 * Authentication class

 * Automatically authenticates users on construction

 * Note: requires the Session/Session class be available
 * @access public
 * @package SPLIB
 */
class Auth {
 /**
 * Instance of database connection class
 * @access private
 * @var object
 */
 var $db;

 /**
 * Instance of Session class
 * @access private
 * @var Session
 */
 var $session;

 /**
 * Url to re-direct to in not authenticated

Chapter 1: Access Control

14

 * @access private
 * @var string
 */
 var $redirect;

 /**
 * String to use when making hash of username and password
 * @access private
 * @var string
 */
 var $hashKey;

 /**
 * Are passwords being encrypted
 * @access private
 * @var boolean
 */
 var $md5;

 /**
 * Auth constructor
 * Checks for valid user automatically
 * @param object database connection
 * @param string URL to redirect to on failed login
 * @param string key to use when making hash of user name and
 * password
 * @param boolean if passwords are md5 encrypted in database
 * (optional)
 * @access public
 */
 function Auth(&$db, $redirect, $hashKey, $md5 = true)
 {
 $this->db = &$db;
 $this->redirect = $redirect;
 $this->hashKey = $hashKey;
 $this->md5 = $md5;
 $this->session = &new Session();
 $this->login();
 }

The $db parameter accepts an instance of the MySQL class, which we created in

Volume I, Chapter 3.

The $redirect parameter specifies a URL to which visitors will be redirected if

they aren’t logged in, or if their user name or password is incorrect. This might

be a login form, for example.

15

Getting Started

The $hashKey parameter is a seed we provide to double check the user names

and passwords of users who are already logged in. I’ll explain this in more detail

later.

The $md5 parameter tells the class whether we’ve used MD5 encryption to store

the passwords in the database.

MD5 Digests

MD5 is a simple message digest algorithm (often referred to as one-way encryption) that

translates any string (such as a password) into a short series of ASCII characters, called

an MD5 digest. A particular string will always produce the same digest, but it is practically

impossible to guess a string that will produce a given digest. By storing only the MD5 digest

of your users’ passwords in the database, you can verify their login credentials without

actually storing the passwords on your server! The built-in PHP function md5 lets you

calculate the MD5 digest of any string in PHP.

The constructor goes on to create a new instance of the Session class, which it

stores in an instance variable, and finally calls the login method to validate the

user against the database.

Here’s the login method:

File: AccessControl/Auth.php (in SPLIB) (excerpt)

 /**
 * Checks username and password against database
 * @return void
 * @access private
 */
 function login()
 {
 // See if we have values already stored in the session
 if ($this->session->get('login_hash')) {
 $this->confirmAuth();
 return;
 }

 // If this is a fresh login, check $_POST variables
 if (!isset($_POST[USER_LOGIN_VAR]) ||
 !isset($_POST[USER_PASSW_VAR])) {
 $this->redirect();
 }

 if ($this->md5) {

Chapter 1: Access Control

16

 $password = md5($_POST[USER_PASSW_VAR]);
 } else {
 $password = $_POST[USER_PASSW_VAR];
 }

 // Escape the variables for the query
 $login = mysql_escape_string($_POST[USER_LOGIN_VAR]);
 $password = mysql_escape_string($password);

 // Query to count number of users with this combination
 $sql = "SELECT COUNT(*) AS num_users
 FROM " . USER_TABLE . "
 WHERE
 " . USER_TABLE_LOGIN . "='$login' AND
 " . USER_TABLE_PASSW . "='$password'";

 $result = $this->db->query($sql);
 $row = $result->fetch();

 // If there isn't is exactly one entry, redirect
 if ($row['num_users'] != 1) {
 $this->redirect();
 // Else is a valid user; set the session variables
 } else {
 $this->storeAuth($login, $password);
 }
 }

The login method first checks to see whether values for the user name and

password are currently stored in the session; if they are, it calls the confirmAuth

method (see below). If user name and password values are not stored in the ses-

sion, the method checks to see if they’re available in the $_POST array and, if

they’re not, it calls the redirect method (see below).

Assuming it has found the $_POST values, the script performs a query against the

database to see if it can find a record to match the submitted user name and

password. There must be exactly one matching record, otherwise the visitor will

be redirected. Finally, assuming the script has got this far, it registers the user

name and password as session variables using the storeAuth method (see below),

which makes them available for future page requests.

One thing to note about the login method is that it assumes magic_quotes_gpc
is switched off, as it uses mysql_escape_string to prepare submitted values for

incorporation into database queries. In the scripts that utilize this class, we’ll

17

Getting Started

include the script that nullifies the effect of magic quotes (see “How do I write

portable PHP code?” in Volume I, Chapter 1).

Let’s now look at the methods that login uses.

File: AccessControl/Auth.php (in SPLIB) (excerpt)

 /**
 * Sets the session variables after a successful login
 * @return void
 * @access protected
 */
 function storeAuth($login, $password)
 {
 $this->session->set(USER_LOGIN_VAR, $login);
 $this->session->set(USER_PASSW_VAR, $password);

 // Create a session variable to use to confirm sessions
 $hashKey = md5($this->hashKey . $login . $password);
 $this->session->set('login_hash', $hashKey);
 }

The storeAuth method is used to add the user name and password to the session,

along with a hash value. This is comprised of a seed value defined using the Auth
class (remember the $hashKey parameter required by the constructor?), as well

as the user name and password values. As we’ll see in the confirmAuth method

below, instead of laboriously checking the database to verify the login credentials

whenever a user requests a page, the class simply checks that the current user

name and password produce a hash value that’s the same as that stored in the

session. This prevents potential attackers from attempting to change the stored

user name after login if your PHP configuration has register_globals enabled.

As I’ve just described, the confirmAuth method is used to double check credentials

stored in the session once a user is logged in. Notice how we reproduce the hash

built by the storeAuth method. If this fails to match the original hash value, the

user is immediately logged out.

File: AccessControl/Auth.php (in SPLIB) (excerpt)

 /**
 * Confirms that an existing login is still valid
 * @return void
 * @access private
 */
 function confirmAuth()
 {

Chapter 1: Access Control

18

 $login = $this->session->get(USER_LOGIN_VAR);
 $password = $this->session->get(USER_PASSW_VAR);
 $hashKey = $this->session->get('login_hash');
 if (md5($this->hashKey . $login . $password) != $hashKey)
 {
 $this->logout(true);
 }
 }

The logout method is the only public method in the Auth class. It’s used to re-

move the login credentials from the session and return the user to the login form:

File: AccessControl/Auth.php (in SPLIB) (excerpt)

 /**
 * Logs the user out
 * @param boolean Parameter to pass on to Auth::redirect()
 * (optional)
 * @return void
 * @access public
 */
 function logout($from = false)
 {
 $this->session->del(USER_LOGIN_VAR);
 $this->session->del(USER_PASSW_VAR);
 $this->session->del('login_hash');
 $this->redirect($from);
 }

The redirect method is used to return the visitor to the login form (or whatever

URL we specified upon instantiating the Auth class):

File: AccessControl/Auth.php (in SPLIB) (excerpt)

 /**
 * Redirects browser and terminates script execution
 * @param boolean adverstise URL where this user came from
 * (optional)
 * @return void
 * @access private
 */
 function redirect($from = true)
 {
 if ($from) {
 header('Location: ' . $this->redirect . '?from=' .
 $_SERVER['REQUEST_URI']);
 } else {
 header('Location: ' . $this->redirect);

19

Getting Started

 }
 exit();
 }

Unless you tell it not to, this method will send the from variable via the query

string to the script to which the browser is redirected. This allows the login form

to return the users to the location from which they came; it saves the users from

having to navigate back to that point, which might be useful if, for example, a

session times out. Note that in the logout method we specified that redirect
should not provide the from variable. If it did, the script might return users to

the URL they used to log out, putting them in a loop from which they couldn’t

log in.

One important note to make here is that the redirection URL (which is set by

the constructor) should be absolute, not relative. According to the HTTP specific-

ation, an absolute URL must be provided when a Location header is used. Later

on, when we put this class into action, I’m going to break that rule and use a re-

lative URL, because I can’t guess the script’s location on your server. This works

because most recent browsers understand it (even though they shouldn’t). On a

live site, make sure you provide a full, absolute URL.

Finally, and most importantly, we use exit to terminate all further processing.

This prevents the calling script sending the protected content that follows the

authentication code. Although we’ve sent a header that should redirect the

browser, we can’t rely on the browser to do what it’s told. If the request were

sent by, for instance, a Perl script pretending to be a Web browser, whoever was

using the script would, no doubt, have total control over its behavior and could

quite easily ignore the instruction to redirect elsewhere. Hence, the exit statement

is critical.

Overall, this approach helps save us from our own mistakes; if a given user is not

valid, script execution halts and the user is redirected to another “safe” page. The

alternative approach might be to build conditional statements into a page, like

this:

if ($auth->login()) {
 echo 'You are logged in';
} else {
 echo 'Invalid login';
}

However, this isn’t really a good idea. In a more complex scenario, which involves

multiple file inclusions, and has classes take responsibility for different parts of

Chapter 1: Access Control

20

the application, it’s possible that you may unwittingly allow unauthorized visitors

access. The approach of redirection is simple, reliable, and less likely to lead to

such nasty surprises.

Authentication in Action
Now that you’ve seen the internals of the Session and Auth classes, let’s take a

look at some code that makes use of them. First, here’s the script that will act as

the login form:

File: 4.php

<?php
// If $_GET['from'] comes from the Auth class
if (isset($_GET['from'])) {
 $target = $_GET['from'];
} else {
 // Default URL: usually index.php
 $target = '5.php';
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Login Form </title>
<meta http-equiv="Content-type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
body, a, td, input
{
 font-family: verdana;
 font-size: 11px;
}
h1
{
 font-family: verdana;
 font-size: 15px;
 color: navy
}
</style>
</head>
<body>
<h1>Please log in</h1>
<form action="<?php echo $target; ?>" method="post">
<table>

21

Authentication in Action

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

<tr valign="top">
<td>Login Name:</td>
<td><input type="text" name="login" /></td>
</tr>
<tr valign="top">
<td>Password:</td>
<td><input type="password" name="password" /></td>
</tr>
<tr valign="top">
<td></td>
<td><input type="submit" value=" Login " /></td>
</tr>
</table>
</form>
</body>
</html>

At the beginning of the script, we check for the $_GET['from'] query string

variable. If it exists, we use it as the action of the form (i.e. the page to which the

form is submitted), so that a successful login will send the user to the requested

page. Otherwise, a default target page is used (5.php in this example).

Later in this chapter, we’ll reproduce this form using QuickForm, which may make

an interesting comparison.

Next, let’s look at the secure page:

File: 5.php

<?php
// Include Magic Quotes stripping script
require_once 'MagicQuotes/strip_quotes.php';

// Include MySQL class
require_once 'Database/MySQL.php';

// Include Session class
require_once 'Session/Session.php';

// Include Auth class
require_once 'AccessControl/Auth.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

Chapter 1: Access Control

22

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate the Auth class
$auth = &new Auth($db, '4.php', 'secret');

// For logging out
if (isset($_GET['action']) && $_GET['action'] == 'logout') {
 $auth->logout();
}
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Welcome </title>
<meta http-equiv="Content-type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
body, a, td, input
{
 font-family: verdana;
 font-size: 11px;
}
h1
{
 font-family: verdana;
 font-size: 15px;
 color: navy
}
</style>
</head>
<body>
<h1>Welcome</h1>
<p>You are now logged in</p>
<?php
if (isset($_GET['action']) && $_GET['action'] == 'test') {
 echo '<p>This is a test page. You are still logged in';
}
?>
<p><a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?action=test">Test page</p>
<p><a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?action=logout">Logout</p>

23

Authentication in Action

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

</body>
</html>

The only way the user can view this page is to have provided a correct user name

and password. The moment that the Auth class is instantiated, it performs the

security check. If valid user name and password values have been submitted via

a form, they are stored by Auth in a session variable, allowing the visitor to con-

tinue surfing without having to log in again.

As promised, using the Auth class is very easy. To secure a page with it, all you

need to do is place this at the start:3

// Instantiate the Auth class
$auth = &new Auth(&$db, $loginUrl);

As previously mentioned, $loginUrl is the URL to which the Auth class should

redirect people who aren’t already logged in.

Room for Improvement
The basic mechanics of the Auth class are solid, but it’s missing the more involved

elements that will be necessary to halt the efforts of any serious intruders.

It’s a good idea to implement a mechanism to keep an eye on the number of

failed login attempts made from a single client. If your application always responds

immediately to any login attempt, it will be possible for a potential intruder to

make large numbers of requests in a very short time, trying different user name

and password combinations. The solution is to build a mechanism that counts

the number of failed attempts using a session variable. Every time the number

of failures is divisible by three (i.e. three incorrect passwords are entered), use

PHP’s sleep function to delay the next attempt by, for example, ten seconds.

You may also decide that, after a certain threshold value (for example, fifteen

failed attempts), you block all further access from that IP address for a given

period (such as an hour). Of course, changing an IP address is much easier than

changing a phone number, but you will at least stall would-be intruders, and may

perhaps make their life difficult enough to persuade them to go elsewhere.

Another important ingredient for a good security system is an “event logging”

mechanism that keeps track of suspicious access. In Chapter 4, you’ll find the

basic mechanics of logging visitor information, including how to track IP addresses,

3Of course, you must also include the Auth.php file that contains the class definition with re-
quire_once.

Chapter 1: Access Control

24

while the observer pattern found in Chapter 7 could be used to “watch” the Auth
class for the number of failed attempts.

You may want to tie the logging to some kind of alert mechanism that will warn

you if someone attacks your site, giving you the chance to respond immediately.

In critical environments, consider using an SMS gateway as your alerting system

so that you’ll receive notification even when you’re not online.

How do I build a user registration
system?

Having an authentication system is fine, but how do you fill it with users in the

first place? If only yourself and a few friends will access your site, you can probably

create accounts for all users through your database administration interface.

However, for a site that’s intended to become a flourishing community to which

anyone and everyone is free to sign up, you’ll want to automate this process.

You’ll want to allow visitors to register themselves, but you’ll probably still need

some level of “screening” so that you have at least a little information about the

people who have signed up (such as a way to confirm their identity). A common

and effective screening approach is to have the registrants confirm their email

address.

The purpose of the screening mechanism is to give you the ability to make it

difficult for users who have “broken the rules” and lost their account privileges

to create new accounts. You have (at least one of) their email addresses—if they

try to register again using that address, you can deny them access. Be warned,

though; a new type of Internet service is becoming popular. Pioneered by Mailin-

ator[5], these services provide users with temporary email addresses they can use

for registrations.

Here, we’ll put together a registration system that validates new registrants using

their email addresses; they’ll receive an email that asks them to confirm their re-

gistration via a URL.

More Classes!
A registration system is yet another great opportunity to build more classes! This

time, though, it will be even more interesting, as we use the

[5] http://www.mailinator.com/

25

How do I build a user registration system?

http://www.mailinator.com/
http://www.mailinator.com/
http://www.mailinator.com/

PEAR::HTML_QuickForm package (Volume I, Chapter 9) and phpmailer
(Volume I, Chapter 8) to do some of the work for the registration system. The

rest will be handled by classes I’ve built myself, but the end result will be easy

for you to customize and reuse in your own applications.

First of all, we need to visualize the process of (successfully) signing up a new

user:

1. The user fills in the registration form.

2. On the user’s completion of the form, we insert a record into the signup
table and send a confirmation email.

3. The visitor follows the link in the email and confirms the account.

4. We copy the details from the signup table to the user table. The account

is now active.

We use two tables for handling signups, to separate the “dangerous” data from

the “safe” data. You’ll want to have a cron job or similar to check the signup
table on a regular basis and delete any entries that are older than, say, twenty-

four hours. Separating the tables makes it easier to purge the contents of the

signup table (avoiding unfortunate errors), and keep the user table trim so

there’s no unnecessary impact on performance during user authentication.

The first thing we need is a class to handle the key steps in the signup process.

To begin, we must define a set of constants for the table and column names used

by the class. This will allow you to override their values in your scripts, should

you use a different table structure.

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

Modify these constants to match your user login and signup
tables
// Name of users table
@define('USER_TABLE', 'user');
// Name of signup table
@define('SIGNUP_TABLE', 'signup');
// Name of login column in table
@define('USER_TABLE_LOGIN', 'login');
// Name of password column in table
@define('USER_TABLE_PASSW', 'password');
// Name of email column in table
@define('USER_TABLE_EMAIL', 'email');
// Name of firstname column in table

Chapter 1: Access Control

26

@define('USER_TABLE_FIRST', 'firstName');
// Name of lastname column in table
@define('USER_TABLE_LAST', 'lastName');
// Name of signature column in table
@define('USER_TABLE_SIGN', 'signature');
// Name of ID column in signup
@define('SIGNUP_TABLE_ID', 'signup_id');
// Name of confirm_code column in signup
@define('SIGNUP_TABLE_CONFIRM', 'confirm_code');
// Name of created column in signup
@define('SIGNUP_TABLE_CREATED', 'created');

With the constants out of the way, we can proceed to the member variables and

constructor for the SignUp class:

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

/**
 * SignUp Class

 * Provides functionality for for user sign up

 * Note: you will need to modify the createSignup() method
 * if you are using a different database table structure
 * Note: this class requires
 * @link http://phpmailer.sourceforge.net/ PHPMailer
 * @access public
 * @package SPLIB
 */
class SignUp {
 /**
 * Database connection
 * @access private
 * @var object
 */
 var $db;

 /**
 * The name / address the signup email should be sent from
 * @access private
 * @var array
 */
 var $from;

 /**
 * The name / address the signup email should be sent to
 * @access private
 * @var array
 */

27

More Classes!

http://phpmailer.sourceforge.net/

 var $to;

 /**
 * The subject of the confirmation email
 * @access private
 * @var string
 */
 var $subject;

 /**
 * Text of message to send with confirmation email
 *
 * @var string
 */
 var $message;

 /**
 * Whether to send HTML email or not
 * @access private
 * @var boolean
 */
 var $html;

 /**
 * Url to use for confirmation
 * @access private
 * @var string
 */
 var $listener;

 /**
 * Confirmation code to append to $this->listener
 * @access private
 * @var string
 */
 var $confirmCode;

 /**
 * SignUp constructor
 * @param object instance of database connection
 * @param string URL for confirming the the signup
 * @param string name for confirmation email
 * @param string address for confirmation email
 * @param string subject of the confirmation message
 * @param string the confirmation message containing
 * <confirm_url/>

Chapter 1: Access Control

28

 * @access public
 */
 function SignUp(&$db, $listener, $frmName, $frmAddress, $subj,
 $msg, $html)
 {
 $this->db = &$db;
 $this->listener = $listener;
 $this->from[$frmName] = $frmAddress;
 $this->subject = $subj;
 $this->message = $msg;
 $this->html = $html;
 }

When we instantiate the class in the constructor above, we need to pass it a

connection to the database; we do this using the MySQL class. Then, we tell it the

URL to which registrants should be directed when they confirm their signup. We

also give it a ‘From’ name and address for the signup email (e.g. Your Name
<you@yoursite.com>), as well as the subject and message for the email itself.

Finally, we need to identify whether or not this is an HTML email, so that

phpmailer can format the message correctly.

Whether it’s HTML or not, the message should contain at least one special tag,

<confirm_url/>. This acts as a “placeholder” in the message, identifying the

location at which the confirmation URL that’s built by the SignUp class should

be inserted.

Moving on, the createCode method is called internally within the class, and is

used to generate the confirmation code that will be sent via email:

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

 /**
 * Creates the confirmation code
 * @return void
 * @access private
 */
 function createCode($login)
 {
 srand((double)microtime() * 1000000);
 $this->confirmCode = md5($login . time() . rand(1, 1000000));
 }

The createSignup method is used to insert records into the signup table:

29

More Classes!

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

 /**
 * Inserts a record into the signup table
 * @param array contains user details. See constants defined for
 * array keys
 * @return boolean true on success
 * @access public
 */
 function createSignup($userDetails)
 {
 $login = mysql_escape_string(
 $userDetails[USER_TABLE_LOGIN]);
 $password = mysql_escape_string(
 $userDetails[USER_TABLE_PASSW]);
 $email = mysql_escape_string(
 $userDetails[USER_TABLE_EMAIL]);
 $firstName = mysql_escape_string(
 $userDetails[USER_TABLE_FIRST]);
 $lastName = mysql_escape_string(
 $userDetails[USER_TABLE_LAST]);
 $signature = mysql_escape_string(
 $userDetails[USER_TABLE_SIGN]);

 // First check login and email are unique in user table
 $sql = "SELECT * FROM " . USER_TABLE . "
 WHERE
 " . USER_TABLE_LOGIN . "='$login' OR
 " . USER_TABLE_EMAIL . "='$email'";
 $result = $this->db->query($sql);

 if ($result->size() > 0) {
 trigger_error('Unique username and email address required');
 return false;
 }

 $this->createCode($login);
 $toName = $firstName . ' ' . $lastName;
 $this->to[$toName] = $email;

 $sql = "INSERT INTO " . SIGNUP_TABLE . " SET
 " . USER_TABLE_LOGIN . "='$login',
 " . USER_TABLE_PASSW . "='$password',
 " . USER_TABLE_EMAIL . "='$email',
 " . USER_TABLE_FIRST . "='$firstName',
 " . USER_TABLE_LAST . "='$lastName',
 " . USER_TABLE_SIGN . "='$signature',

Chapter 1: Access Control

30

 " . SIGNUP_TABLE_CONFIRM . "='$this->confirmCode',
 " . SIGNUP_TABLE_CREATED . "='" . time() . "'";

 $result = $this->db->query($sql);

 if ($result->isError()) {
 return false;
 } else {
 return true;
 }
 }

When the registration form is submitted, we’ll use this method to create a record

of the signup. Note that when the system checks to see whether the submitted

user name or email address already exists in the database, a match will trigger an

error. You could “catch” this error by defining your own custom error handler

(see Volume I, Chapter 10 for more information).

We add slashes to the incoming fields to make sure there are no injection attacks

(see Volume I, Chapter 3). Because we’re using QuickForm, any slashes added

by magic quotes are automatically removed; but when you’re not using Quick-

Form, be sure to include the script from “How do I write portable PHP code?”

in Volume I, Chapter 1, which strips quotes from your form code.

Next, we use the sendConfirmation method to send a confirmation email to the

person who’s just signed up:

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

 /**
 * Sends the confirmation email
 * @return boolean true on success
 * @access public
 */
 function sendConfirmation()
 {
 $mail = new phpmailer();
 $from = each($this->from);
 $mail->FromName = $from[0];
 $mail->From = $from[1];
 $to = each($this->to);
 $mail->AddAddress($to[1], $to[0]);
 $mail->Subject = $this->subject;
 if ($this->html) {
 $replace = 'listener . '?code=' .
 $this->confirmCode . '">' . $this->listener .

31

More Classes!

 '?code=' . $this->confirmCode . '';
 } else {
 $replace = $this->listener . '?code=' . $this->confirmCode;
 }
 $this->message = str_replace('<confirm_url/>',
 $replace,
 $this->message);
 $mail->IsHTML($this->html);

 $mail->Body = $this->message;
 if ($mail->send()) {
 return TRUE;
 } else {
 return FALSE;
 }
 }

Finally, the confirm method is used to examine confirmations via the URL sent

in the email:

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

 /**
 * Confirms a signup against the confirmation code. If it
 * matches, copies the row to the user table and deletes
 * the row from signup
 * @return boolean true on success
 * @access public
 */
 function confirm($confirmCode)
 {
 $confirmCode = mysql_escape_string($confirmCode);
 $sql = "SELECT * FROM " . SIGNUP_TABLE . "
 WHERE " . SIGNUP_TABLE_CONFIRM . "='$confirmCode'";
 $result = $this->db->query($sql);
 if ($result->size() == 1) {
 $row = $result->fetch();

 // Copy the data from Signup to User table
 $sql = "INSERT INTO " . USER_TABLE . " SET
 " . USER_TABLE_LOGIN . "='" .
 mysql_escape_string($row[USER_TABLE_LOGIN]) . "',
 " . USER_TABLE_PASSW . "='" .
 mysql_escape_string($row[USER_TABLE_PASSW]) . "',
 " . USER_TABLE_EMAIL . "='" .
 mysql_escape_string($row[USER_TABLE_EMAIL]) . "',
 " . USER_TABLE_FIRST . "='" .

Chapter 1: Access Control

32

 mysql_escape_string($row[USER_TABLE_FIRST]) . "',
 " . USER_TABLE_LAST . "='" .
 mysql_escape_string($row[USER_TABLE_LAST]) . "',
 " . USER_TABLE_SIGN . "='" .
 mysql_escape_string($row[USER_TABLE_SIGN]) . "'";

 $result = $this->db->query($sql);
 if ($result->isError()) {
 return FALSE;
 } else {
 // Delete row from signup table
 $sql = "DELETE FROM " . SIGNUP_TABLE . "
 WHERE " . SIGNUP_TABLE_ID . "='" .
 $row[SIGNUP_TABLE_ID] . "'";
 $this->db->query($sql);
 return TRUE;
 }
 } else {
 return FALSE;
 }
 }
}

If an account is successfully confirmed, the row is copied to the user table (note

that I had to re-escape the values stored in the signup table in case they contained

SQL injections that were escaped when originally inserted), and the old row in

the signup table is deleted. You will need to edit this method if your table

structures do not match the ones used here.

Putting this class into action, we’ll modify the registration form we built in Volume

I, Chapter 9 with QuickForm. For the sake of clarity, I’ve kept the registration

form to a single procedural listing, but in practice, to help keep code both main-

tainable and readable, it would be better to restructure it using classes. This time,

I’ve also used QuickForm’s templating features to modify the look of the page;

you’ll find the details in the code for this chapter. Here, we’ll concentrate on the

code that’s specific to the sign up process:

First, we have to include the five classes we’ll be using:

File: 6.php (excerpt)

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

// Include the Session class

33

More Classes!

require_once 'Session/Session.php';

// Include the SignUp class
require_once 'AccessControl/SignUp.php';

// Include the QuickForm class
require_once 'HTML/QuickForm.php';

// Include the phpmailer class
require_once 'ThirdParty/phpmailer/class.phpmailer.php';

Once we set up the variables we need, we can instantiate our own classes:

File: 6.php (excerpt)

// Settings for SignUp class
$listener = 'http://localhost/sitepoint/AccessControl/6.php';
$frmName = 'Your Name';
$frmAddress = 'noreply@yoursite.com';
$subj = 'Account Confirmation';
$msg = <<<EOD
<html>
<body>
<h2>Thank you for registering!</h2>
<div>The final step is to confirm
your account by clicking on:</div>
<div><confirm_url/></div>
<div>
Your Site Team
</div>
</body>
</html>
EOD;

// Instantiate the MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate the Session class
$session = new Session;

// Instantiate the signup class
$signUp = new SignUp($db, $listener, $frmName,
 $frmAddress, $subj, $msg, TRUE);

The following code checks to see if we have an incoming confirmation:

Chapter 1: Access Control

34

http://ThirdParty/phpmailer/class.phpmailer.php';
http://localhost/sitepoint/AccessControl/6.php';
mailto:noreply@yoursite.com';

File: 6.php (excerpt)

// Is this an account confirmation?
if (isset($_GET['code'])) {
 if ($signUp->confirm($_GET['code'])) {
 $display = 'Thank you. Your account has now been confirmed.' .
 '
You can now login';
 } else {
 $display = 'There was a problem confirming your account.' .
 '
Please try again or contact the site ' .
 'administrators';
 }

// Otherwise display the form
} else {
 // ...form creation code omitted...

If not, execution moves on to building the body of the form, which I’ll omit here,

as it was covered in Volume I, Chapter 9. If you don’t have that volume, you can

refer to the code archive.

Towards the end of the script appears the code that inserts a value into the signup
table and, if all went well, sends the confirmation email:

File: 6.php (excerpt)

 // If the form is submitted...
 if ($form->validate()) {
 // Apply the encryption filter to the password
 $form->applyFilter('password', 'encryptValue');

 // Build an array from the submitted form values
 $submitVars = array(
 'login' => $form->getSubmitValue('login'),
 'password' => $form->getSubmitValue('password'),
 'email' => $form->getSubmitValue('email'),
 'firstName' => $form->getSubmitValue('firstName'),
 'lastName' => $form->getSubmitValue('lastName'),
 'signature' => $form->getSubmitValue('signature')
);

 // Create signup
 if ($signUp->createSignup($submitVars)) {
 // Send confirmation email
 if ($signUp->sendConfirmation()) {
 $display = 'Thank you. Please check your email to ' .
 'confirm your account';

35

More Classes!

 } else {
 $display = 'Unable to send confirmation email.
' .
 'Please contact the site administrators';
 }
 } else {
 $display = 'There was an error creating your account.' .
 '
Please try again later or ' .
 'contact the site administrators';
 }
 } else {
 // If not submitted, display the form
 $display = $form->toHtml();
 }
}

The finished registration form now looks like the one shown in Figure 1.2.

Figure 1.2. Sign on the Dotted Line

Missing Pieces
So that you don’t get bored, there are a couple of remaining pieces for you to fill

in. Currently, the createSignup method triggers an error if there already exists

a registered user with the login name or email provided by the new registrant. If

Chapter 1: Access Control

36

you’re happy with QuickForm, you might want to split this check into a separate

method that QuickForm can apply as a rule for each field in the form. This should

reduce frustration when users find that the account name they chose already exists;

QuickForm will generate a message to tell them what they did wrong, while pre-

serving the rest of the values they entered.

If you plan to let users change their email addresses once their accounts are cre-

ated, you’ll also need to confirm the addresses before you store them against the

appropriate records in the user table. You should be able to reuse the methods

provided by the SignUp class for this purpose. You might even consider reusing

the signup table to handle this task; some modifications will be required to have

the confirm method check to see if a record already exists in the user table, and

if so, update it instead of creating a new row. Be very careful that you don’t create

a hole in your security, though. If you’re not checking for existing records in the

user table, a user could sign up for a new account with details that matched an

existing row in the user table. You’ll then end up changing the email address of

an existing user to that of a new user, which will cause some embarrassing mo-

ments at the very least.

How do I protect my site from auto sign
ups?

I hope you’ll never suffer the misfortune of having someone try to put your site

out of action, but when you expose your application to what is, after all, a global

network, you need to be prepared for trouble. It’s difficult to prevent malicious

attacks against your site and still offer genuine users an acceptable service—par-

ticularly if a malicious user simply decides to flood your site with requests for

pages.

Where user registration systems are concerned, one common method of attack

has been to create “robots” (typically Perl or PHP scripts), which act as Web

browsers and use the forms you’ve built for your registration system to swamp

your database with false sign ups. Although we’ve built a registration system that

requires email confirmation of the account, the confirmation process can also be

built into the “robot,” assuming it has access to the account to which the email

confirmations are sent. Both Hotmail and Yahoo!, among many others, have

been stung by this in the past.

The next level of protection is to introduce a mechanism that sorts the men from

the ’bots! Thankfully, the human brain is still vastly more powerful than a com-

37

How do I protect my site from auto sign ups?

puter (at least, the sort of computer likely to be used to attack your site) and is

capable of powerful optical character recognition beyond the scope of your average

Perl script. Consider Figure 1.3, for example.

Figure 1.3. Humans Still Have the Edge

Now, you and I can see that the image contains the characters “PKPBPI30,” but

a computer program trying to identify those letters will find the challenge a lot

more difficult. Of course it’s possible, but people who have the capability to do it

will, I hope, have better things to do with their time.

Here’s One I Wrote Earlier
Let’s turn to a handy PHP class I’ve prepared to solve just this problem:

File: Images/RandomImageText.php (in SPLIB) (excerpt)

<?php
/**
 * RandomImageText

 * Generate image text which is hard for OCR programs to
 * read but can still be read by humans, for use in registration
 * systems.
 * @package SPLIB
 * @access public
 */
class RandomImageText {
 /**
 * The background image resource
 * @access private
 * @var resource
 */
 var $image;

 /**
 * Image height in pixels
 * @access private
 * @var int
 */
 var $iHeight;

 /**

Chapter 1: Access Control

38

 * Image width in pixels
 * @access private
 * @var int
 */
 var $iWidth;

 /**
 * Font height in pixels
 * @access private
 * @var int
 */
 var $fHeight;

 /**
 * Font width in pixels
 * @access private
 * @var int
 */
 var $fWidth;

 /**
 * Tracks the x position in pixels
 * @access private
 * @var int
 */
 var $xPos;

 /**
 * An array of font idenfiers
 * @access private
 * @var array
 */
 var $fonts;

 /**
 * RandomImageText constructor
 * @param string relative or full path to background jpeg
 * @param int font height to use
 * @param int font width to use
 * @access public
 */
 function RandomImageText($jpeg, $fHeight = 10, $fWidth = 10)
 {
 $this->image = ImageCreateFromJPEG($jpeg);
 $this->iHeight = ImageSY($this->image);
 $this->iWidth = ImageSX($this->image);

39

Here’s One I Wrote Earlier

 $this->fHeight = $fHeight;
 $this->fWidth = $fWidth;
 $this->xPos = 0;
 $this->fonts = array(2, 3, 4, 5);
 }

The class needs to be provided with a JPEG image that will become the back-

ground over which we’ll scatter the letters. Ideally, you should use an image that

has some kind of pattern on it, to make the problem of identifying the letters

even more difficult. The $fHeight and $fWidth (font height and width) can be

adjusted, but this really only impacts the space that appears around the characters,

rather than increasing the size of the characters themselves.

The addText method is where the clever work takes place:

File: Images/RandomImageText.php (in SPLIB) (excerpt)

 /**
 * Add text to the image which is "randomized"
 * @param string text to add
 * @param int red hex value (0-255)
 * @param int green hex value (0-255)
 * @param int blue hex value (0-255)
 * @return boolean true text was added successfully
 * @access public
 */
 function addText($text, $r=38, $g=38, $b=38)
 {
 $length = $this->fWidth * strlen($text);

 if ($length >= ($this->iWidth - $this->fWidth * 2)) {
 return FALSE;
 }

 $this->xPos = floor(($this->iWidth - $length) / 2);

 $fColor = ImageColorAllocate($this->image, $r, $g, $b);

 srand((float)microtime() * 1000000);
 $fonts = array(2, 3, 4, 5);
 $yStart = floor($this->iHeight / 2) - $this->fHeight;
 $yEnd = $yStart + $this->fHeight;
 $yPos = range($yStart, $yEnd);

 for ($strPos = 0; $strPos < $length; $strPos++) {
 shuffle($fonts);

Chapter 1: Access Control

40

 shuffle($yPos);
 ImageString($this->image,
 $fonts[0],
 $this->xPos,
 $yPos[0],
 substr($text, $strPos, 1),
 $fColor);
 $this->xPos += $this->fWidth;
 }
 return TRUE;
 }

Provided with a text string, the class will scatter the letters on the image, using

a randomly varying vertical position, and a font chosen at random from a list.

Optionally, you can supply this method with red, green, and blue values, which

will define the color of the text.

If the string you provide is too big for the image, no text will be displayed; the

code generates an error notice, but you’ll have to pick this up with your error

handler (see Volume I, Chapter 10), as it will be invisible on the image.

The next two methods can be used to clear out any existing fonts registered with

the class, and add new fonts. The default PHP fonts are somewhat dull and rather

small, so you may want to consider adding your own. Check out PHP’s

imagestring[6] and imageloadfont[7] functions for further details.

File: Images/RandomImageText.php (in SPLIB) (excerpt)

 /**
 * Empties any fonts currently stored for use
 * @return void
 * @access public
 */
 function clearFonts()
 {
 return $this->fonts = array();
 }

 /**
 * Adds a new font for use in text generation
 * @param string relative or full path to font file
 * @return void
 * @access public

[6] http://www.php.net/imagestring

[7] http://www.php.net/imageloadfont

41

Here’s One I Wrote Earlier

http://www.php.net/imagestring
http://www.php.net/imageloadfont
http://www.php.net/imagestring
http://www.php.net/imageloadfont

 */
 function addFont($font)
 {
 $this->fonts[] = imageloadfont($font);
 }

The getHeight and getWidth methods can be useful if you’re unsure of the exact

dimensions of your background image and want to determine whether the text

you want to add will fit on the background before you add it.

File: Images/RandomImageText.php (in SPLIB) (excerpt)

 /**
 * Returns the height of the background image in
 * pixels
 * @return int
 * @access public
 */
 function getHeight()
 {
 return $this->iHeight;
 }

 /**
 * Returns the width of the background image in
 * pixels
 * @return int
 * @access public
 */
 function getWidth()
 {
 return $this->iWidth;
 }

Finally, the getImage method returns the PHP resource identifier for the image.

File: Images/RandomImageText.php (in SPLIB) (excerpt)

 /**
 * Returns the image resource for use with
 * the ImageJpeg() function
 * @return resource
 * @access public
 */
 function getImage()
 {
 return $this->image;

Chapter 1: Access Control

42

 }
}

We still have to convert the image to a JPEG with the imagejpeg function; I’ve

chosen to return the resource identifier rather than simply displaying the image

itself, as I may want to manipulate the image further with other code and classes.

Now that we’ve prepared the class for adding text to an image, we need to update

the SignUp class to provide a method that generates the text to appear in the

image:

File: AccessControl/SignUp.php (in SPLIB) (excerpt)

 /**
 * Creates a random string to be used in images
 * @return string
 * @access public
 */
 function createRandString()
 {
 srand((double)microtime() * 1000000);
 $letters = range ('A','Z');
 $numbers = range(0,9);
 $chars = array_merge($letters, $numbers);
 $randString = '';
 for ($i=0; $i<8; $i++) {
 shuffle($chars);
 $randString .= $chars[0];
 }
 return $randString;
 }

The trick now is to generate a random string with the above method, then store

it in a session variable that’s accessible by the code that actually generates the

image. First, we need to modify one or two parts of the registration form code

from the previous solution.

In the section where we begin to build the form, make the following modifications:

File: 7.php (excerpt)

 // Register a session variable for use in the image
 if (!$session->get('randomString'))
 $session->set('randomString', $signUp->createRandString());

The above code checks whether the random string has been created and stored

in a session variable. If not, it creates one and stores it in a session variable.

43

Here’s One I Wrote Earlier

Now, we add the form field and an img tag containing the image:

File: 7.php (excerpt)

 // The image check field for "humanness"
 $form->addElement('text', 'imageCheck', 'Image Text:',
 'class="signupData"');
 $form->addRule('imageCheck', 'Please enter text from image',
 'required', false, 'client');

 // Server side validation!
 // Don't give away random string in JavaScript
 $form->addRule('imageCheck',
 'Please confirm the text in the image',
 'regex',
 '/^' . $session->get('randomString') . '$/',
 'server');

 // The image check field
 $form->addData('
 <tr valign="top">
 <td class="info">
 Enter the text as it
appears in the image
 </td>
 <td class="field">

 </td>
 </tr>');

Note that the validation rule we’ve applied to this field uses server side validation

only, not client side. If we did use client side validation, a regular expression

stating exactly what the image contains would appear in JavaScript, and would

be available for a computer program to read.

All that remains is the code that will display the image itself:

File: 8.php

<?php
// Include Session class
require_once 'Session/Session.php';

// Include RandomImageText class
require_once 'Images/RandomImageText.php';

// Instantiate the Session class
$session = new Session;

Chapter 1: Access Control

44

// Instantiate RandomImageText giving the background image
$imageText = new RandomImageText('reg_image/reg_image.jpg');

// Add the text from the session
$imageText->addText($session->get('randomString'));

// Send the right mime type
header('Content-type: image/jpeg');

// Display the image
ImageJpeg($imageText->getImage());
?>

Note that we passed the random string via a session variable, as opposed to a

query string variable, as this, too, would be available for reading by a “robot”

script.

Figure 1.4 illustrates the form modified with the new image checking feature.

Figure 1.4. Humans Only, Thank You

45

Here’s One I Wrote Earlier

How do I deal with members who forget
their passwords?

In the last solution, I was happy to explain just how great human beings are in

comparison to computers. Unfortunately, though, we have a tendency to “age

out” important information such as the password we need to log into a site. A

feature that allows users to retrieve forgotten passwords is an essential time saver.

Overlook this, and you can expect to waste a lot of time changing passwords for

people who have forgotten them.

If you encrypt the passwords in your database, you’ll need a mechanism that

generates a new password that, preferably, is easy to remember. If you’re storing

passwords as-is, without encryption, it’s probably acceptable simply to send the

password to the user’s registered email address. Using an email address that you’ve

already confirmed as valid is more reliable than the “Secret Question” approach.

This common tactic asks users simple questions to refresh their memories, such

as, “Where were you born?” and “What’s your date of birth?” Just ask yourself

how many organizations, both on and offline, you’ve given that information to.

Some online applications, such as forums, even make your birthday available for

all to see, should you provide it. Details like this may well be common knowledge.

To solve the problem, we’ll build a general AccountMaintenance class, which will

do some of the maintenance work for us, then supply it with the information it

needs to either fetch an unencrypted password, or generate a new (memorable)

password. The typical approach used to generate memorable passwords is inspired

by the Secure Memorable Password Generator found at Codewalkers.com[8].

Password Reminder
Starting with the simple password fetching code, the AccountMaintenance class

begins with the usual constants, which allow it to be applied to a different table

structure if need be. Note, in particular, the USER_LOGIN_VAR constant, which

must contain the same value as that defined by the Auth class.

File: AccessControl/AccountMaintenance.php (in SPLIB) (excerpt)

<?php
/**
 * Constants which define table and column names

[8] http://codewalkers.com/seecode/52.html

Chapter 1: Access Control

46

http://codewalkers.com/seecode/52.html
http://www.Codewalkers.com[
http://codewalkers.com/seecode/52.html

 */
Modify this constant to reflect session variable name
// Name to use for login variable used in Auth class
@define('USER_LOGIN_VAR', 'login');
Modify these constants to match your user login table
// Name of users table
@define('USER_TABLE', 'user');
// Name of user_id column in table
@define('USER_TABLE_ID', 'user_id');
// Name of login column in table
@define('USER_TABLE_LOGIN', 'login');
// Name of password column in table
@define('USER_TABLE_PASSW', 'password');
// Name of email column in table
@define('USER_TABLE_EMAIL', 'email');
// Name of firstname column in table
@define('USER_TABLE_FIRST', 'firstName');
// Name of lastname column in table
@define('USER_TABLE_LAST', 'lastName');
/**
 * AccountMaintenance Class

 * Provides functionality for users to manage their own accounts
 * @access public
 * @package SPLIB
 */
class AccountMaintenance {
 /**
 * Database connection
 * @access private
 * @var object
 */
 var $db;

 /**
 * A list of words to use in generating passwords
 * @access private
 * @var array
 */
 var $words;

 /**
 * AccountMaintenance constructor
 * @param object instance of database connection
 * @access public
 */
 function AccountMaintenance(&$db)

47

Password Reminder

 {
 $this->db = &$db;
 }

 /**
 * Given an email address, returns the user details
 * that account. Useful is password is not encrpyted
 * @param string email address
 * @return array user details
 * @access public
 */
 function fetchLogin($email)
 {
 $email = mysql_escape_string($email);
 $sql = "SELECT
 " . USER_TABLE_LOGIN . ", " . USER_TABLE_PASSW . ",
 " . USER_TABLE_FIRST . ", " . USER_TABLE_LAST . "
 FROM
 " . USER_TABLE . "
 WHERE
 " . USER_TABLE_EMAIL . "='$email'";
 $result = $this->db->query($sql);
 if ($result->size() == 1) {
 return $result->fetch();
 } else {
 return FALSE;
 }
 }

The fetchLogin method looks for a single row that matches the user’s email

address (note this assumes you have declared a UNIQUE index on the email column

so that entries can only appear once. If you use a different table structure, you’ll

need to modify the query in this method).

Next, we put the simple forgotten password mechanism into action with Quick-

Form and phpmailer:

File: 9.php (excerpt)

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Include AccountMaintenance class
require_once 'AccessControl/AccountMaintenance.php';

Chapter 1: Access Control

48

// Include QuickForm class
require_once 'HTML/QuickForm.php';

// Include phpmailer class
require_once 'ThirdParty/phpmailer/class.phpmailer.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// phpmailer settings
$yourName = 'Your Name';
$yourEmail = 'you@yourdomain.com';
$subject = 'Your password';
$msg = 'Here are your login details. Please change your ' .
 'password.';

Here, we’ve set up the environment as usual, including the necessary classes.

We’ve also defined variables for the phpmailer class; these will be the same irre-

spective of who has forgotten a password.

And now, let’s set up QuickForm:

File: 9.php (excerpt)

// Instantiate the QuickForm class
$form = new HTML_QuickForm('passwordForm', 'POST');

// Add a header to the form
$form->addHeader('Forgotten Your Password?');

// Add a field for the email address
$form->addElement('text', 'email', 'Enter your email address');
$form->addRule('email', 'Enter your email', 'required', FALSE,
 'client');
$form->addRule('email', 'Enter a valid email address', 'email',
 FALSE, 'client');

// Add a submit button called submit with label "Send"
$form->addElement('submit', 'submit', 'Get Password');

If the form has been submitted, we instantiate the MySQL and AccountMaintenance
classes and use the fetchLogin method to determine whether there’s a matching

email address in the user table. If there is, we use phpmailer to send the user an

email containing the login and password.

49

Password Reminder

http://ThirdParty/phpmailer/class.phpmailer.php';
mailto:you@yourdomain.com';

File: 9.php (excerpt)

// If the form is submitted...
if ($form->validate()) {
 // Instantiate MySQL connection
 $db = &new MySQL($host, $dbUser, $dbPass, $dbName);

 // Instantiate Account Maintenance class
 $aMaint = new AccountMaintenance($db);

 if (!$details =
 $aMaint->fetchLogin($form->getSubmitValue('email'))) {
 echo 'We have no record of your account';
 } else {
 $mail = new phpmailer();
 // Define who the message is from
 $mail->From = $yourEmail;
 $mail->FromName = $yourName;

 // Set the subject of the message
 $mail->Subject = $subject;

 // Build the message
 $mail->Body = $msg . "\n\nLogin: " . $details['login'] .
 "\nPassword: " . $details['password'];

 // Add the recipient
 $name = $details['firstName'] . ' ' . $details['lastName'];
 $mail->AddAddress($form->getSubmitValue('email'), $name);

 // Send the message
 if(!$mail->Send()) {
 echo 'An email has been sent to ' .
 $form->getSubmitValue('email');
 } else {
 echo 'Problem sending your details. Please contact the ' .
 'site administrators';
 }
 }
} else {
 // If not submitted, display the form
 $form->display();
}
?>

Chapter 1: Access Control

50

New Password
As I mentioned, if you’ve encrypted the password, you have a different problem

to solve. PHP’s md5 function provides one-way encryption; once it’s scrambled,

there’s no getting it back! In such cases, if members forget their passwords, you’ll

have to make new ones for them. You could simply generate a random string of

characters, but it’s important to remember that if you make your security systems

too unfriendly, you’ll put legitimate users off.

Here, we’ll add to the AccountMaintenance class some further methods that can

generate passwords, and subsequently modify the password stored in the database.

I’ve used a list of 1370 words, stored in a text file, to build the memorable pass-

words. Be aware that if anyone knows the list of words you’re using, cracking the

new password will be significantly easier, so you should create your own list. First,

let’s look at the new class methods:

File: AccessControl/AccountMaintenance.php (in SPLIB) (excerpt)

 /**
 * Given a username / email combination, resets the password
 * for that user and returns the new password.
 * @param string login name
 * @param string email address
 * @return array of user details or FALSE if failed
 * @access public
 */
 function resetPassword($login, $email)
 {
 $login = mysql_escape_string($login);
 $email = mysql_escape_string($email);
 $sql = "SELECT " . USER_TABLE_ID . ",
 " . USER_TABLE_LOGIN . ", " . USER_TABLE_PASSW . ",
 " . USER_TABLE_FIRST . ", " . USER_TABLE_LAST . "
 FROM
 " . USER_TABLE . "
 WHERE
 " . USER_TABLE_LOGIN . "='$login'
 AND
 " . USER_TABLE_EMAIL . "='$email'";
 $result = $this->db->query($sql);
 if ($result->size() == 1) {
 $row = $result->fetch();
 if ($password = $this->generatePassword()) {
 $sql = "UPDATE " . USER_TABLE . "
 SET

51

New Password

 " . USER_TABLE_PASSW . "='" . md5($password) . "'
 WHERE
 " . USER_TABLE_ID . "='" . $row[USER_TABLE_ID] .
 "'";
 $result = $this->dbConn->fetch($sql);
 if (!$result->isError()) {
 $row[USER_TABLE_PASSW] = $password;
 return $row;
 } else {
 return FALSE;
 }
 } else {
 return FALSE;
 }
 } else {
 return FALSE;
 }
 }

The resetPassword method, when given a combination of a login and an email

address, identifies the corresponding row in the user table, and calls the

generatePassword method (which we’ll discuss in a moment) to create a new

password. It then updates the user table with the new password (using md5 to

encrypt it), and returns the new password in an array containing the user details.

If you’re using a different table structure, you’ll need to modify this method.

Note that we use both the login and email to identify the row, so it’s a little more

difficult for other people to reset your members’ passwords. Although there’s no

risk in individuals stealing the new password (unless they have control over a

member’s email account), it will certainly irritate people if their password was

being continually reset. Requiring both the login name and email of the user

makes it a little more complex.

Of the next two methods, addWords is used to supply the class with an indexed

array of words with which to build memorable passwords, while

generatePassword constructs a random password from this list, adding “separat-

ors” that could be any number from 0 to 9, or an underscore character. The

password itself will contain two words chosen at random from the list, as well as

two random separators. The order in which these elements appear in the password

is also random. The passwords this system generates look like “7correct9computer”

and “48courtclothes,” which are relatively easy for users to remember.

Chapter 1: Access Control

52

File: AccessControl/AccountMaintenance.php (in SPLIB) (excerpt)

 /**
 * Add a list of words to generate passwords with
 * @param array
 * @return void
 * @access public
 */
 function addWords($words)
 {
 $this->words = $words;
 }

 /**
 * Generates a random but memorable password
 * @return string the password
 * @access private
 */
 function generatePassword()
 {
 srand((double)microtime() * 1000000);
 $seperators = range(0,9);
 $seperators[] = '_';
 $count = count($this->words);
 if ($count == 0) {
 return FALSE;
 }
 $password = array();
 for ($i = 0; $i < 4; $i++) {
 if ($i % 2 == 0) {
 shuffle($this->words);
 $password[$i] = trim($this->words[0]);
 } else {
 shuffle($seperators);
 $password[$i] = $seperators[0];
 }
 }
 shuffle($password);
 return implode('', $password);
 }

First, we add to the form a new field for the user to enter their login name:

File: 10.php (excerpt)

// Add a field for the login
$form->addElement('text', 'login', 'Enter your login name');

53

New Password

$form->addRule('login', 'Enter your login', 'required', FALSE,
 'client');

All that’s required now is a small modification to the process that occurs upon

the form’s submission:

File: 10.php (excerpt)

// If the form is submitted...
if ($form->validate()) {

 // Instantiate MySQL connection
 $db = &new MySQL($host, $dbUser, $dbPass, $dbName);

 // Instantiate Account Maintenance class
 $aMaint = new AccountMaintenance($db);

 // Fetch a list of words
 $fp = fopen('./pass_words/pass_words.txt', 'rb');
 $file = fread($fp, filesize('./pass_words/pass_words.txt'));
 fclose($fp);

 // Add the words to the class
 $aMaint->addWords(explode("\n", $file));

 // Reset the password
 if (!$details = $aMaint->resetPassword(
 $form->getSubmitValue('login'),
 $form->getSubmitValue('email'))) {
 echo 'We have no record of your account';
 } else {
 // Instantiate phpmailer class
 $mail = new phpmailer();
 …

This time, we read a file (refer to Volume I, Chapter 4 for details on this process)

to obtain a list of words, the file having one word per line. We pass the list of

words to the AccountMaintenance class with the addWords method. Whether

you choose to use a file, a database or even some cunning code mechanism based

upon the pspell_suggest function (see the PHP Manual[9]) is up to you; you

simply need to provide a list to add with addWords.

The resetPassword method changes the password behind the scenes and returns

an array containing the user details in the same way as the fetchPassword

[9] http://www.php.net/pspell-suggest

Chapter 1: Access Control

54

http://www.php.net/pspell-suggest
http://fopen('./pass_words/pass_words.txt',
http://filesize('./pass_words/pass_words.txt'));
http://www.php.net/pspell-suggest

method; thus, the task of emailing users their new passwords is the same. The

code is therefore omitted from the above listing.

How do I let users change their
passwords?

You’re now able to deal with people who have forgotten their passwords. What

about people who want to change their passwords?

A good “test of design” for many PHP applications is whether users can change

their passwords without needing to log back into the application afterwards. It’s

important to be considerate to your site’s users if you want them to stick around.

Changing their passwords should not require users to log back in, provided you

construct your application carefully.

Going back to the session-based authentication mechanism you saw earlier in

this chapter, you’ll remember that the login and password are stored in session

variables and rechecked on every new page by the Auth class. The trick is to

change the value of the password in both the session variable and the database

when users change their passwords.

First things first! Let’s build a new login page using QuickForm:

File: 11.php

<?php
// Include QuickForm class
require_once 'HTML/QuickForm.php';

// If $_GET['from'] comes from the Auth class
if (isset($_GET['from'])) {
 $target = $_GET['from'];
} else {
 // Default URL: usually index.php
 $target = '12.php';
}

// Instantiate the QuickForm class
$form = new HTML_QuickForm('loginForm', 'POST', $target);

// Add a header to the form
$form->addHeader('Please Login');

55

How do I let users change their passwords?

// Add a field for the login name
$form->addElement('text', 'login', 'Username');
$form->addRule('login', 'Enter your login', 'required', FALSE,
 'client');

// Add a field for the password
$form->addElement('password', 'password', 'Password');
$form->addRule('password', 'Enter your password', 'required',
 FALSE, 'client');

// Add a submit button
$form->addElement('submit', 'submit', ' Login ');

$form->display();
?>

Note that in this case, we tell QuickForm to direct the submission of the form

to another PHP script, rather than handling it locally on the same page.

As we’ve already been working on an AccountMaintenance class, this seems like

a reasonable place to add the code that allows users to change their passwords:

File: AccessControl/AccountMaintenance.php (in SPLIB) (excerpt)

 /**
 * Changes a password both in the database
 * and in the current session variable.
 * Assumes the new password has been
 * validated correctly elsewhere.
 * @param Auth instance of the Auth class
 * @param string old password
 * @param string new password
 * @return boolean TRUE on success
 * @access public
 */
 function changePassword(&$auth, $oldPassword, $newPassword)
 {
 $oldPassword = mysql_escape_string($oldPassword);
 $newPassword = mysql_escape_string($newPassword);

 // Instantiate the Session class
 $session = new Session();

 // Check the the login and old password match
 $sql = "SELECT *
 FROM " . USER_TABLE . "
 WHERE

Chapter 1: Access Control

56

 " . USER_TABLE_LOGIN . " =
 '" . $session->get(USER_LOGIN_VAR) . "'
 AND
 " . USER_TABLE_PASSW . " =
 '" . md5($oldPassword) . "'";
 $result = $this->db->query($sql);
 if ($result->size() != 1) {
 return FALSE;
 }

 // Update the password
 $sql = "UPDATE " . USER_TABLE . "
 SET
 " . USER_TABLE_PASSW . " =
 '" . md5($newPassword) . "'
 WHERE
 " . USER_TABLE_LOGIN . " =
 '" . $session->get(USER_LOGIN_VAR) . "'";
 $result = $this->db->query($sql);
 if (!$result->isError()) {
 // Store the new credentials
 $auth->storeAuth($session->get(USER_LOGIN_VAR),
 $newPassword);
 return TRUE;
 } else {
 return FALSE;
 }
 }

The changePassword method accepts three parameters: an instance of the Auth
class (so it can use the storeAuth method it provides), an old password, and a

new password.

It first checks that the combination of the old password and the login name

(which it retrieves from the session) are correct. It’s a good idea to require the

old password before changing it to something else; perhaps the user logged in at

an Internet café and then left, forgetting to log out, or worse—their session was

hijacked. This process at least precludes some potential damage, as it prevents

anyone who “takes over” the session being able to change the password and thus

assume total control. Instead, they’re only logged in as long as the session contin-

ues.

It’s time to put this into action in the page to which the login form submits…

57

How do I let users change their passwords?

File: 12.php (excerpt)

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Include Session class
require_once 'Session/Session.php';

// Include Authentication class
require_once 'AccessControl/Auth.php';

// Include AccountMaintenance class
require_once 'AccessControl/AccountMaintenance.php';

// Include QuickForm class
require_once 'HTML/QuickForm.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate the Authentication class
$auth = &new Auth($db, '11.php', 'secret');

We include all the classes needed for the code, then instantiate the MySQL and

Auth classes. From the moment Auth is instantiated, the provision of an invalid

login/password combination will see the visitor returned to the login form.

This time, just for variety, we use a switch statement to control the flow of logic

on the page:

File: 12.php (excerpt)

switch ($_GET['view']) {
 case 'changePassword':
 // Instantiate the QuickForm class
 $form = new HTML_QuickForm('changePass', 'POST',
 '12.php?view=changePassword');

 // A function for comparing password
 function cmpPass($element, $confirm)
 {

Chapter 1: Access Control

58

 global $form;
 $password = $form->getElementValue('newPassword');
 return $password == $confirm;
 }

 // Register the compare function
 $form->registerRule('compare', 'function', 'cmpPass');

 // Add a header to the form
 $form->addHeader('Change your Password');

 // Add a field for the old password
 $form->addElement('password', 'oldPassword',
 'Current Password');
 $form->addRule('oldPassword', 'Enter your current password',
 'required', false, 'client');

 // Add a field for the new password
 $form->addElement('password', 'newPassword', 'New Password');
 $form->addRule('password', 'Please provide a password',
 'required', FALSE, 'client');
 $form->addRule('password',
 'Password must be at least 6 characters',
 'minlength', 6, 'client');
 $form->addRule('password',
 'Password cannot be more than 12 chars',
 'maxlength', 50, 'client');
 $form->addRule('password',
 'Password can only contain letters and ' .
 'numbers', 'alphanumeric', NULL, 'client');

 // Add a field for the new password
 $form->addElement('password', 'confirm', 'Confirm Password');
 $form->addRule('confirm', 'Confirm your password',
 'compare', false, 'client');

 // Add a submit button
 $form->addElement('submit', 'submit', 'Change Password');

Here, the usual QuickForm setup code builds a form for changing passwords.

Notice again the cmpPass function, which compares the new password and the

rules for the newPassword field. We perform most of the validation of the new

password within the form, leaving it to the AccountMaintenance class to perform

a final check against the old password before making the change.

59

How do I let users change their passwords?

On validation of the form, we instantiate the AccountMaintenance class and tell

it to change the password.

File: 12.php (excerpt)

 // If the form is submitted...
 if ($form->validate()) {

 // Instantiate Account Maintenance class
 $aMaint = new AccountMaintenance($db);

 // Change the password
 if ($aMaint->changePassword(
 $auth,
 $form->getSubmitValue('oldPassword'),
 $form->getSubmitValue('newPassword'))) {
 echo 'Your password has been changed successfully.
 '
Click <a href="' .$_SERVER['PHP_SELF'] .
 '">here';
 } else {
 echo 'Error changing your password.
' .
 'Click <a href="' . $_SERVER['PHP_SELF'] .
 '">here';
 }

 } else {
 // If not submitted, display the form
 $form->display();
 }
 break;

The script finishes with the default behavior of the switch statement; a simple

menu is displayed, providing users with the option to change their passwords.

File: 12.php (excerpt)

 default:
 echo 'Options:
';
 echo '<a href="' . $_SERVER['PHP_SELF'] .
 '?view=changePassword">Change Password';
 break;
}
?>

Now that you know how to change passwords, it should be no problem for you

to change other account settings, such as the first and last names and the signa-

ture, by adding these to the AccountMaintenance class. If you want to allow

Chapter 1: Access Control

60

users to change their email address, you’ll need to examine the registration pro-

cedure used earlier in this chapter, and modify the SignUp class. You should make

sure that users confirm a new email address before you allow them to change it.

How do I build a permissions system?
So far, you’ve already got an authentication system, which provides a global se-

curity system for your site. But are all your site’s members equal? You probably

don’t want all of your users to have access to edit and delete articles, for example.

To deal with this, you need to add to the security system further complexity that

allows you to assign “permissions” to limited groups of members, permitting only

these users to perform particular actions.

Rather than assigning specific permissions to particular accounts, which would

quickly become a nightmare to administer, the way we’ll build a permissions

system is to think in terms of Users, Groups and Permissions. Users (login ac-

counts) will be assigned to Groups, which will have names like “Administrators,”

“Authors,” “Managers,” and so on. Permissions reflect actions that users will be

allowed to perform within the site, and they will also be assigned to Groups.

From an administration perspective, managing all this will be easy, as it will be

a simple matter to see which Permissions a particular Group has, and which users

are assigned to that Group.

To build the relationships I’ve described requires the construction of many-to-

many relationships between tables. This is explained as follows:

� A User can belong to many Groups.

� A Group may have many Users.

� A Permission can be assigned to many Groups.

� A Group may have many Permissions.

In practical terms, the way to build many-to-many relationships in MySQL is to

use a lookup table, which relates to two other tables. The lookup table stores a

two column index, each column being the key of one of the two related tables.

For example, here’s the definition of the user2collection lookup table:

CREATE TABLE user2collection (
 user_id INT(11) NOT NULL DEFAULT '0',
 collection_id INT(11) NOT NULL DEFAULT '0',

61

How do I build a permissions system?

 PRIMARY KEY (user_id, collection_id)
)

Notice that the primary key for the table uses both columns. In doing so, it makes

sure that no combination of user_id and collection_id can appear more than

once.

Note that I use “collection” to refer to “group” in MySQL; the use of “group”

would confuse the current versions of the mysqldump utility, which, as you know

from Volume I, Chapter 3, is a helpful tool for backing up a database.

Table 1.1 presents sample data from the user2group table:

Table 1.1. Sample data from user2collection

collection_iduser_id

21

12

22

23

24

This tells us that User 1 is a member of Group 2, User 2 is a member of Groups

1 and 2, User 3 is a member of Group 2, etc.

With the lookup tables defined (the other being called collection2permission),

we can now perform queries across the tables to identify the permissions a partic-

ular user has been allowed. For example, the following query returns all the per-

missions for the user with user_id 1.

SELECT
 p.name as permission
FROM
 user2collection uc, collection2permission cp, permission p
WHERE
 uc.user_id = '1' AND
 uc.collection_id = cp.collection_id AND
 cp.permission_id = p.permission_id

Note that I’ve used aliases for table names, such as user2collection ug, to

make writing the query easier.

Chapter 1: Access Control

62

Armed with that knowledge, it’s time we put together a class for users. The class

will allow us to fetch all the information we need about users and, in particular,

to check their permissions.

First, we need to define constants for the table and column names, so that we

can use the class against different table structures:

File: AccessControl/User.php (in SPLIB) (excerpt)

/**
* Constants defining table and column names
*/
Modify this constants to match the session variable names
// Name to use for login variable
@define('USER_LOGIN_VAR', 'login');

Modify these constants to match your user login table
// Name of users table
@define('USER_TABLE', 'user');
// Name of ID column in usre
@define('USER_TABLE_ID', 'user_id');
// Name of login column in table
@define('USER_TABLE_LOGIN', 'login');
// Name of email column in table
@define('USER_TABLE_EMAIL', 'email');
// Name of firstname column in table
@define('USER_TABLE_FIRST', 'firstName');
// Name of lastname column in table
@define('USER_TABLE_LAST', 'lastName');
// Name of signature column in table
@define('USER_TABLE_SIGN', 'signature');

// Name of Permission table
@define('PERM_TABLE', 'permission');
// Permission table id column
@define('PERM_TABLE_ID', 'permission_id');
// Permission table name column
@define('PERM_TABLE_NAME', 'name');

// Name of Permission table
@define('PERM_TABLE', 'permission');
// Permission table id column
@define('PERM_TABLE_ID', 'permission_id');
// Permission table name column
@define('PERM_TABLE_NAME', 'name');

// Name of User to Collection lookup table

63

How do I build a permissions system?

@define('USER2COLL_TABLE', 'user2collection');
// User to Collection table user_id column
@define('USER2COLL_TABLE_USER_ID', 'user_id');
// User to Collection table collection_id column
@define('USER2COLL_TABLE_COLL_ID', 'collection_id');

// Name of Collection to Permission lookup table
@define('COLL2PERM_TABLE', 'collection2permission');
// Collection to Permission table collection id
@define('COLL2PERM_TABLE_COLL_ID', 'collection_id');
// Collection to Permission table permission id
@define('COLL2PERM_TABLE_PERM_ID', 'permission_id');

With the constants defined, we can get down to the meat of the class:

File: AccessControl/User.php (in SPLIB) (excerpt)

/**
 * User Class

 * Used to store information about users, such as permissions
 * based on the session variable "login"

 * Note: you will need to modify the populate() and
 * checkPermission() methods if your database table structure
 * is different to that used here.
 * @access public
 * @package SPLIB
 */
class User {
 /**
 * Database connection
 * @access private
 * @var object
 */
 var $db;
 /**
 * The id which identifies this user
 * @access private
 * @var int
 */
 var $userId;
 /**
 * The users email
 * @access private
 * @var string
 */
 var $email;
 /**

Chapter 1: Access Control

64

 * First Name
 * @access private
 * @var string
 */
 var $firstName;
 /**
 * Last Name
 * @access private
 * @var string
 */
 var $lastName;
 /**
 * Signature
 * @access private
 * @var string
 */
 var $signature;
 /**
 * Permissions
 * @access private
 * @var array
 */
 var $permissions;
 /**
 * User constructor
 * @param object instance of database connection
 * @access public
 */
 function User(&$db)
 {
 $this->db = &$db;
 $this->populate();
 }

To begin, we’ve defined some data members as well as the constructor, which

takes an instance of the MySQL class. The constructor calls the method, populate:

File: AccessControl/User.php (in SPLIB) (excerpt)

 /**
 * Determines the user's id from the login session variable
 * @return void
 * @access private
 */
 function populate()
 {
 $session = new Session();

65

How do I build a permissions system?

 $sql = "SELECT
 " . USER_TABLE_ID . ", " . USER_TABLE_EMAIL . ",
 " . USER_TABLE_FIRST . ", " . USER_TABLE_LAST . ",
 " . USER_TABLE_SIGN . "
 FROM
 " . USER_TABLE . "
 WHERE
 " . USER_TABLE_LOGIN . " =
 '" . $session->get(USER_LOGIN_VAR) . "'";
 $result = $this->db->query($sql);
 $row = $result->fetch();
 $this->userId = $row[USER_TABLE_ID];
 $this->email = $row[USER_TABLE_EMAIL];
 $this->firstName = $row[USER_TABLE_FIRST];
 $this->lastName = $row[USER_TABLE_LAST];
 $this->signature = $row[USER_TABLE_SIGN];
 }

The populate method pulls this user’s record from the database and stores various

useful pieces of information in the object’s variables, so we can easily get to them

when, for example, we want to display that user’s name on the page. Most im-

portant is gathering the user_id value from the database, for use in checking

permissions.

Next, we have some accessor methods that are used simply to fetch the values

from the object’s variables:

File: AccessControl/User.php (in SPLIB) (excerpt)

 /**
 * Returns the user's id
 * @return int
 * @access public
 */
 function id()
 {
 return $this->userId;
 }
 /**
 * Returns the users email
 * @return int
 * @access public
 */
 function email()
 {
 return $this->email;

Chapter 1: Access Control

66

 }
 /**
 * Returns the users first name
 * @return string
 * @access public
 */
 function firstName()
 {
 return $this->firstName;
 }
 /**
 * Returns the users last name
 * @return string
 * @access public
 */
 function lastName()
 {
 return $this->lastName;
 }
 /**
 * Returns the users signature
 * @return string
 * @access public
 */
 function signature()
 {
 return $this->signature;
 }

The checkPermission method determines whether a user has a named permission.

It returns TRUE if it finds the permission named in the local permissions array:

File: AccessControl/User.php (in SPLIB) (excerpt)

 /**
 * Checks to see if the user has the named permission
 * @param string name of a permission
 * @return boolean TRUE is user has permission
 * @access public
 */
 function checkPermission($permission)
 {
 // If I don't have any permissions, fetch them
 if (!isset($this->permissions)) {
 $this->permissions = array();
 $sql = "SELECT
 p." . PERM_TABLE_NAME . " as permission

67

How do I build a permissions system?

 FROM
 " . USER2COLL_TABLE . " uc,
 " . COLL2PERM_TABLE . " cp,
 " . PERM_TABLE . " p
 WHERE
 uc." . USER2COLL_TABLE_USER_ID . "='" .
 $this->userId . "' AND
 uc." . USER2COLL_TABLE_COLL_ID . "=
 cp." . COLL2PERM_TABLE_COLL_ID . " AND
 cp." . COLL2PERM_TABLE_PERM_ID . "=
 p." . PERM_TABLE_ID;
 $result = $this->db->query($sql);
 while ($row = $result->fetch()) {
 $this->permissions[] = $row['permission'];
 }
 }
 if (in_array($permission, $this->permissions)) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}

We’ve set it up so that if there are no permissions currently stored in the class’s

$this->permissions array, checkPermissions fetches all of them. This means

that if we need to check permissions more than once on a page, it will only be at

the cost of a single query. You may take the alternative view that it’s better to

use the name of the permission in the query as well, and then count the number

of rows returned. This reduces the amount of memory required by PHP, but will

generate one query for each permission you check. The SQL statement for this

alternative approach (showing the real table and column names, rather than the

constants) could be:

$sql = 'SELECT
 COUNT(*) AS num_rows
 FROM
 user2collect uc, collection2permission cp, permission p
 WHERE
 uc.user_id = "' . $this->userId . '" AND
 uc.collection_id = cp.collection_id AND
 cp.permission_id = p.permission_id AND
 p.name = "' . $permission . '"';

Chapter 1: Access Control

68

The User class fetches data on a “need to know” basis. That is, it’s fairly safe to

assume that the basic, available user information will be required shortly after

instantiation; hence, the use of the populate method—otherwise, we wouldn’t

have created the object in the first place. The data pertaining to permissions,

however, may not be needed every time the User class is instantiated. It’s likely

that we’ll only check permissions on a restricted number of pages, so we can save

ourselves a query when the user views public pages, leaving the checkPermission
method to be called explicitly as needed. This approach is known as lazy fetching,

and can be a useful approach to reducing unnecessary queries and performance

overhead.

Having seen the class, let’s consider a demonstration. This login form script

(13.php) is the same as 11.php, but it sends the post data to a different URL.

Let’s look at a simple example of the permissions in action: first, we’ll include

and set up the classes as usual, and put the new User class into action:

File: 14.php (excerpt)

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Include Session class
require_once 'Session/Session.php';

// Include Auth class
require_once 'AccessControl/Auth.php';

// Include User class
require_once 'AccessControl/User.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate the Authentication class
$auth = &new Auth($db, '13.php', 'secret');

// Instantiate the User class
$user = &new User($db);

69

How do I build a permissions system?

Now, we have code that will change the page based on the value of

$_GET['view']. Each view has a different permission, which we can then look

up with the User object:

File: 14.php (excerpt)

// Switch on the view GET variable
switch (@$_GET['view']) {
 case 'create':
 // Define permission (a name in permissions table)
 $permission = 'create';
 // Create a message for users with access to this area
 $msg = 'From here you can create new content';
 break;
 case 'edit':
 $permission = 'edit';
 $msg = 'From here you can edit existing content';
 break;
 case 'delete':
 $permission = 'delete';
 $msg = 'From here you can delete existing content';
 break;
 default:
 $permission = 'view';
 $msg = 'From here you can read existing content';
}

// Check the user's permission. If inadequate, change the msg
if (!$user->checkPermission($permission)) {
 $msg = 'You do not have permission to do this';
}
?>
<p><?php echo $msg; ?></p>
<p>
 <a href="<?php echo $_SERVER['PHP_SELF']; ?>">Main |
 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=create">Create |
 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=edit">Edit |
 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=delete">Delete
</p>

This is a simple example, of course, but you could use the checkPermission
method any way you like—perhaps simply to use if/else statements to decide

what a user is allowed to do and see. Another approach would be to use a variable,

Chapter 1: Access Control

70

such as the $msg variable we’ve used here, to store the name of a PHP script for

use with an include statement.

Otherwise, that’s all there is to it. Now, all you need to do is build an administra-

tion interface to control Users, Groups and Permissions!

How do I store sessions in MySQL?
As discussed earlier in this chapter, the default behavior of sessions in PHP on

the server side is to create a temporary file in which session data is stored. This

is usually kept in the temporary directory of the operating system and, as such,

presents a security risk to your applications, especially if you are using a shared

server. It’s a good idea to be aware of the alternative; using a custom session

handler provides an alternative data store which is fully under your control.

In this solution, I’ll provide you with a custom session handler that will store all

session data in MySQL in a manner that will require no modification of any code.

The custom handler code is a port of the PostgreSQL Session Handler for

PHP[10], written by Jon Parise, and is supplied with the code for this chapter,

in the subdirectory mysql_session_handler.

To install it, the first thing you need to do is modify the file mysql_session_hand-
ler.php, changing the lines that identify your database connection, shown here

in bold:

File: mysql_session_handler/mysql_session_handler.php (excerpt)

function mysql_session_open($save_path, $session_name)
{
 global $mysql_session_handle;

 /* See: http://www.php.net/manual/function.mysql-connect.php */
 $host = 'localhost';
 $user = 'harryf';
 $pass = 'secret';
 /* See: http://www.php.net/manual/function.mysql-select-db.php*/
 $dbas = 'sitepoint';

 $mysql_session_handle = mysql_connect($host, $user, $pass);
 mysql_select_db($dbas, $mysql_session_handle);
 return $mysql_session_handle;
}

[10] http://www.csh.rit.edu/~jon/projects/pgsql_session_handler/

71

How do I store sessions in MySQL?

http://www.csh.rit.edu/~jon/projects/pgsql_session_handler/
http://www.csh.rit.edu/~jon/projects/pgsql_session_handler/
http://www.php.net/manual/function.mysql-connect.php
http://www.php.net/manual/function.mysql-select-db.php*/
http://www.csh.rit.edu/~jon/projects/pgsql_session_handler/

Once you’ve done that, the next step is to override some php.ini settings with

a .htaccess file4 containing:

File: mysql_session_handler/.htaccess

php_value session.save_handler 'user'
php_value session.save_path 'php_sessions'
php_value auto_prepend_file '/path/to/mysql_session_handler.php'

The first line tells PHP that rather than using its default session handling mech-

anism, it will be told how to handle sessions by your own code. The value ses-
sion.save_path refers to the name of the table where sessions are stored. The

last line tells PHP to execute the mysql_session_handler.php file every time

any other script is executed.

Finally, you need to create a table called php_sessions with the following

structure:

CREATE TABLE php_sessions (
 session_id VARCHAR(40) NOT NULL DEFAULT '',
 last_active INT(11) NOT NULL DEFAULT '0',
 data TEXT NOT NULL,
 PRIMARY KEY (session_id)
)

With the .htaccess file placed in your Web root directory, all PHP scripts using

sessions will store the session data in MySQL rather than in files.

The data stored by sessions has a format that looks like this:

myVar|s:11:"Hello World";ip_address|s:9:"127.0.0.1";

Variables themselves are separated by either semicolons or {} in the case of arrays,

while within each variable, the name and value is separated by |. The value itself

is stored in a serialized form (see the PHP Manual[11] for details).

So the above example corresponds to two variables:

4The PHP configuration setting auto_prepend_file can only be set in php.ini or by a

.htaccess file. If you can’t use .htaccess in that way, you’ll need to include mysql_ses-
sion_handler.php in all your scripts, which is best done by adding it to a script which is already

included by all others, such as that where you keep central configuration information. The configur-

ation values session.save_handler and session_save_path can both be controlled with

the ini_set function (see Appendix A for more details). These will also need to be included in

every script.

[11] http://www.php.net/serialize

Chapter 1: Access Control

72

http://www.php.net/serialize
http://World";ip_address|s:9:"127.0.0.1";
http://www.php.net/serialize

$myVar = "Hello World";
$ip_address = "127.0.0.1";

Being able to decode this information with PHP will become important in the

next solution.

How do I track who is online?
You may have seen applications such as vBulletin and phpBB, which let visitors

see how many users are online (and sometimes, which users are online) at a given

moment. Now that we have an authentication system, and a custom session

handler that stores sessions in MySQL, implementing “Who is Online?” function-

ality is a breeze (well, almost)!

The first thing we need is (you guessed it!) a class that we can use to read and

interpret stored session data from MySQL.

The constructor for the class simply initializes an array. This is used as a “first

in first out” (FIFO) queue to which raw session data is added, and from which

objects are returned along with properties that correspond to the variables stored

in a given session.

File: Session/SessionAnalyzer.php (in SPLIB) (excerpt)

/**
 * Session Analyzer
 * Examines serialized session data (as it appears on the file
 * system or in a database) and builds objects into which it
 * places the data stored in the session
 * <code>
 * $sa = new SessionAnalyzer();
 * $sa->addSession($some_serialized_session_data);
 * $sessionStore = $sa->fetch();
 * </code>
 * @package SPLIB
 * @access public
 */
class SessionAnalyzer {
 /**
 * A list of sessions, their data held in SessionStore objects
 * @var array
 */
 var $sessions;

 /**

73

How do I track who is online?

http://127.0.0.1";

 * SessionAnalyzer constructor
 * @param object instance of database connection
 * @access public
 */
 function SessionAnalyzer()
 {
 $this->sessions = array();
 }

The addSession method is used to put raw session data in the queue. It calls the

private parseSession method, which is where the analysis of the raw session

data actually occurs. The fetchSessions method allows us to get objects back

from the queue, the properties of the object being the variables stored in the raw

session data. Note that the objects returned are not related to the Session class

we worked with earlier in this chapter. They are simply data containers—objects

of class SessionStore (below)—and have no methods.

File: Session/SessionAnalyzer.php (in SPLIB) (excerpt)

 /**
 * Gathers the sessions into a local array for analysis
 * @param string raw serialized session data to parse
 * @return void
 * @access public
 */
 function addSession($rawData)
 {
 $this->sessions[] = $this->parseSession($rawData);
 }

 /**
 * Iteraters over the SessionStore array
 * @return SessionStore
 * @access public
 */
 function fetch()
 {
 $session = each($this->sessions);
 if ($session) {
 return $session['value'];
 } else {
 reset($this->sessions);
 return FALSE;
 }
 }

Chapter 1: Access Control

74

I’ll leave the parseSession method to your imagination (or you can look at the

code archive), as it has to do some serious string manipulation to interpret the

session data correctly.

One word of warning. If you’re storing objects of your own classes in sessions,

the class file needs to be included before you use SessionAnalyzer, or you’ll re-

ceive PHP errors about undeclared classes.

For your information, here’s the SessionStore class, which acts as the container

for parsed session data:

File: Session/SessionAnalyzer.php (in SPLIB) (excerpt)

/**
 * SessionStore
 * Container class in which to place unserialized session data
 * @package SPLIB
 * @access public
 */
class SessionStore {}

Now that we’re capable of analyzing sessions, here’s a simple script that counts

the number of users online. It assumes we’re using the MySQL session handler

you saw in the previous solution:

File: 15.php

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Include SessionAnalyzer class
require_once 'Session/SessionAnalyzer.php';

$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL connection
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate the SessionAnalyzer class
$sAnalyzer = &new SessionAnalyzer();

$sql = "SELECT data FROM php_sessions";
$result = $db->query($sql);

75

How do I track who is online?

while ($row = $result->fetch()) {
 // Add the raw session data
 $sAnalyzer->addSession($row['data']);
}

// Initialize variables for results of session analysis
$guests = 0;
$members = '';

// Loop through the queue of parsed sessions
while ($sessionStore = $sAnalyzer->fetch()) {
 if (isset($sessionStore->login)) {
 $members .= $sessionStore->login . ' ';
 } else {
 $guests++;
 }
}
// Format the output nicely

echo 'There are currently ' . $guests . ' guests online
';
echo 'Members online: ' . $members;
?>

The display looks like this:

There are currently 6 guests online
Members online: HarryF, BillG

I confess—I faked the number of users online for the purposes of having something

to show you! If my private development PC was getting unknown visitors, I’d be

worried.

“Who is Online?” functionality is more than just a nice gimmick. If you plan to

add any kind of real time chat system to your site, “Who is Online?” is essential

for allowing people to meet up. It also provides a user administration “snap shot”

of what’s happening on your site, particularly if your authentication system has

just sent you an SMS telling you someone is trying to break in.

Further Reading
� The WWW Security FAQ: http://www.w3.org/Security/Faq/

This is essential reading!

Chapter 1: Access Control

76

http://www.w3.org/Security/Faq/
http://www.w3.org/Security/Faq/

� HTTP Header Reference: http://www.cs.tut.fi/~jkorpela/http.html

This summary of all HTTP headers is one for the bookmarks…

� Apache HTTP Authentication with PHP: http://www.sitepoint.com/article/280

This tutorial takes a look at the essentials of HTTP authentication with PHP.

� Session Fixation Vulnerability in Web-based Applications:
http://www.acros.si/papers/session_fixation.pdf

This paper examines a session hijacking strategy where an intruder effectively

hijacks the session before it’s even started. The PHP Authentication class

developed in this chapter should prevent this from happening to your site’s

users.

� Managing Users with PHP Sessions and MySQL:

http://www.sitepoint.com/article/319

This article introduces the principles of user authentication with sessions.

� Write Secure Scripts with PHP 4.2!: http://www.sitepoint.com/article/758

Here’s a tutorial that explains the importance of writing scripts with re-
gister_globals switched off.

� PHP and the OWASP Top Ten Security Vulnerabilities:
http://www.sklar.com/page/article/owasp-top-ten

This article provides a summary of recent findings from Open Web Application

Security Project[19], described in PHP terms. It’s required reading!

� Custom Session Handlers in PHP4:

http://www.phpbuilder.com/columns/ying20000602.php3

This handy tutorial does a good job of explaining how to build custom session

handlers. Be warned, though, that there have been mixed reports about the

final code developed for this tutorial; in some environments it seems to cause

various miscellaneous or intermittent errors.

[19] http://www.owasp.org/

77

Further Reading

http://www.cs.tut.fi/~jkorpela/http.html
http://www.sitepoint.com/article/280
http://www.acros.si/papers/session_fixation.pdf
http://www.sitepoint.com/article/319
http://www.sitepoint.com/article/758
http://www.sklar.com/page/article/owasp-top-ten
http://www.owasp.org/
http://www.owasp.org/
http://www.phpbuilder.com/columns/ying20000602.php3
http://www.cs.tut.fi/~jkorpela/http.html
http://www.sitepoint.com/article/280
http://www.acros.si/papers/session_fixation.pdf
http://www.sitepoint.com/article/319
http://www.sitepoint.com/article/758
http://www.sklar.com/page/article/owasp-top-ten
http://www.phpbuilder.com/columns/ying20000602.php3
http://www.owasp.org/

78

XML2
XML, or Extensible Markup Language, is becoming an everyday tool for solving

a whole range of Web-related issues, from exchanging data between sites with

RSS feeds1 or Web services, to new approaches for rendering Web pages, such

as Extensible Stylesheet Language Transformations (XSLT).

What it all boils down to, though, is that XML is simply a set of rules for creating

structured documents in plain text. The purpose of XML is to provide a platform-

and language-independent technology for exchanging data between systems. In

this chapter, we’ll examine some examples in which we’ll generate and read XML

with PHP. In the process, we’ll solve some of the common problems you’re likely

to encounter in modern Web development.

I’ll assume you have a basic understanding of XML. If you’re new to all this, I’d

recommend you read the article, Introduction to XML[1], and the others listed at

the end of this chapter, to gain the necessary background.

A Useful Tool

An excellent (and free) tool to help you work with XML is Mozilla’s DOM

Inspector. It’s bundled with the default Mozilla browser distribution, and

1RSS can stand for RDF Site Summary, Rich Site Summary, or Really Simple Syndication, depending

on who you ask.

[1] http://www.sitepoint.com/article/930

http://www.sitepoint.com/article/930
http://www.sitepoint.com/article/930

can be added to any Gecko-based browser (such as Firebird). A quick tutorial

on using the DOM Inspector is available online[2].

SAX, DOM and PHP
First, there’s some jargon you need to be clear about. There are two widely used

approaches to parsing XML documents: the Simple API for XML[3] (SAX) and

the Document Object Model[4] (DOM).

Essentially, the SAX approach is to read an XML document from top to bottom

and, as it encounters each element, to consult a list that’s been provided (by you,

the PHP developer) in order to decide what action to take. In a more general

sense, SAX looks at an XML document as a sequence of events, each event being

passed to an event handler for action; we’ll see how this works shortly.

In contrast, the DOM approach is to read the entire document into memory,

and provide an API by which a program (such as a PHP script) can access the

elements of the document.

For simple tasks, SAX is the preferred choice. The code involved tends to be

simpler, and, as it works with documents one element at a time, it can handle

very large documents. PHP’s SAX extension is built into PHP by default these

days, and is based on James Clark’s much respected Expat parser[5]; it provides

a solid tool for use in your PHP scripts. Ample details of PHP’s SAX functions

may be found in the PHP Manual[6].

DOM is better suited to complex tasks, as it provides mechanisms that help you

get straight to the parts of an XML document that you need. DOM also makes

it possible to generate XML, either by making changes to an existing document

that you’ve loaded, or by creating one from scratch. The downside of DOM is

that the amount of memory it consumes is directly proportional to the size of

the XML document, as it must keep a complete record of the document structure

and content in memory while you work on it. Also, PHP’s DOM extension has

historically been one of its weak points, suffering from memory leaks in older

PHP versions (pre-4.2), and is still only partially complete. The PHP Manual[7]

contains the ominous warning, “This extension is EXPERIMENTAL.” With PHP

[2] http://grayrest.com/moz/evangelism/tutorials/dominspectortutorial.shtml

[3] http://www.saxproject.org/

[4] http://www.w3.org/DOM/

[5] http://www.jclark.com/xml/

[6] http://www.php.net/xml

[7] http://www.php.net/domxml

Chapter 2: XML

80

http://grayrest.com/moz/evangelism/tutorials/dominspectortutorial.shtml
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.jclark.com/xml/
http://www.php.net/xml
http://www.php.net/domxml
http://grayrest.com/moz/evangelism/tutorials/dominspectortutorial.shtml
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.jclark.com/xml/
http://www.php.net/xml
http://www.php.net/domxml

4.3, the DOM extension has undergone substantial improvements, but be

warned—it complies only loosely with the official DOM specification and is

missing true support for some important XML features, such as namespaces[8]

and XML Schema[9]. With PHP 5, there are plans afoot to rework PHP’s XML

tools, and they’re being discussed in the PHP XML development newsgroup[10].

For now, the DOM extension is usable—but don’t expect miracles.

It’s also worth being aware that all the XML functionality provided by PHP’s

extensions could also be implemented using pure PHP. For example, the eZ xml

library[11] that comes with eZ publish 3[12] is a more complete implementation

of the DOM standard than that provided by the PHP 4.3 extension.

PEAR::XML_HTMLSax[13], meanwhile, provides a SAX API for parsing badly

formed XML (such as HTML). Search around and you’ll find other classes, such

as PHP.XPath[14], which is an implementation of the XPath specification[15] in

pure PHP.

XML and PHP Short Tags

When you’re dealing with XML—in particular, when you’re constructing

XML as PHP strings—it’s a good idea to have short_open_tag set to Off
in php.ini, or to use a .htaccess file with this command:

php_flag short_open_tag off

Otherwise, PHP will confuse XML processing instructions (e.g. <?xml …
?>) with short form PHP script tags (<? … ?>), which can result in all sorts

of parse errors. Of course, if you do this, you must ensure that all your PHP

scripts use full tags (<?php … ?>).

We’ll begin this chapter by understanding how we can parse documents with

SAX and DOM and generate XML with DOM. We’ll then look at using XSLT

with the Sablotron extension[16], and Web services in XML-RPC and SOAP.

Note that a further set of useful XML utilities for PHP can be found at

http://phpxmlclasses.sourceforge.net/.

[8] http://www.w3.org/TR/REC-xml-names/

[9] http://www.w3.org/XML/Schema

[10] http://news.php.net/group.php?group=php.xml.dev

[11] http://ez.no/developer/ez_publish_3/documentation/development/libraries/ez_xml/

[12] http://ez.no/products/ez_publish_3/

[13] http://pear.php.net/XML_HTMLSax

[14] http://www.carrubbers.org/scripts/php/xpath/

[15] http://www.w3.org/TR/xpath

[16] http://www.php.net/xslt

81

SAX, DOM and PHP

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/XML/Schema
http://news.php.net/group.php?group=php.xml.dev
http://ez.no/developer/ez_publish_3/documentation/development/libraries/ez_xml/
http://ez.no/developer/ez_publish_3/documentation/development/libraries/ez_xml/
http://ez.no/products/ez_publish_3/
http://pear.php.net/XML_HTMLSax
http://www.carrubbers.org/scripts/php/xpath/
http://www.w3.org/TR/xpath
http://www.php.net/xslt
http://phpxmlclasses.sourceforge.net/
http://phpxmlclasses.sourceforge.net/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/XML/Schema
http://news.php.net/group.php?group=php.xml.dev
http://ez.no/developer/ez_publish_3/documentation/development/libraries/ez_xml/
http://ez.no/products/ez_publish_3/
http://pear.php.net/XML_HTMLSax
http://www.carrubbers.org/scripts/php/xpath/
http://www.w3.org/TR/xpath
http://www.php.net/xslt

Installation Issues
PHP’s XML-related functionality relies on a number of third party, open source

libraries that must be available on your system in order for you to be able to use

the PHP XML extension.

The XML extension, which implements SAX, is distributed with PHP by default,

and to use it, all you should need to do is make sure the required third party

libraries are available (see below).

The DOM XML extension has undergone many changes of late, and I can only

recommend using it if you’re working with PHP 4.3 or later. Do not expect the

examples in this chapter to work 100% correctly on older versions. Support

among Web hosts is limited for the time being, as few are sufficiently up to date

to have installed the latest version of PHP on their servers and also to have

provided the DOM extension. However, if you do some research, you might find

someone who has it. This situation will likely have improved by the time you

read this, as hosting companies strive to catch up with the latest in PHP. Using

DOM on your own installations requires you explicitly to tell PHP to use the

extension in php.ini for Windows-based systems, or at compile time on Unix-

based systems.

The XSLT extension is, sadly, rarely installed by most shared Web hosting com-

panies; this is a shame, as there are a number of noteworthy PHP projects, such

as Popoon[18] and Krysalis[19], which rely on it. Setting it up requires you expli-

citly to tell PHP to use it in php.ini on Windows-based systems, or at compiled

time on a Unix-based system.

If you’re using a Unix-based system, such as Linux, setting up the XML extensions

will require compilation of the relevant third party libraries. In some cases, such

as Expat, they may already be compiled and available in your distribution. Be

sure to consult the PHP manual to find the relevant pages on XML[20], DOM

XML[21] and XSLT[22], which provide detailed instructions for setting them up

on Unix-based systems.

To set up the XML extensions on Windows, you’ll need to perform the following

steps:

[18] http://www.bitflux.ch/developer/cms/popoon.html

[19] http://www.interakt.ro/products/Krysalis/

[20] http://www.php.net/xml

[21] http://www.php.net/domxml

[22] http://www.php.net/xslt

Chapter 2: XML

82

http://www.bitflux.ch/developer/cms/popoon.html
http://www.interakt.ro/products/Krysalis/
http://www.php.net/xml
http://www.php.net/domxml
http://www.php.net/domxml
http://www.php.net/xslt
http://www.bitflux.ch/developer/cms/popoon.html
http://www.interakt.ro/products/Krysalis/
http://www.php.net/xml
http://www.php.net/domxml
http://www.php.net/xslt

1. In the directory on your system in which PHP is installed, you should find

a subdirectory called dlls. These files need to be available in your system’s

PATH environment variable, and are required for you to use PHP’s XML

related functionality. The best approach is to modify your system’s PATH

environment variable (from Control Panel > System > Advanced > Envir-

onment Variables), and add the full path to this directory. Once you’ve done

this, if your Web service is installed as a Windows service, you’ll need to

restart your system for it to be able to find the DLL files. The alternative

approach is to copy all the files in the dlls directory to your system32 dir-

ectory (e.g. c:\windows\system32). This approach can be a little messy when

it comes to upgrading PHP, though.

2. Access your php.ini file and ensure that the extension_dir is set to point

to the extensions subdirectory of your PHP installation. Alternatively, copy

the php_domxml.dll and php_xslt.dll files from that directory to the loc-

ation to which the extension_dir points.

3. Modify the line containing ;extension=php_domxml.dll and ;exten-
sion=php_xslt.dll under the [Windows Extensions] section. Remove the

semicolons to uncomment those lines.

4. Save the changes to php.ini, then restart your Web server.

About DOM
The first thing to realize is that the DOM XML extension is used a little differently

than most of the PHP functions, as it’s object oriented and bears a close resemb-

lance to the in-built PHP dir class you saw in Volume I, Chapter 4—albeit with

much more complexity.

What this means in practice is that, of the functions provided by this extension,

the ones that will actually be available to you will depend on the part of the XML

document with which you’re working.

As the DOM extension still has experimental status as of PHP 4.3, the document-

ation[23] in the PHP manual is minimal. So, be warned—you won’t find many

examples of how to use it in the manual right now. There are also some cases in

which the documentation is inaccurate, as it hasn’t caught up with the latest

state of the extension, so you’ll need to stay on your toes when you’re working

with DOM.

[23] http://www.php.net/domxml

83

About DOM

http://www.php.net/domxml
http://www.php.net/domxml
http://www.php.net/domxml

The point that’s important to grasp, which the documentation doesn’t make too

clear, is that the DOM extension is a collection of classes, much like classes you

might write yourself in PHP.

When you look at the documentation, you’ll find the “functions” in the extension

listed in the form DomNode->child_nodes. In this example, DomNode is a class

defined by the extension, and child_nodes is a method of this class. The classes

available with the DOM extension form a family; that is, they have a class inher-

itance structure, as shown by the UML class diagram in Figure 2.1.

The DomNode class is abstract; that is, you never instantiate it directly; rather,

you’ll always use a class that inherits from it. The methods available in DomNode
will also be available from those subclasses, in addition to any methods defined

by the subclass. So, if you have a DomElement object, you can call its

get_attribute method, as well as the has_attributes method it inherits from

DomNode.

When you first open an XML document for parsing with the DOM extension,

you’ll always begin with a DomDocument object. This has “factory” methods, such

as get_elements_by_tagname, which can be used to fetch instances of other

classes defined by the DOM extension, including DomElement.

That should give you a conceptual grasp of how the DOM extension works; the

examples in this chapter will put it into practice.

Chapter 2: XML

84

Figure 2.1. Rough Sketch of the PHP DOM Extension

How do I parse an RSS feed with PHP
and SAX?

RSS is a mechanism for publishing information about a site’s content, and is

most commonly used to broadcast latest news or fresh article headlines. It allows

you to place on your site an XML document that other sites can use to display

a summary of your content. Here, I’ll assume you know roughly what RSS is (see

the section called “Further Reading” at the end of this chapter if your knowledge

of the topic is shaky), and jump straight into the challenge of parsing the SitePoint

RSS feed[24]. Here’s an example of the SitePoint feed:

[24] http://www.sitepoint.com/rss.php

85

How do I parse an RSS feed with PHP and SAX?

http://www.sitepoint.com/rss.php
http://www.sitepoint.com/rss.php
http://www.sitepoint.com/rss.php

File: sitepointrss.php (excerpt)

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/">

 <channel rdf:about="http://www.sitepoint.com/rss.php">
 <title>SitePoint.com</title>
 <description>Master the Web!</description>
 <link>http://www.sitepoint.com/</link>

 <items>
 <rdf:Seq>
 <rdf:li
 rdf:resource="http://www.sitepoint.com/article/1040" />
 <rdf:li
 rdf:resource="http://www.sitepoint.com/article/1037" />
 </rdf:Seq>
 </items>
 </channel>

 <item rdf:about="http://www.sitepoint.com/article/1040">
 <title>Link Popularity - The 'Other' Business Benefits</title>
 <description>You thought link popularity was all about your
 Google PageRank? Think again! Ken explains the real benefits
 to be gained from a well-planned link strategy - and how to
 create one!</description>
 <link>http://www.sitepoint.com/article/1040</link>
 </item>
 <item rdf:about="http://www.sitepoint.com/article/1037">
 <title>Using The Tabular Data Control in Internet
 Explorer</title>
 <description>The Tabular Data Control is an ActiveX control
 that's built into Internet Explorer. Premshree explains
 what it does, and how to manipulate it in JavaScript.
 </description>
 <link>http://www.sitepoint.com/article/1037</link>
 </item>
</rdf:RDF>

I’ve reduced the number of items to save space, but the two item tags containing

the tags title, description and link are what we’re interested in. We want to

extract the contents of each item and turn it into an HTML table.

Chapter 2: XML

86

http://xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://xmlns="http://purl.org/rss/1.0/"
http://rdf:about="http://www.sitepoint.com/rss.php"
http://www.title>SitePoint.com</title
http://link>http://www.sitepoint.com/</link
http://rdf:resource="http://www.sitepoint.com/article/1040"
http://rdf:resource="http://www.sitepoint.com/article/1037"
http://rdf:about="http://www.sitepoint.com/article/1040"
http://link>http://www.sitepoint.com/article/1040</link
http://rdf:about="http://www.sitepoint.com/article/1037"
http://link>http://www.sitepoint.com/article/1037</link

The XML extension[25], which implements SAX, is usually the ideal choice in

cases in which you wish to process an unknown number of tags that have a pre-

dictable structure. What takes a little getting used to is the way it uses callback

functions to deal with the elements it encounters in the XML document. If

you’ve ever written any JavaScript, you probably already use callback functions

when you specify a JavaScript function to handle the response to an event, such

as the user clicking a link. Because of this, callback functions are often called

event handlers.

Since this is a tricky concept to master, we’ll start with a more familiar approach.

PHP’s xml_parse_into_struct function lets us avoid using callback functions

by placing the elements of an XML document into an array.

To begin with, we load the entire document into a string (Volume I, Chapter 4

for more details on file-related functions). Here, I’ve used the file function so

you can concentrate on the XML-related code, but be aware that it’s often a

better idea to use fsockopen so that you can deal with unusual error scenarios,

such as the site being down or the document having been moved. I provided an

example of this in Volume I, Chapter 4.

File: 1.php (excerpt)

<?php
// Fetch the entire document
$rssDoc = file('http://www.sitepoint.com/rss.php');
$rssDoc = implode('', $rssDoc);

Next, I use the xml_parser_create function to fire up the SAX parser and tell

it to use UTF-8 character encoding, which the first line of the RSS feed indicates

is required. Other supported encodings include ISO-8859-1 (the default) and

US-ASCII.

File: 1.php (excerpt)

// Start the xml parser tell it the character encoding
$sax = xml_parser_create('UTF-8');

The xml_parser_set_option function is used to instruct the parser not to convert

all element and attribute names to uppercase, which is the default behavior. Note

that this line is included mainly for the sake of example. When we parse XML

documents provided by third parties like this, it’s often a good idea to have all

tags converted to upper case. If one site owner writes the RSS feed in lower case,

another in upper case, and a third with a mixture of upper and lower case, you’ll

[25] http://www.php.net/xml

87

How do I parse an RSS feed with PHP and SAX?

http://www.php.net/xml
http://file('http://www.sitepoint.com/rss.php');
http://www.php.net/xml

have a hard time dealing with each unless you’ve converted them all to upper

case.

File: 1.php (excerpt)

// Perserve the orginal case of the XML document
xml_parser_set_option($sax, XML_OPTION_CASE_FOLDING, false);

Next, xml_parse_into_struct reads the XML document stored in $rssDoc and

stores it in $rssData as an array:

File: 1.php (excerpt)

// Read the XML document and drop it into the array $rssData
xml_parse_into_struct($sax, $rssDoc, $rssData);

Note that by loading the entire document into an array at once, we lose the in-

herent benefit of SAX—its ability to deal with an XML document one element

at a time. In this case, the document is fairly small, so it’s not a problem, but

before we’re done, we’ll see how to take full advantage of SAX.

The xml_parser_free function clears up the memory used by the parser. Though

the script will be cleared up when it terminates, it’s a good idea to do this imme-

diately in large applications where a lot of code will be executed and available

memory may be at a premium.

File: 1.php (excerpt)

// Free up the memory used by the parser
xml_parser_free($sax);

Finally, with the document stored in an array, we can use a foreach loop to dis-

play the elements we’re after:

File: 1.php (excerpt)

// Start displaying a table
echo "<table width=\"400\" border=\"1\">\n";

// Loop through the array
foreach ($rssData as $element) {

 // If this element contains a value
 if (isset($element['value'])) {

 // Watch for particular tags and display the correct HTML
 switch ($element['tag']) {
 case 'title':

Chapter 2: XML

88

 echo "<tr>\n<td>" . $element['value'] . "
";
 break;
 case 'description':
 echo $element['value'] . '
';
 break;
 case 'link':
 echo "" .
 $element['value'] . "</td>\n</tr>\n";
 break;
 }
 }
}
echo "</table>\n";
?>

Viewing this script with a browser, we see SitePoint’s RSS displayed in a simple

table, as shown in Figure 2.2.

Figure 2.2. XML as an Array

Although it’s possible to handle XML documents in this manner competently,

this example definitely rates as a hack. Notice the switch statement, which is

geared to expect the elements in the RSS feed to appear in a particular order,

such as:

89

How do I parse an RSS feed with PHP and SAX?

<item rdf:about="http://www.sitepoint.com/article/1037">
 <title>Using The Tabular Data Control in Internet
 Explorer</title>
 <description>The Tabular Data Control is an ActiveX control
 that's built into Internet Explorer. Premshree explains
 what it does, and how to manipulate it in JavaScript.
 </description>
 <link>http://www.sitepoint.com/article/1037</link>
</item>

If, for whatever reason, the order of the title, description, and link tags was

to change, our neat table would become a disaster.

In general, it’s a lot easier to use the method of callback functions, which allows

your code to respond to tags as they appear, instead of proactively seeking them

out in an array as we’ve just seen.

When parsing a document with SAX, the common strategy that’s used when you

only need certain parts of the document, is to devise a filter that will catch the

elements you’re looking for. Let me walk you through an example that demon-

strates this.

The following are variables we’ll need to access globally. The $newItem variable

will be used like a switch; the code will turn it “on” every time it enters an item
element and switch it “off” when it leaves. By consulting this variable, the code

will know when it should take action, and will catch the contents of the title ,

description, and link tags.

File: 2.php (excerpt)

<?php
// Variables which will need to be accessed "globally"

$newItem = FALSE; // A "marker" for when we're inside an item
$element = ''; // Stores the name of the current element
$title = ''; // Holds the contents of a title element
$description = ''; // Holds the contents of a description element
$link = ''; // Holds the contents of a link element
$table = "<table width=\"400\">\n"; // Stores HTML table

With those variables in place, we proceed to define our callback functions.

The open function will respond to opening tags found by the parser. The argu-

ments $sax, $element, and $attributes are passed by the parser itself, when it

Chapter 2: XML

90

http://rdf:about="http://www.sitepoint.com/article/1037"
http://link>http://www.sitepoint.com/article/1037</link

calls this function. They contain a reference to the parser, the name of the element

(the tag), and an array of the tag’s attributes, respectively.

This function first checks to see whether the parser is inside an item element. If

so, it stores the element’s name (which will be either TITLE, DESCRIPTION, or

LINK) in the global $element variable. If it’s not inside an item element, but has

just encountered an opening item tag, it switches on the $newItem marker.

File: 2.php (excerpt)

// Responds to opening tags
function open($sax, $element, $attributes)
{

 // If we're inside an <item /> tag
 if ($GLOBALS['newItem'] == true) {

 // ...store the name of the element
 $GLOBALS['element'] = $element;

 // If it's a new <item /> tag
 } else if ($element == 'ITEM') {

 // Switch on the newItem marker
 $GLOBALS['newItem'] = TRUE;
 }
}

Note that I’ve used the $GLOBALS array to access the variables I declared outside

the function. Also, the tag names that appear in the $element argument will be

in uppercase letters (e.g. ITEM), as we allow the parser to perform its default

conversion to uppercase, discussed previously.

The data function collects the contents of the title, description, and link
tags, storing them in global variables until the close function is called to deal

with them.

File: 2.php (excerpt)

// Responds to the character data inside an element
function data($sax, $data)
{
 // If we're inside an <item /> tag...
 if ($GLOBALS['newItem'] == true) {

 // ... store the data for the elements in this list...
 switch ($GLOBALS['element']) {

91

How do I parse an RSS feed with PHP and SAX?

 case 'TITLE':
 $GLOBALS['title'] .= $data;
 break;
 case 'DESCRIPTION':
 $GLOBALS['description'] .= $data;
 break;
 case 'LINK':
 $GLOBALS['link'] .= $data;
 break;
 }
 }
}

The close function, which is called whenever the parser encounters a closing

tag, builds the HTML for the table. It looks for the closing item tag, gathers all

the data from the $title, $description, and $link global variables, and uses

them to add another row to the table.

File: 2.php (excerpt)

// Responds to closing tags
function close($sax, $element)
{
 // If it's the closing tag of an <item> element...
 if ($element == 'ITEM') {

 // ... add the contents of <title> etc. to the table
 $GLOBALS['table'] .= "<tr>\n<td><a href=\"" .
 $GLOBALS['link'] . "\">" . $GLOBALS['title'] .
 "
\n" . $GLOBALS['description'] .
 "</td>\n</tr>";

 // Rest the contents variables
 $GLOBALS['title'] = '';
 $GLOBALS['description'] = '';
 $GLOBALS['link'] = '';

 // Switch off the newItem marker
 $GLOBALS['newItem'] = FALSE;
 }
}

Once this is done, it resets the $title, $description, and $link variables to

prepare them for new data, and switches off the $newItem marker.

Chapter 2: XML

92

With all the callback functions in place, we start up the parser as before, and use

the xml_set_element_handler and xml_set_character_data_handler functions

to register the callback functions. In other words, we tell the parser to call open
when it encounters an opening tag, close for a closing tag, and data for character

data.

File: 2.php (excerpt)

// Create the XML parser
$sax = xml_parser_create('UTF-8');

// Register the open and close callback functions
xml_set_element_handler($sax, 'open', 'close');

// Register the character data callback function
xml_set_character_data_handler($sax, 'data');

Note that other xml_set… functions exist for handling things like XML processing

instructions and external entity references, but in the vast majority of cases the

two functions provided here are all you’ll need.

Now, we’ll fetch the SitePoint RSS feed from the Website and loop through the

file in chunks, parsing each chunk as we go. This means the parser will begin

work before it’s finished receiving the complete document! This is great for per-

formance, and means the complete XML document never has to be stored in

PHP’s memory.

File: 2.php (excerpt)

// Open a connection to SitePoint
$fp = fopen('http://www.sitepoint.com/rss.php', 'r');

// Loop until the end of the file
while (!feof($fp)) {
 // Fetch a chunk of data
 $data = fgets($fp);

 // Parse it
 xml_parse($sax, $data);
}

// Now free up the parser
xml_parser_free($sax);

// Finish off the table
$table .= "</table>\n";
?>

93

How do I parse an RSS feed with PHP and SAX?

http://fopen('http://www.sitepoint.com/rss.php',

As before, we then free up the parser and finish off building the table. Finally,

we’ll add a splash of HTML with which to display the table:

File: 2.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> SitePoint News </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
table {
 background-color: silver;
}
td {
 background-color: white;
 font-family: verdana;
 font-size: 11px;
}
a {
 font-weight: bold;
}
</style>
</head>
<body>
<?php echo $table; ?>
</body>
</html>

Figure 2.3 shows the SitePoint feed displayed in glorious HTML on my local

Web server.

Chapter 2: XML

94

http://www.w3.org/1999/xhtml"
http://xmlns="http://www.w3.org/1999/xhtml"

Figure 2.3. PHP and SAX Present: The SitePoint RSS Feed

Now, there are a few things I don’t like about the code so far. First of all, it relies

on global variables, which in any other than very small PHP applications is a recipe

for disaster. Later, I may forget what I’ve done here, and write other code that

uses the same variable names, which will perhaps cause the RSS feed parsing to

scramble. This solution is also tied to a particular HTML table layout; if I want

a different layout later, I’ll have to modify the gritty parts of this code. And, of

course it’s not a class! No, I’m not happy…

I think you know what I’m hinting at: a SaxRssParser class. It’s very simple to

use, as it has only three public methods to worry about. We’ll look at it in detail

so you understand how it was built.

First, we define all the member variables of the class, which, as you can see, cor-

respond to the global variables we used in the previous procedural example. Note

that this time, we don’t have a variable in which to store an HTML table. Instead,

we have the variable $items, which will be used to store a data structure that

can be later used to generate an HTML table, if that is the desired outcome.

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

<?php
/**
 * SaxRssParser Class
 * Parses an RSS feed with SAX
 * @access public
 * @package SPLIB
 */

95

How do I parse an RSS feed with PHP and SAX?

class SaxRssParser {
 /**
 * Instance of the PHP SAX XML parser
 * @access private
 * @var resource
 */
 var $sax;

 /**
 * The marker for item tags
 * @access private
 * @var boolean
 */
 var $newItem;

 /**
 * Stores the name of the current element either
 * title, description or link
 * @access private
 * @var string
 */
 var $element;

 /**
 * Stores the contents of <title />
 * @access private
 * @var string
 */
 var $title;

 /**
 * Stores the contents of <description />
 * @access private
 * @var string
 */
 var $description;

 /**
 * Stores the contents of <link />
 * @access private
 * @var string
 */
 var $link;

 /**
 * An array of items stored as stdClass objects

Chapter 2: XML

96

 * @access private
 * @var array
 */
 var $items;

In the constructor, we set the variables to their starting values, then create the

parser and store it in its member variable. The next function called is

xml_set_object, which allows us to specify an object reference where the parser

can find the callback functions it will need. We’ve used the object’s self-referencing

variable, $this, to tell the parser that the methods it needs are inside this very

object. The open, close, and data callbacks are registered as before, but using

the member variable where the SAX parser is stored.

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

 /**
 * SaxRssParser constructor
 * @access public
 */
 function SaxRssParser()
 {
 $this->newItem = false;
 $this->element = '';
 $this->title = '';
 $this->description = '';
 $this->link = '';
 $this->items = array();
 $this->sax = xml_parser_create();
 xml_set_object($this->sax, $this);
 xml_set_element_handler($this->sax, 'open', 'close');
 xml_set_character_data_handler($this->sax, 'data');
 }

The parse method is what we’ll use in client code to parse chunks of an XML

document. I discussed the trigger_error function used here in Volume I,

Chapter 10.

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

 /**
 * Parses a chunk of XML document
 * @param string a chunk of XML
 * @return boolean
 * @access public
 */
 function parse($data)
 {

97

How do I parse an RSS feed with PHP and SAX?

 if (!xml_parse($this->sax, $data)) {
 $error = xml_error_string(xml_get_error_code($this->sax));
 $line = xml_get_current_line_number($this->sax);
 trigger_error('XML error ' . $error . ' at line ' .$line);
 return FALSE;
 } else {
 return TRUE;
 }
 }

The destroy method allows us to clear up the memory used by the parser.

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

 /**
 * Destroys the parser
 * @return void
 * @access public
 */
 function destroy()
 {
 xml_parser_free($this->sax);
 }

The fetch method is used to iterate over the contents of the member array,

$items. In brief, successive calls to the fetch method will return the items re-

trieved from the RSS feed. See Chapter 7 for more about iterators.

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

 /**
 * Iterator for RSS Items, returning prepared items as
 * stdClasses
 * Returns an instance of stdClass containing the parameters
 * title, description and link or false if at end of collection
 * @return mixed
 * @access public
 */
 function fetch()
 {
 $item = each($this->items);
 if ($item) {
 return $item['value'];
 } else {
 reset($this->items);
 return FALSE;
 }
 }

Chapter 2: XML

98

Last come the handler functions, which are more or less the same as you’ve seen

before, now repurposed as methods:

File: XML/SaxRssParser.php (in SPLIB) (excerpt)

 /**
 * Handles opening tags
 * @param resource instance of PHP SAX XML
 * @param string element name
 * @param array element attributes
 * @return void
 * @access private
 */
 function open($sax, $element, $attributes)
 {
 if ($this->newItem) {
 $this->element = $element;
 } else if ($element == 'ITEM') {
 $this->newItem = TRUE;
 }
 }

 /**
 * Handles character data
 * @param resource instance of PHP SAX XML
 * @param string element name
 * @return void
 * @access private
 */
 function data($sax, $data)
 {
 if ($this->newItem) {
 switch ($this->element) {
 case 'TITLE':
 $this->title .= $data;
 break;
 case 'DESCRIPTION':
 $this->description .= $data;
 break;
 case 'LINK':
 $this->link .= $data;
 break;
 }
 }
 }

 /**

99

How do I parse an RSS feed with PHP and SAX?

 * Handles closing tags
 * @param resource instance of PHP SAX XML
 * @param string element name
 * @return void
 * @access private
 */
 function close($sax, $element)
 {
 if ($element == 'ITEM') {
 $item = new stdClass;
 $item->title = $this->title;
 $item->link = $this->link;
 $item->description = $this->description;
 $this->items[] = $item;

 $this->title = '';
 $this->description = '';
 $this->link = '';
 $this->newItem = false;
 }
 }
}

The close method has a bit of a twist. Instead of dropping a chunk of HTML

code into a global variable, it creates a new object to represent each item as it is

processed. The built-in class stdClass is used to create an object with no proper-

ties or methods; then, the title, link, and description properties are added.2

The objects are then dropped into an array for later retrieval with the fetch
method.

With the class in place, let’s use it:

File: 3.php

<?php
// Include the SaxRssParser
require_once 'XML/SaxRssParser.php';

// Instantiate it
$parser = new SaxRssParser();

// Open a connection to SitePoint

2This is something of a cheat in strictly object oriented circles, where adding properties to an object

on the fly is considered somewhat uncouth. Ideally, you would write a separate, RSSItem class with

the necessary properties, which you would use here. For this example, however, I have elected to take

advantage of PHP’s flexibility, saving you from reading yet another class definition!

Chapter 2: XML

100

$fp = fopen('http://www.sitepoint.com/rss.php', 'r');

// Loop until the end of the file
while (!feof($fp)) {
 // Fetch a chunk of data
 $data = fgets($fp);

 // Parse the date with the SaxRssParser object
 $parser->parse($data);
}

// Start building a table
$table = "<table width=\"400\">\n"; // Stores HTML table

// Loop through the items
while ($item = $parser->fetch()) {
 $table .= "<tr>\n<td>";
 $table .= "link . "\">" . $item->title .
 "
\n";
 $table .= $item->description . "\n";
 $table .= "</td>\n</tr>\n";
}

// Finish off the table
$table .= "</table>\n";
?>

In the above code, we still read through the SitePoint feed in chunks, parsing

each one as we go. Once the process is finished, we can use the fetch method

to loop, and again build the table. As you saw, fetch returns an object containing

the item data in three properties, which can be accessed as demonstrated here.

Thanks to the class, this code is much simpler. All the dirty work of juggling XML

elements has been delegated to the class; we’re also able to render whatever

HTML we like, without having to modify the class again.

One thing to be aware of as you use the SaxRssParser class is that you can use

the xml_set_object function as many times as you like with a single instance

of the parser. This means you could pass to the class other objects that would

act as filters for different elements—something you’ll likely need to do for more

complex XML documents. Alternatively, you might consider PEAR::XML_SaxFil-

101

How do I parse an RSS feed with PHP and SAX?

http://pear.php.net/XML_SaxFilters
http://fopen('http://www.sitepoint.com/rss.php',

ters[26], which is based on Luis Argerich’s Sax Filters[27] class library, and provides

a framework for filtering an XML document.

How do I parse an RSS feed with PHP
and DOM?

Now that you’ve seen how to parse an RSS feed using the SAX processor, how

about using the DOM to perform the same task? Although you may be happy

to stick with SAX, being able to compare the two will help you understand which

represents the better choice for different problems. As with SAX, let’s start by

using PHP’s DOM XML extension in a procedural fashion.

First, let’s switch off error notices so we can perform a check on the elements of

the document later (more on that in a moment).

File: 4.php (excerpt)

<?php
// Switch off error notices
error_reporting(E_ALL ^ E_NOTICE);

Next, we create a DOMDocument object by fetching the SitePoint RSS feed, using

the domxml_open_file function. Two alternative functions are available:

domxml_open_mem, which can be used to read an XML document stored in a PHP

variable, and domxml_new_doc, which can be used to create a blank XML docu-

ment that you can add content to.

File: 4.php (excerpt)

// Instantiate an instance of DOM from file
$dom = domxml_open_file('http://www.sitepoint.com/rss.php');

On the next line, we use the DOMDocument API to fetch the root element (the

outermost tag) of the document with the document_element method. Note that

document_element returns an instance of DOMElement.

File: 4.php (excerpt)

// Get the root RDF element
$rdf = $dom->document_element();

[26] http://pear.php.net/XML_SaxFilters

[27] http://phpxmlclasses.sourceforge.net/show_doc.php?class=class_sax_filters.html

Chapter 2: XML

102

http://pear.php.net/XML_SaxFilters
http://phpxmlclasses.sourceforge.net/show_doc.php?class=class_sax_filters.html
http://domxml_open_file('http://www.sitepoint.com/rss.php');
http://pear.php.net/XML_SaxFilters
http://phpxmlclasses.sourceforge.net/show_doc.php?class=class_sax_filters.html

Now that we’ve got the root node of the document, we can begin to fetch what

we need from it, using get_elements_by_tagname to return an array of

DomElement objects representing the item tags within the document.

File: 4.php (excerpt)

// Fetch all the <item> elements from the document
$items = $rdf->get_elements_by_tagname('item');

We first use the child_nodes method to loop through the items we’ve collected,

and again to find the title, description and link elements for each item.

File: 4.php (excerpt)

// Start displaying a table
echo "<table width=\"450\" border=\"1\">\n";

// Loop through each item
foreach ($items as $item) {

 // Get the children of each item
 $itemNodes = $item->child_nodes();

 // Loop through the children
 foreach ($itemNodes as $itemNode) {

 // Get the contents of each child
 $itemContents = $itemNode->child_nodes();

Finally, we fetch the children of each item’s child, then check the tagname
property of each to see whether it’s one we’re interested in. If we find a child we

want, we loop again through its respective children, using the node_type method,

to find the XML_TEXT_NODE that contains the text we’re interested in.

File: 4.php (excerpt)

 // Deal with the specific elements we want
 switch (strtoupper($itemNode->tagname)) {

 case 'TITLE':
 // Loop through the contents to find the text node
 foreach ($itemContents as $itemContent) {
 // If it's a text node, display the HTML
 if ($itemContent->node_type() == XML_TEXT_NODE) {
 echo "<tr>\n<td>" . $itemContent->content .
 "
\n";
 }
 }

103

How do I parse an RSS feed with PHP and DOM?

 break;

 case 'DESCRIPTION':
 foreach ($itemContents as $itemContent) {
 if ($itemContent->node_type() == XML_TEXT_NODE) {
 echo $itemContent->content . "
\n";
 }
 }
 break;

 case 'LINK':
 foreach ($itemContents as $itemContent) {
 if ($itemContent->node_type() == XML_TEXT_NODE) {
 echo "content . "\">" .
 $itemContent->content . "
\n";
 }
 }
 break;

 }
 }
}
echo "</table>\n";
?>

This again displays a simple table containing the RSS data from SitePoint’s feed.

Notice that, unlike the SAX example, there was no need to make use of variables

to keep track of our current location in the XML document. DOM objects keep

track of where they are in the overall structure of the document; as a result, there

are methods like parent_node and child_nodes, which can be used to locate

the element(s) you need.

Using a procedural approach, it’s fairly easy to get what we want from an XML

document. However, as you can see above, it requires loops within loops within

loops, which, aside from creating ugly looking code, will prove difficult to maintain

in future should we wish to make use of other elements in the document, or

change the HTML we’re building.

A more common approach with DOM is to use functions that call each other,

which makes it easier to break the problem into manageable steps.

This time, we’ll build a data structure for storing the information we gather from

the RSS feed, then we’ll loop through the data structure and wrap it in HTML.

The $rssItem variable will be used as temporary storage for the contents of an

Chapter 2: XML

104

item tag; we initialize it with an empty stdClass object. As we finish processing

each item, we’ll move that item’s data into the $rssItems array.

File: 5.php (excerpt)

<?php
// Set up global variables
$rssItem = new stdClass; // Temporary variable stores contents of
 // <item>
$rssItems = array(); // Stores a list of <item> objects

The rdf function is the first function we’ll call, passing it an instance of the DOM

Document class from which it will get the root element. It then calls the items
function, passing it the root element. This triggers further function calls like

dominoes, which will extract all the data we want when they’re finished.

File: 5.php (excerpt)

// Get the root RDF element
function rdf($dom)
{
 $rdf = $dom->document_element();

 // Call Items() to fetch all <item> tags
 items($rdf);
}

Next up, the items function fetches all the item tags from the document using

the DOM get_elements_by_tagname method, which returns an array of the

named elements. Then, we call the item function to process the individual item
tags.

File: 5.php (excerpt)

// Gets all the <item> tags
function items($rdf)
{
 // Fetch all the <item /> elements from the document
 $items = $rdf->get_elements_by_tagname('item');
 item($items);
}

Inside the item function, we loop through the array of items. For each item, we

call the itemNode function, passing it an array containing all the child nodes of

that item tag. As we’ll see shortly, this stores the contents of the item as properties

of the $rssItem object. We then add the $rssItem object to the array $rssItems,

and reset $rssItem to an empty stdClass.

105

How do I parse an RSS feed with PHP and DOM?

File: 5.php (excerpt)

// Populates $rssItems with single <item>s
function item($items)
{
 global $rssItem, $rssItems;
 // Loop through each item
 foreach ($items as $item) {
 // Get the children of each item
 $itemNodes = $item->child_nodes();
 itemNode($itemNodes);
 $rssItems[] = $rssItem;
 $rssItem = new stdClass;
 }
}

The itemNode function loops through all the child nodes of an item, fetching

the children of each in turn. It then calls the itemContent function, which finds

the text nodes that contain the data we’re interested in.

File: 5.php (excerpt)

// Fetches the contents within at <item />
function itemNode($itemNodes)
{
 // Loop through the children
 foreach ($itemNodes as $itemNode) {
 // Get the contents of each child
 $itemContents=$itemNode->child_nodes();
 itemContent($itemNode,$itemContents);
 }
}

itemContent searches for the text nodes and, upon finding them, calls the

storeData function:

File: 5.php (excerpt)

// Collects the text nodes from within the content
function itemContent($itemNode, $itemContents)
{
 foreach ($itemContents as $itemContent) {
 // If it's a text node, display the HTML
 if ($itemContent->node_type() == XML_TEXT_NODE) {
 $itemData = $itemContent->content;
 storeData($itemNode, $itemData);
 }

Chapter 2: XML

106

 }
}

The storeData function is where the $rssItem variable is populated with the

contents of the named text node:

File: 5.php (excerpt)

// Stores the text node in the current $rssItem global variable
function storeData($itemNode, $itemData)
{
 global $rssItem;
 // Deal with the specific elements we want
 switch (strtoupper($itemNode->tagname)) {
 case 'TITLE':
 $rssItem->title = $itemData;
 break;
 case 'DESCRIPTION':
 $rssItem->description = $itemData;
 break;
 case 'LINK':
 $rssItem->link = $itemData;
 break;
 }
}

What we’ve done here is break the previous example into more manageable pieces,

and store the results as an array of objects, instead of directly generating HTML.

Here’s a script that makes use of these functions:

File: 5.php (excerpt)

// Fetch the entire document
$rssDoc = file('http://www.sitepoint.com/rss.php');
$rssDoc = implode('', $rssDoc);

// Instantiate an instance of DOM from file
$dom = domxml_open_mem($rssDoc);

// Call the Rdf function to start parsing
rdf($dom);

// Build a table out of the $rssItems array
$table = "<table width=\"450\">\n";
foreach ($rssItems as $rssItem) {
 $table .= "<tr>\n<td>link . "\">" .
 $rssItem->title . "
\n";

107

How do I parse an RSS feed with PHP and DOM?

http://file('http://www.sitepoint.com/rss.php');

 $table .= $rssItem->description . "</td>\n</tr>\n";
}
$table .= "</table>\n";

echo $table;
?>

Now that we’ve separated the HTML from the data we’re interested in, we can

display the data using whatever HTML we like.

Of course, I’m still not satisfied! We’re using a collection of functions and global

variables that could easily cause trouble on a more complex site. Let’s move the

lot into a class, DomRssParser, which more or less represents the same code with

a simple API that makes it easy to use. Let’s begin with the constructor:

File: XML/DomRssParser.php (in SPLIB) (excerpt)

 /**
 * DomRssParser constructor
 * @access public
 * @param string the RSS document
 */
 function DomRssParser($rssDoc)
 {
 $dom = domxml_open_mem($rssDoc);
 $this->rssItem = new stdClass;
 $this->rssItems = array();
 $this->Rdf($dom);
 }

The constructor takes the RSS document as a string (so it’s still your job to fetch

the document in the first place).

The only other code that differs significantly from the previous example is the

fetch method, which iterates over the parsed item elements of the RSS feed:

File: XML/DomRssParser.php (in SPLIB) (excerpt)

 /**
 * Iterator for RSS Items, returning prepared items as
 * stdClasses
 * Returns an instance of stdClass containing the parameters
 * title, description and link or false if at end of collection
 * @return mixed
 * @access public
 */
 function fetch()

Chapter 2: XML

108

 {
 $item = each($this->rssItems);
 if ($item) {
 return $item['value'];
 } else {
 reset($this->rssItems);
 return FALSE;
 }
 }

Using the class is very simple:

File: 6.php (excerpt)

<?php
// Include the DomRssParser class
require_once 'XML/DomRssParser.php';

// Fetch the entire document
$rssDoc = file('http://www.sitepoint.com/rss.php');
$rssDoc = implode('', $rssDoc);

// Instantiate the parser
$parser = new DomRssParser($rssDoc);

// Build a table out of the $rssItems array
$table = "<table width=\"450\">\n";

// Loop through the items building the HTML
while ($item = $parser->fetch()) {
 $table .= "<tr>\n<td>link . "\">" .
 $item->title . "
\n";
 $table .= $item->description . "</td>\n</tr>\n";
}

// Finish the table
$table .= "</table>\n";
?>

Now, all we need to do is drop the table into a simple HTML page:

File: 6.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> SitePoint News </title>

109

How do I parse an RSS feed with PHP and DOM?

http://file('http://www.sitepoint.com/rss.php');
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
table {
 background-color: silver;
}
td {
 background-color: white;
 font-family: verdana;
 font-size: 11px;
}
a {
 font-weight: bold;
}
</style>
</head>
<body>
<?php echo $table; ?>
</body>
</html>

The result is a page that looks exactly the same as the one we built with the

SaxRssParser class. See for yourself in Figure 2.4!

Figure 2.4. Sponsored by DOM

This demonstrates that SAX and DOM can be used to achieve the same end

result. As a loose comparison, the SaxRssParser class turned out to require more

member variables, which were used as temporary stores for content from the

Chapter 2: XML

110

document, but it only needed three methods (open, close, and data) to handle

the XML. The DomRssParser class, meanwhile, uses more methods to sort through

the XML structure (the alternative being deeply nested control structures). This

is typical of DOM code.

Well, the theory seems fine, but what about its practical application? Which

solution is better from the perspective of actually using the classes? If you compare

examples three and six, you’ll notice the code is more or less the same; you could

replace one with the other, without having to alter the code radically. The

SaxParser code requires the client code to fetch the document in chunks using

a loop, so there’s a little more work to do there, but the functionality could easily

be encapsulated in a subclass. This approach guarantees that even if we’re dealing

with a massive feed, PHP won’t run out of memory.

How do I generate an RSS document
with PHP and DOM?

XML documents can easily be generated in much the same way as HTML docu-

ments; it’s simply a matter of writing strings:

File: 7.php

<?php
$date = date('h:ia l jS M Y');
$xml=<<<EOD
<?xml version="1.0"?>
<example>
<date>$date</date>
</example>
EOD;
echo $xml;
?>

Viewed in an XML-aware browser like Internet Explorer or Mozilla, this code

displays a pleasantly rendered XML document, as shown in Figure 2.5.

Figure 2.5. XML Time

111

How do I generate an RSS document with PHP and DOM?

But some applications of XML can make this simple, top-to-bottom approach to

writing documents impractical.

For example, you might need to add elements or set attributes near the top of a

document after you generate all the tags that follow. Additionally, writing XML

requires you to replace correctly special characters such as &, <, and >, as well as

non-English characters such as Ü, with the appropriate character entities. Attempt-

ing to achieve these feats simply by manipulating PHP strings is a fast track to

hair loss.

The DOM XML extension allows you to add, remove, and modify elements

throughout a document in any order, and will take care of all the character escap-

ing for you. For example, constructing an RSS feed, most of which is rendered

straight from database content that’s likely to contain more than a few special

characters, will be a lot easier if you use the DOM rather than render the XML

yourself.

The following example shows the above XML document built using the DOM:

File: 8.php

<?php
// Instantiate new XML document
$dom = domxml_new_doc('1.0');

// Create the root <example> element
$example = $dom->create_element('example');

// Create the date element
$date = $dom->create_element('date');

// Create a text node to place the date in
$dateText = $dom->create_text_node(date('h:ia l jS M Y'));

// Append the date text node to the <date> element
$date->append_child($dateText);

// Append the <date> element to the <example> element
$example->append_child($date);

// Append the root element to the document
$dom->append_child($example);

// Send the XML MIME type
header('Content-Type: text/xml');

Chapter 2: XML

112

// Display the XML
echo $dom->dump_mem();
?>

The node creation methods available with the DOM XML extension are all ac-

cessible via the DOMDocument class, which is why the above code contains state-

ments like this:

// Create a text node to place the date in
$dateText = $dom->create_text_node(date('h:ia l jS M Y'));

// Append the date text node to the <date> element
$date->append_child($dateText);

Notice that the $dom variable is used to create the $dateText node. Yet, to actually

add the text, the append_child method is called via the $date variable, which

is an instance of DOMElement.

With PHP 4.3, the following methods are available to create XML nodes:

DomDocument->create_attribute
create new attribute

DomDocument->create_cdata_section
create new character data (cdata) node

DomDocument->create_comment
create new comment node

DomDocument->create_element_ns
create new element node with an associated namespace

DomDocument->create_element
create new element node

DomDocument->create_entity_reference
create new entity reference

DomDocument->create_processing_instruction
create new processing instruction node

DomDocument->create_text_node
create new text node

113

How do I generate an RSS document with PHP and DOM?

Further details on these and all other DOM XML methods may be found in the

PHP Manual[28].

RSS Generated
DOM makes a very good choice for generating your own RSS feed, as it deals

with XML character entities so well. Using the DOM features, I’ve built a class

called RssGenerator which complies to the RSS 1.0 specification[29], although

it does not implement the entire spec. Here, we’ll concentrate on the public

methods for this class, then see how we can use it to create a feed. The complete

code is provided in the RssGenerator.php class code; it should help as useful

reference material for the generation of other XML documents.

The constructor sets up the DOMDocument object, then calls a private method to

create the root node for the document:

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * RssGenerator constructor
 * @access public
 */
 function RssGenerator()
 {
 $this->dom = domxml_new_doc('1.0');
 $this->initialize();
 }

As it doesn’t require any parameters, instantiating the RssGenerator can be

achieved simply, as follows:

$rssGen = new RssGenerator;

The next public method adds the RSS channel information. We provide it with

the name of our site, its URL, a description of the site, and another URL contain-

ing more information about the site:

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * Add the basic channel information
 * @param string title of the channel e.g. "SitePoint"
 * @param string mail URL of channel

[28] http://www.php.net/domxml

[29] http://purl.org/rss/1.0/

Chapter 2: XML

114

http://www.php.net/domxml
http://www.php.net/domxml
http://purl.org/rss/1.0/
http://www.php.net/domxml
http://purl.org/rss/1.0/

 * e.g. "http://www.sitepoint.com/"
 * @param string description of channel
 * @param string about URL
 * e.g. "http://www.sitepoint.com/about/"
 * @return void
 * @access public
 */
 function addChannel($title, $link, $desc, $aboutUrl)
 {
 $this->channel->set_attribute('rdf:about', $aboutUrl);

 $titleNode = $this->dom->create_element('title');
 $titleNodeText = $this->dom->create_text_node($title);
 $titleNode->append_child($titleNodeText);
 $this->channel->append_child($titleNode);

 $linkNode = $this->dom->create_element('link');
 $linkNodeText = $this->dom->create_text_node($link);
 $linkNode->append_child($linkNodeText);
 $this->channel->append_child($linkNode);

 $descNode = $this->dom->create_element('description');
 $descNodeText = $this->dom->create_text_node($desc);
 $descNode->append_child($descNodeText);
 $this->channel->append_child($descNode);
 }

The addImage method provides a means to inform those who use our feed where

they can find the site’s logo. We provide the source URL of the image, some al-

ternative text to display instead of the image, and a link to which people who

click on the image will be sent.

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * Adds the channel logo description to the feed
 * @param string src URL of the image
 * @param string alternative text to display for image
 * @param string link for image e.g. http://www.sitepoint.com/
 * @return void
 * @access public
 */
 function addImage($src, $alt, $link)
 {
 $this->addChannelImage($src);

 $this->image = $this->dom->create_element('image');

115

RSS Generated

http://www.sitepoint.com/"
http://www.sitepoint.com/about/"
http://www.sitepoint.com/

 $this->image->set_attribute('rdf:about', $src);

 $titleNode = $this->dom->create_element('title');
 $titleNodeText = $this->dom->create_text_node($alt);
 $titleNode->append_child($titleNodeText);
 $this->image->append_child($titleNode);

 $urlNode = $this->dom->create_element('url');
 $urlNodeText = $this->dom->create_text_node($src);
 $urlNode->append_child($urlNodeText);
 $this->image->append_child($urlNode);

 $linkNode = $this->dom->create_element('link');
 $linkNodeText = $this->dom->create_text_node($link);
 $linkNode->append_child($linkNodeText);
 $this->image->append_child($linkNode);
 }

The addSearch method allows us to describe the site’s search functionality.

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * Adds the description of the site search URL
 * @param string title of search e.g. "Search"
 * @param string description of search e.g. "Search SitePoint..."
 * @param string search URL
 * @param string GET variable for search e.g. "q" for "?q="
 * @return void
 * @access public
 */
 function addSearch($title, $desc, $url, $var)
 {
 $this->addChannelTextInput($url);
 $this->textinput = $this->dom->create_element('textinput');
 $this->textinput->set_attribute('rdf:about', $url);

 $titleNode = $this->dom->create_element('title');
 $titleNodeText = $this->dom->create_text_node($title);
 $titleNode->append_child($titleNodeText);
 $this->textinput->append_child($titleNode);

 $descNode = $this->dom->create_element('description');
 $descNodeText = $this->dom->create_text_node($desc);
 $descNode->append_child($descNodeText);
 $this->textinput->append_child($descNode);

Chapter 2: XML

116

 $nameNode = $this->dom->create_element('name');
 $nameNodeText = $this->dom->create_text_node($var);
 $nameNode->append_child($nameNodeText);
 $this->textinput->append_child($nameNode);

 $linkNode = $this->dom->create_element('link');
 $linkNodeText = $this->dom->create_text_node($url);
 $linkNode->append_child($linkNodeText);
 $this->textinput->append_child($linkNode);
 }

SitePoint, for example, has a search available on its site. To search SitePoint for

all PHP-related articles, we could use a URL like this:

http://www.sitepoint.com/search/search.php?q=PHP

The GET variable, q, contains the string that will be used as the search. The

addSearch method lets us broadcast this sort of information so that RSS aggreg-

ation services can make available a search of the site.

When we call this method, we must supply the title of the search (perhaps it’s

as simple as "Search SitePoint"), a description ("Search the complete lib-
rary of SitePoint books, articles, and newsletters"), the URL of the

search ("http://www.sitepoint.com/search/search.php"), and the GET

variable that contains the search text ("q").

The addItem method adds the items advertised in our feed to the body of the

document. We supply the title, link, and description of the item, and it will be

appended to the document. We’d typically use this method while looping through

the results of a database query.

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * Adds an RSS item to the document
 * @param string title of item
 * @param string link for item
 * @param string description of item
 * @return void
 * @access public
 */
 function addItem($title, $link, $desc)
 {
 $this->addChannelItem($link);
 $itemNode = $this->dom->create_element('item');
 $itemNode->set_attribute('rdf:about', $link);

117

RSS Generated

http://www.sitepoint.com/search/search.php?q=PHP
http://www.sitepoint.com/search/search.php"

 $titleNode = $this->dom->create_element('title');
 $titleNodeText = $this->dom->create_text_node($title);
 $titleNode->append_child($titleNodeText);
 $itemNode->append_child($titleNode);
 $linkNode = $this->dom->create_element('link');
 $linkNodeText = $this->dom->create_text_node($link);
 $linkNode->append_child($linkNodeText);
 $itemNode->append_child($linkNode);
 $descNode = $this->dom->create_element('description');
 $descNodeText = $this->dom->create_text_node($desc);
 $descNode->append_child($descNodeText);
 $itemNode->append_child($descNode);
 $this->items[] = $itemNode;
 }

The toString method returns the RSS feed document when we’re finished adding

to it.

File: XML/RssGenerator.php (in SPLIB) (excerpt)

 /**
 * Returns the RSS document as a string
 * @return string XML document
 * @access public
 */
 function toString()
 {
 $this->finalize();
 return $this->dom->dump_mem(TRUE);
 }

Note that DOMDocument’s dump_mem method will return a neatly formatted version

if it’s provided a Boolean TRUE as we’ve done here; otherwise, it leaves out white

space between the elements, which makes it difficult for us lowly humans to read.

Let’s see how the RssGenerator class could be used. First, we’ll create an array

of arrays that simulates a database query result of two rows.

File: 9.php (excerpt)

<?php
// Include the RssGenerator class
require_once 'XML/RssGenerator.php';

// Some sample data representing a database query
$articles = array(
 array(

Chapter 2: XML

118

 'title' => 'Verify a User\'s Email Address Using PHP',
 'link' => 'http://www.sitepoint.com/article/1051',
 'description' => 'So you published a registration page on your
 site... and all you get is fake email addresses? Joe shows
 how to use PHP\'s checkdnsrr function to ensure the mail
 domain exists, and those addresses are valid.'
),
 array(
 'title' => 'Using Regular Expressions in PHP',
 'link' => 'http://www.sitepoint.com/article/974',
 'description' => 'Are you getting stuck on PHP\'s regular
 expressions? Look no further than James\' down-and-dirty
 how-to, which tells you all the basics you need to know,
 and shows how to put them to good use!'
)
);

The following variables, which describe the feed as a whole, are something we’d

probably store in a configuration file:

File: 9.php (excerpt)

// Define variables to be used in building the feed
$title = 'SitePoint';
$link = 'http://www.sitepoint.com/';
$desc = 'Empowering Web Developers since 1997';
$about = 'http://www.sitepoint.com/about/';
$logo = 'http://www.sitepoint.com/images/sitepoint-logo.gif';
$searchTitle = 'Search';
$searchDesc = 'Search SitePoint...';
$searchUrl = 'http://www.sitepoint.com/search/search.php';
$searchVar = 'q';

After instantiating it, we add the channel, image, and search information with

the respective RssGenerator methods and the variables we’ve just defined.

File: 9.php (excerpt)

// Instantiate the RssGenerator
$rssGen = new RssGenerator();

// Add the channel information
$rssGen->addChannel($title, $link, $desc, $about);

// Add the image description
$rssGen->addImage($logo, $title, $link);

// Add the search description

119

RSS Generated

http://www.sitepoint.com/article/1051',
http://www.sitepoint.com/article/974',
http://www.sitepoint.com/';
http://www.sitepoint.com/about/';
http://www.sitepoint.com/images/sitepoint-logo.gif';
http://www.sitepoint.com/search/search.php';

$rssGen->addSearch($searchTitle, $searchDesc, $searchUrl,
 $searchVar);

Next, we loop through the array of articles, using the addItem method to add

each to the feed.

File: 9.php (excerpt)

// Loop through the articles...
foreach ($articles as $article) {

 // Add the <item> for each article
 $rssGen->addItem($article['title'], $article['link'],
 $article['description']);
}

Finally, we simply send the correct HTTP Content-Type header and display the

document:

File: 9.php (excerpt)

// Send the XML Mime type
header('Content-type: text/xml');

// Display the document
echo $rssGen->toString();
?>

Here’s the channel element created by the class. It refers to resources (the

channel items, the search facility, and the logo image) that are defined later in

the document.

File: generatedRss.xml (excerpt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/">
 <channel rdf:about="http://www.sitepoint.com/about/">
 <title>SitePoint</title>
 <link>http://www.sitepoint.com/</link>
 <description>Empowering Web Developers since 1997
 </description>
 <image rdf:resource=
 "http://www.sitepoint.com/images/sitepoint-logo.gif"/>
 <textinput
 rdf:resource="http://www.sitepoint.com/search/search.php"/>
 <items>
 <rdf:seq>

Chapter 2: XML

120

http://xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://xmlns="http://purl.org/rss/1.0/"
http://rdf:about="http://www.sitepoint.com/about/"
http://link>http://www.sitepoint.com/</link
http://www.sitepoint.com/images/sitepoint-logo.gif"/
http://rdf:resource="http://www.sitepoint.com/search/search.php"/

 <rdf:li resource="http://www.sitepoint.com/article/1051"/>
 <rdf:li resource="http://www.sitepoint.com/article/974"/>
 </rdf:seq>
 </items>
 </channel>

Note that many of the elements here are created by private methods that are

called by the public methods we use. For example, when we add the image de-

scription, the method defines an image resource in the body of the document,

and refers to it with the image tag in the channel above.

The image resource looks like this:

File: generatedRss.xml (excerpt)

 <image
rdf:about="http://www.sitepoint.com/images/sitepoint-logo.gif">
 <title>SitePoint</title>
 <url>http://www.sitepoint.com/images/sitepoint-logo.gif</url>
 <link>http://www.sitepoint.com/</link>
 </image>

You should be able to see how this corresponds to the addImage method provided

by the RssGenerator class.

Here are the two items added to the body of the document:

File: generatedRss.xml (excerpt)

 <item rdf:about="http://www.sitepoint.com/article/1051">
 <title>Verify a User's Email Address Using PHP</title>
 <link>http://www.sitepoint.com/article/1051</link>
 <description>So you published a registration page on your
 site... and all you get is fake email addresses? Joe
 shows how to use PHP's checkdnsrr function to ensure the
 mail domain exists, and those addresses are valid.
 </description>
 </item>
 <item rdf:about="http://www.sitepoint.com/article/974">
 <title>Using Regular Expressions in PHP</title>
 <link>http://www.sitepoint.com/article/974</link>
 <description>Are you getting stuck on PHP's regular
 expressions? Look no further than James' down-and-dirty
 how-to, which tells you all the basics you need to know,
 and shows how to put them to good use!</description>
 </item>

121

RSS Generated

http://resource="http://www.sitepoint.com/article/1051"/
http://resource="http://www.sitepoint.com/article/974"/
http://rdf:about="http://www.sitepoint.com/images/sitepoint-logo.gif"
http://url>http://www.sitepoint.com/images/sitepoint-logo.gif</url
http://link>http://www.sitepoint.com/</link
http://rdf:about="http://www.sitepoint.com/article/1051"
http://link>http://www.sitepoint.com/article/1051</link
http://rdf:about="http://www.sitepoint.com/article/974"
http://link>http://www.sitepoint.com/article/974</link

Finally, the textinput element contains the information we told it via the

addSearch method about how to search SitePoint:

File: generatedRss.xml

 <textinput
 rdf:about="http://www.sitepoint.com/search/search.php">
 <title>Search</title>
 <description>Search SitePoint...</description>
 <name>q</name>
 <link>http://www.sitepoint.com/search/search.php</link>
 </textinput>
</rdf:RDF>

If you build your own RSS feed, there is available a number of validation services

that allow you to check that your feed is defined correctly. These include:

W3C RDF Validation Service[30]

This service is kept up to date with the latest W3 RDF specification, so it

may complain about older RSS specs having depreciated syntax.

FEED Validator[31]

This validator gives you an “It works” message if all is fine; if not, it provides

a little information about the problem.

The UserLand RSS Validator[32]

The Userland aggregator provides a “yes” or “no” check to see if your feed

is correctly formatted.

Once your feed is validated, you may want to consider registering it with RSS

aggregators, such as Syndic8[33] and UserLand[34]. These aggregator services

keep watch on your site’s feeds.

RSS can be a great way to reach exactly the audience you’re looking for.

[30] http://www.w3.org/RDF/Validator/

[31] http://feedvalidator.org/

[32] http://aggregator.userland.com/validator/

[33] http://syndic8.com/

[34] http://aggregator.userland.com/register/

Chapter 2: XML

122

http://www.w3.org/RDF/Validator/
http://feedvalidator.org/
http://aggregator.userland.com/validator/
http://syndic8.com/
http://aggregator.userland.com/register/
http://rdf:about="http://www.sitepoint.com/search/search.php"
http://link>http://www.sitepoint.com/search/search.php</link
http://www.w3.org/RDF/Validator/
http://feedvalidator.org/
http://aggregator.userland.com/validator/
http://syndic8.com/
http://aggregator.userland.com/register/

How do I perform XPath queries with
PHP?

XPath is a syntax for accessing nodes within an XML document that’s not unlike

most file naming systems. From an XPath expression, PHP’s DOM extension

can perform an XPath query, a powerful mechanism for accessing elements

within an XML document. In this solution, I’ll assume you have some knowledge

of XPath; if you don’t, see the section called “Further Reading” at the end of this

chapter for more information.

Let’s say you have this XML document:

File: articles.xml (excerpt)

<?xml version="1.0" encoding="iso-8859-1"?>
<sitepoint xmlns:spt="http://www.sitepoint.com/">
 <spt:article>
 <spt:article_id>1</spt:article_id>
 <spt:title>Give me back my MySQL Command Line!</spt:title>
 <spt:body><p>One of the essential skills you must acquire to
 become proficient in the development of PHP/MySQL driven
 websites is a good understanding of Structured Query
 Language (SQL). In Chapter 2 of my article series, Build
 your own Database Driven Website using
 PHP and
 MySQL, I focus on getting
 beginners comfortable with typing SQL queries on the MySQL
 command line.</p>
 </spt:body>
 <spt:author>KevinY</spt:author>
 <spt:published>1013554800</spt:published>
 <spt:public>1</spt:public>
 </spt:article>
 <spt:article>
 …
 </spt:article>
 …

The document is not unlike a database query result set. Using XPath, we have a

means to get to the data without multiple loops:

123

How do I perform XPath queries with PHP?

http://xmlns:spt="http://www.sitepoint.com/"
http://href="http://www.php.net/">PHP</a
http://href="http://www.mysql.com/">MySQL,

File: 10.php

<?php
// Get the contents of the XML document
$articles = file('articles.xml');
$articles = implode('', $articles);

// Instantiate a DOM Document from the file
$dom = domxml_open_mem($articles);

// Fetch new XPathContext object
$ctx = $dom->xpath_new_context();

// Register the SitePoint namespace
$ctx->xpath_register_ns("spt", "http://www.sitepoint.com/");

// Fetch the titles with an XPath statement into an XPath object
$titles = &$ctx->xpath_eval("//spt:title/text()");

// Display the data structure
echo '<pre>';
print_r($titles);
echo '</pre>';
?>

First, we fetch the XML document and create a new instance of DOMDocument,

as usual. Next, we use xpath_new_context to create a new XpathContextObject;

this initializes the XPath functionality to perform queries from the root of the

document. We then have to register the namespace defined by the document,

using the xpath_register_ns method. If we don’t, the XpathContext object will

fail to recognize the prefix, and errors will result.

Using the xpath_eval method, we can execute an XPath expression to fetch an

XPathObject containing the data we need. Note that we’ve used the & operator

to pass the nodes by reference so that, should we need to, we can manipulate

them with the standard DOM methods and have those changes reflected in the

stored document structure.

The XPath statement in this example is //spt:title/text(), which should get

us the text inside every spt:title element in the document. Again, the detailed

syntax of this expression is beyond the scope of this book, and resources are

provided in the section called “Further Reading”.

So that the format of the returned data is clear, we’ll simply print the array as-

is, using print_r. Here are the results:

Chapter 2: XML

124

http://www.sitepoint.com/");

XPathObject Object
(
 [type] => 1
 [nodeset] => Array
 (
 [0] => domtext Object
 (
 [type] => 3
 [name] => #text
 [content] => Give me back my MySQL Command Lin
 [0] => 5
 [1] => 18318008
)

 [1] => domtext Object
 (
 [type] => 3
 [name] => #text
 [content] => Build your own Database Driven We
 [0] => 6
 [1] => 18297520
)

Notice that the data we want is contained within a property of the XpathObject
called nodeset. Displaying a nicely-formatted list of article titles would be a simple

matter of performing a foreach loop on this property.

But what if you wanted not only the titles of the articles, but the author names

as well? Assuming every article has a spt:title and spt:author tag, you could

simply perform two XPath queries—one to fetch the titles, and one to fetch the

authors. But when you’re querying a complex XML document, such searches can

be time-consuming. It could be more efficient to find the articles first, then fetch

the title and author of each. Here’s how:

File: 11.php (excerpt)

// Fetch the articles with an XPath statement into an XPath object
$articles = &$ctx->xpath_eval("//spt:article");

echo 'Current Articles
';

// Loop through the articles
foreach ($articles->nodeset as $article) {

 // Fetch the title with the $article object as the context node
 $title = &$ctx->xpath_eval("spt:title/text()", $article);

125

How do I perform XPath queries with PHP?

 // Fetch the author with the $article object as the context node
 $author = &$ctx->xpath_eval("spt:author/text()", $article);

 // Display the content
 echo '- ' . $title->nodeset[0]->content . ' (' .
 $author->nodeset[0]->content . ')
';
}

Notice the three separate XPath statements here. The first, as before, searches

from the root element. This time, it fetches all the spt:article nodes in the

document. The script then loops through this node set, using each spt:article
as the context for two additional queries: one fetching the text of the spt:title,

the other, the text of the spt:author. As these queries only search a small piece

of the XML document (a single article), they’re very quick and efficient when

compared with the relatively laborious whole-document search for articles.

The result is a list of the articles, their titles, and their authors, as shown in Fig-

ure 2.6.

Figure 2.6. Success with XPath

As you can see, XPath provides for fetching nodes from an XML document a

more nimble mechanism than the bulky DOM API, thanks in large part to its

ability to perform queries from any location in the document.

In addition to sets of elements and tag contents, XPath can also fetch attribute

values. For example, this script fetches the href attribute of every a tag in the

document:

File: 12.php

<?php
// Get the contents of the XML document
$articles = file('articles.xml');
$articles = implode('', $articles);

// Instantiate a DOM Document from the file
$dom = domxml_open_mem($articles);

Chapter 2: XML

126

// Fetch new XPathContext object
$ctx = $dom->xpath_new_context();

// Register the SitePoint namespace
$ctx->xpath_register_ns("spt", "http://www.sitepoint.com/");

// Fetch all link targets
$links = &$ctx->xpath_eval("//a/@href");

// Display the links
echo 'Document contains the following links
';
foreach ($links->nodeset as $link) {
 echo '- ' . $link->value . '
';
}
?>

A Note on Default Namespaces
The XPath 1.0 specification[35] does not provide a mechanism to single out tags

in the default namespace specified by the root element. PHP offers a work-

around, however.

Consider this very simple RSS feed:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/">
</rdf:RDF>

Here, the default namespace is http://purl.org/rss/1.0/. If I wanted to per-

form an XPath query for elements in that default namespace (i.e. tags with no

rdf: prefix), I’d need to declare a “dummy” prefix for this namespace. Here’s

how to do it in the case of an RSS feed:

// Register the dummy namespace
$ctx->xpath_register_ns("prl", "http://purl.org/rss/1.0/");

// Fetch the titles using that dummy namespace
$titles = &$ctx->xpath_eval("//prl:item/prl:title/text()");

[35] http://www.w3.org/TR/1999/REC-xpath-19991116

127

A Note on Default Namespaces

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.sitepoint.com/");
http://xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://xmlns="http://purl.org/rss/1.0/"
http://purl.org/rss/
http://purl.org/rss/1.0/");
http://www.w3.org/TR/1999/REC-xpath-19991116

With this trick, you could use XPath to implement a much simpler version of

the DOM RSS feed parser we saw earlier in this chapter.

Dynamic Content with XPath
Now that you have a basic grasp of how XPath can be used in PHP, it’s time to

do something interesting with it. Let’s take the articles.xml document we’ve

already used with XPath, and build it a database-like interface that displays a list

of articles in brief and a single article in detail, depending on the link the visitor

clicks. Before we can get started, we need a couple of classes that represent the

articles list, and an individual article, respectively. These classes fetch data from

the articles.xml document.

First, let’s look at the class representing a list of articles. The constructor performs

an XPath query to fetch all the spt:article elements as well as their children:

//spt:article/descendant-or-self::*

This allows us to use the spt:article to identify each new “row” in art-
icles.xml, and at the same time provides the child nodes, giving us access to

the content within them. With this content, we can build a data structure that

we can begin to use immediately. Each “row” is placed in a new instance of the

Article class (which I’ll be looking at in detail in Chapter 3), then the object is

placed inside the $articles member variable of the ArticlesXML class. If you

compare this example with the work we did earlier to parse the RSS feed with

DOM, immediately it becomes clear how much easier XPath makes the extraction

of data from an XML document.

File: ExampleApps/ArticlesXML.php (in SPLIB) (excerpt)

<?php
/**
 * Articles XML class
 * Fetches data from articles.xml
 * @access public
 * @package SPLIB
 */
class ArticlesXML {
 /**
 * An array of Article objects
 * @access private
 * @var array
 */
 var $articles;

Chapter 2: XML

128

 /**
 * ArticlesXML constructor
 * @param string the articles.xml document
 * @access public
 */
 function ArticlesXML($articlesDoc)
 {
 $dom = domxml_open_mem($articlesDoc);
 $xpath = $dom->xpath_init();
 $ctx = $dom->xpath_new_context();
 $ctx->xpath_register_ns("spt", "http://www.sitepoint.com/");

 $articles =
 &$ctx->xpath_eval("//spt:article/descendant-or-self::*");

 foreach ($articles->nodeset as $node) {
 switch ($node->tagname) {
 case 'article':
 if (isset($article)) {
 $this->articles[] = new Article($article);
 }
 $article = array();
 break;
 case 'body':
 $article['body'] = $dom->dump_node($node);
 break;
 default:
 $article[$node->tagname] = $node->get_content();
 break;
 }
 }
 if (isset($article)) {
 $this->articles[] = new Article($article);
 }
 }

In the foreach loop above we used the tagname property of the $node object to

implement some switching logic. If the node is an article corresponding to a

spt:article tag, we first check to see if the variable $article exists (which it

won’t on the first iteration). If it does exist, we pass it to a new instance of the

class Article, which is basically just a data store that provides some methods

for formatting the data, the constructed object being stored in the articles prop-

erty. Once any construction has been dealt with, the 'article' section of the

switch re-initializes $article as an empty array.

129

Dynamic Content with XPath

http://www.sitepoint.com/");

The spt:body is handled as a special case in the switch. Because the content of

the spt:body will be a mix of text and XHTML, and because we want to preserve

the XHTML, we need to use the dump_node method of PHP’s DomDocument class,

which converts a given node into an XML string. Strictly speaking, this method

is not part of the W3C DOM specification, but, as this example demonstrates,

life would be much more difficult without it.

The final section of the switch treats all the remaining child nodes of spt:article
as equals. It stores their contents in the $article array, to be placed in an

Article object the next time a spt:article tag is encountered.

After the switch, we add the final article (if any were found) into the array, as

it will not be caught by the start of another spt:article tag.

Let’s continue with the rest of the ArticlesXML class. The fetch method is used

to fetch single articles from the internal array:

File: ExampleApps/ArticlesXML.php (in SPLIB) (excerpt)

 /**
 * Returns an single ArticleXML object, iterating of the
 * collection of articles
 * @return object
 * @access public
 */
 function fetch()
 {
 $article = each($this->articles);
 if ($article) {
 return $article['value'];
 } else {
 reset($this->articles);
 return FALSE;
 }
 }

The getArticleByID method allows us to fetch a single article by specifying its

unique ID, which was given by the spt:article_id child of each spt:article
element in the XML input.

File: ExampleApps/ArticlesXML.php (in SPLIB) (excerpt)

 /**
 * Returns an Article object by its article_id value
 * @param int ID of article
 * @return object

Chapter 2: XML

130

 * @access public
 */
 function getArticleById($id)
 {
 foreach ($this->articles as $article) {
 if ($article->id() == $id) {
 return $article;
 }
 }
 return FALSE;
 }
}

Now that we’ve defined ArticlesXML, here’s how it can be used:

File: 13.php (excerpt)

<?php
// Include classes for accessing data from articles.xml
require_once 'ExampleApps/ArticlesXML.php';
require_once 'ExampleApps/Article.php';

// Get the contents of articles.xml
$articlesDoc = file('articles.xml');
$articlesDoc = implode('', $articlesDoc);

// Instantiate the Articles class
$articles = new ArticlesXML($articlesDoc);

// Begin constructing a table
$table = "<table>\n";

// If visitor is viewing a single article...
if (isset($_GET['id'])) {

 // Get the article by its id
 if ($article = $articles->getArticleById($_GET['id'])) {

 // Build the body of the table
 $table .= "<tr>\n<td class=\"title\">" . $article->title() .
 "</td>\n</tr>\n";
 $table .= "<tr>\n<td class=\"author\">by " .
 $article->author() . "</td>\n</tr>\n";
 $table .= "<tr>\n<td>" . $article->body() . "</td>\n</tr>\n";
 }

131

Dynamic Content with XPath

The if statement uses the $_GET['id'] variable to decide whether the visitor is

looking at a single article or should see the full list of articles.

The following code builds a table for the list of articles. Again, by separating the

data structure we extracted from the XML document from the HTML that’s used

to display the data, we can build whatever output we like, while keeping the class

itself reusable.

File: 13.php (excerpt)

// Build a list of articles
} else {
 $table .= "<tr>\n<th>Title</th><th>Author</th>\n</tr>\n";

 // Loop through the articles and build into table body
 while ($article = $articles->fetch()) {
 $table .= "<tr>\n";
 $table .= "<td><a href=\"" . $_SERVER['PHP_SELF'] .
 "?id=" . $article->id() . "\">" .
 $article->title() . "</td>";
 $table .= "<td>" . $article->author() . "</td>";
 $table .= "</tr>\n";
 }
}

// Finish the table
$table .= "</table>\n";
?>

Finally, we need some HTML with which to display the table:

File: 13.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> SitePoint Articles </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
h1 {
 font-family: verdana;
 font-size: 15px;
 font-weight: bold;
 color: navy;
}

Chapter 2: XML

132

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

table {
 background-color: silver;
 width: 450px;
}
th {
 background-color: #f2f3f5;
 font-family: verdana;
 font-size: 11px;
 font-weight: bold;
 text-align: left;
}
td {
 background-color: white;
 font-family: verdana;
 font-size: 11px;
}
a {
 font-weight: bold;
}
.title {
 font-size: 14px;
 font-weight: bold;
}
.author {
 font-weight: italic;
 text-align: right;
}
</style>
</head>
<body>
<h1>Latest Articles</h1>
<?php echo $table; ?>
</body>
</html>

Now, when we view the articles as a list, we see a display like Figure 2.7.

133

Dynamic Content with XPath

Figure 2.7. Latest Articles Powered by XPath

Each article has a link that, when clicked on, displays only a single article, as

shown in Figure 2.8.

Figure 2.8. Give Me Back my XPath Command Line!

In other words, we can use XPath to “mine” an XML document in pretty much

the same way we use SQL to “mine” a database.

XQuery Lite

If you need more power for accessing XML than XPath provides, you might

consider XQuery Lite[36].
[36] http://phpxmlclasses.sourceforge.net/class_xquery_lite.html

Chapter 2: XML

134

http://phpxmlclasses.sourceforge.net/class_xquery_lite.html
http://phpxmlclasses.sourceforge.net/class_xquery_lite.html

XPath can be an extremely powerful tool. For example, XPath makes it possible

to base a dynamic, hierarchical menu system (such as that as covered in Volume

I, Chapter 9) on an XML configuration file, rather than a database table.

How do I transform XML with PHP?
Another offshoot of the XML specification is Extensible Stylesheet Language

Transformations[37] (XSLT), a standard that lets you transform XML docu-

ments. “…Into what?” you ask. Well, transforming one XML document type into

another—such as XHTML—is the most common application, but with XSLT

you can output just about any text-based file format you can think of.

XSLT can be useful for solving all sorts of problems. You can generate PHP code

on the fly from an XML configuration file. You can generate documents in differ-

ent formations—HTML and Wireless Markup Language (WML), for in-

stance—from a single XML source. The possibilities are endless!

In this solution, I’ll assume that you have some experience with XSLT, so I’ll

concentrate on the PHP code. If your knowledge of XSLT is lacking, the section

called “Further Reading” has reference suggestions.

Using the XSLT extension[38] is similar in some ways to using PHP’s SAX XML

functionality. Let’s look at an example based on the articles.xml document

we saw in the last solution. First, we have an XSL document:

File: articles.xsl (excerpt)

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:spt="http://www.sitepoint.com/"
exclude-result-prefixes="spt">

In declaring the root element of the stylesheet, we’ve specified the SitePoint

namespace used in articles.xml, and used the exclude-result-prefixes at-

tribute to specify that the namespace prefix should not be added to the trans-

formed elements.

Next, we use a template to match each article element that has a public element

containing the value 1, and display it. The articles are placed into HTML table

[37] http://www.w3.org/TR/xslt

[38] http://www.php.net/xslt

135

How do I transform XML with PHP?

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.php.net/xslt
http://xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
http://xmlns:spt="http://www.sitepoint.com/"
http://www.w3.org/TR/xslt
http://www.php.net/xslt

rows. A second template catches all other (i.e. unpublished) articles and suppresses

them.

Note that implementing within the stylesheet the logic that controls which articles

are and aren’t displayed is probably a bad idea, though it creates a more interesting

example here. In fact, this is better handled by PHP in a uniform security/permis-

sions system that’s easy to maintain and administer. We’ve used the XPath pre-

dicate3 in the template’s condition to demonstrate an interesting capability of

stylesheets, rather than to encourage you to take this approach.

File: articles.xsl (excerpt)

 <xsl:output method="html" indent="yes" encoding="iso-8859-1" />
 <!-- Strip whitespace from original -->
 <xsl:strip-space elements="*" />
 <!-- Match each published article -->
 <xsl:template priority="1" match="spt:article[spt:public='1']">
 <tr>
 <td class="title">
 <xsl:value-of select="spt:title" />
 </td>
 <td class="author">
 <xsl:value-of select="spt:author" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <xsl:value-of select="spt:body"/>
 </td>
 </tr>
 </xsl:template>
 <!-- Match and hide unpublished articles -->
 <xsl:template match="spt:article"/>
</xsl:stylesheet>

OK, let’s use PHP to perform the transformation. First, we define the full path

to the XML and XSL documents:

File: 14.php (excerpt)

<?php
// Define paths to XML and XSL documents (MODIFY THIS!)
$xml = '/full/path/to/XML/articles.xml';
$xsl = '/full/path/to/XML/articles.xsl';

3A predicate is a portion of an XPath expression between square brackets that filters the nodes ac-

cording to a given condition. In this example, the predicate filters out non-public articles.

Chapter 2: XML

136

Note that on Windows systems, the path to these documents needs to be preceded

by file://. For example:

File: 14.php (excerpt)

$xml = 'file://c:/htdocs/sitepoint/XML/articles.xml';
$xsl = 'file://c:/htdocs/sitepoint/XML/articles.xsl';

Next, we instantiate the XSLT processor with the xslt_create function:

File: 14.php (excerpt)

// Instantiate the XSLT processor
$xp = xslt_create();

The xslt_process function transforms the XML to HTML according to the

template(s) in the stylesheet. Should anything go wrong, we use the xslt_errno
and xslt_error functions to access information about what happened.

File: 14.php (excerpt)

// Perform the XSL Transformation
$result = xslt_process($xp, $xml, $xsl) or
 // If there's a problem, display the error
 "<tr>\n<td>Error (" . xslt_errno($xp) .
 ") performing XSLT:" . xslt_error($xp) . "</td>\n</tr>\n";

// Embed the result in an HTML table
$table = "<table>\n";
$table .= $result;
$table .= "</table>\n";

That’s it! The XML document is now transformed into HTML, which we can

embed into a table and display as part of a page constructed by PHP. The output

will look like that shown in Figure 2.9.

137

How do I transform XML with PHP?

Figure 2.9. Looks Like Normal HTML to Me…

XML to SQL
Another task we could complete with XSLT is to convert the XML document

into an SQL query, which can then be used to place the data into the database.

I’ll take this opportunity to demonstrate how to pass PHP variables to the XSLT

processor.

Here’s our stylesheet:

File: article2sql.xsl

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Note the: exclude-result-prefixes ... -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:spt="http://www.sitepoint.com/"
 exclude-result-prefixes="spt">

 <xsl:param name="tableName" />

Chapter 2: XML

138

http://xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
http://xmlns:spt="http://www.sitepoint.com/"

 <xsl:variable name="squote">'</xsl:variable>

 <xsl:output method="text" indent="yes" encoding="iso-8859-1" />
 <!-- Strip whitespace from original -->
 <xsl:strip-space elements="*" />

 <xsl:template match="spt:article">
 INSERT
 INTO
 <xsl:value-of select="$tableName"/>
 SET
 article_id='<xsl:value-of select="spt:article_id"/>',
 title=
'<xsl:value-of select="translate(spt:title,$squote,'')" />',
 author=
'<xsl:value-of select="translate(spt:author,$squote,'')" />',
 body=
'<xsl:value-of select="translate(spt:body,$squote,'')" />',
 published='<xsl:value-of select="spt:published"/>',
 public='<xsl:value-of select="spt:public"/>';
 </xsl:template>
</xsl:stylesheet>

The stylesheet is geared to convert the document into an SQL query. Note that

we’ve set the output method to text. For this example, we’ve used a crude method

for solving the problem of single quotes inside the SQL statement—we’ve simply

removed them all with the XPath translate function. In a practical situation,

you’d need to write your own escaping template, which you would call as needed

with a xsl:call-template tag. However, as this is a book on PHP, not XSLT,

we’ll stick to this simple solution.

It’s worth noting the XSL parameter we’ve defined:

 <xsl:param name="tableName" />

This parameter needs to hold the name of the table for the resulting SQL query

in order to work as intended. As we’ll see in a moment, it will be populated by

a PHP variable.

Next, we’ll look at the code that makes the transformation. This time, we’ll use

XSLT’s error handling functionality to implement my own custom function for

reacting to errors.

139

XML to SQL

File: 15.php

<?php
// Define paths to XML and XSL documents (MODIFY THIS!)
$xml = '/full/path/to/sitepoint/XML/articles.xml';
$xsl = '/full/path/to/sitepoint/XML/article2sql.xsl';

// Define the XSLT error handler
function xslt_error_handler($xp, $errNo, $level, $fields)
{
 $errMsg = 'Error #' . $errNo . ', Level ' . $level .
 ', Fields:
';
 if (is_array($fields)) {
 foreach ($fields as $key => $value) {
 $errMsg .= $key .' => '.$value.'
';
 }
 } else {
 $errMsg .= $fields.'
';
 }
 trigger_error($errMsg);
}

// Instantiate the XSLT processor
$xp = xslt_create();

// Set the error handler
xslt_set_error_handler($xp, 'xslt_error_handler');

// An array of params to pass to the processor
$params = array('tableName' => 'articles');

// Perform the transform using the PHP variables
$result = xslt_process($xp, $xml, $xsl, null, null, $params);

// Display the result
echo "<pre>" . $result . "</pre>";
?>

Notice the $params array, where we define the variable tableName. This is passed

to the XSLT processor, then used in the transformation to render the SQL. Fig-

ure 2.10 shows the output of this script, which simply displays the generated

SQL code.

Chapter 2: XML

140

Figure 2.10. Back to SQL

How do I build an XML-RPC service with
PHP?

XML Remote Procedure Calling[39] (XML-RPC) is an XML standard that’s

commonly used for exchanging data between Web servers on the Internet. It allows

you to store your data on one server, while displaying it in a Web page on a

completely separate server. This would allow you to make that data available to

other Webmasters, for example. Think of it as a generalized variant of an RSS

feed, and you’re not far off.

XML-RPC is a complete messaging protocol, where all the requests and responses

are XML documents. The standard falls under the umbrella buzzword Web ser-

vices, and is the forerunner to Simple Object Access Protocol[40] (SOAP), the

current “king” of Web services. Here, I’ll assume you have a grasp of what Web

services are about, if not the actual syntax of XML-RPC. If you’re not sure, you’ll

find recommended material in the section called “Further Reading” at the end

of this chapter, including an article that focuses purely on XML-RPC.

[39] http://www.xmlrpc.com/

[40] http://www.w3.org/TR/SOAP/

141

How do I build an XML-RPC service with PHP?

http://www.xmlrpc.com/
http://www.w3.org/TR/SOAP/
http://www.xmlrpc.com/
http://www.w3.org/TR/SOAP/

Why would we bother with XML-RPC if SOAP’s around? The answer is a com-

bination of preference and practicality. XML-RPC is a lightweight protocol for

data exchange, which is very easy to understand and well-supported in many

languages. It’s great for intranet applications and data exchange on the Internet

where you’ll be collaborating with a small group of like-minded developers. SOAP

has a much more complicated specification and, as a result, is much more difficult

to support correctly and reliably. Today, few, if any, of the SOAP implementa-

tions, including commercial offerings from the likes of Microsoft and IBM, fully

support all facets of SOAP to 100% perfection. Part of the problem is its reliance

on XML Schema[41], which most XML toolkits are still struggling to catch up

with. Having said that, SOAP has the advantage that it comes with supporting

technologies such as Web Services Description Language[42] (WSDL). These

make it possible to build SOAP Web services that can be consumed by the many,

rather than the few. If you’re planning something “big,” such as the delivery of

commercial Web services, SOAP is probably the right choice for you.

To implement an XML-RPC based Web service for your site, it’s generally a good

idea to take advantage of one of the many PHP XML-RPC libraries available.

There’s even an XML-RPC extension to PHP, although it’s not easy to find a

hosting company that’s enlightened enough to have installed it. Here, we’ll be

taking advantage of Simon Willison’s Incutio XML-RPC library[43], currently

at version 1.6. It provides arguably the best basis, from the point of view of code

design, for building your own XML-RPC clients and servers. The code is well

documented and numerous examples are provided to make its usage clear. Simon

is currently working on a separate HttpClient class, which should significantly

improve the functionality of the XML-RPC client in the near future.

The Server
In this example, we’ll build an XML-RPC server that provides the contents of

the MySQL articles table we used in Volume I, Chapter 3.

First of all, we need a class to fetch data from the articles table and turn it into

XML-RPC responses.

The ArticleServer class extends the IXR_Server class provided by the Incutio

library, which means that the methods in IXR_Server are also available in the

ArticleServer class. We can pass the ArticleServer an instance of the MySQL

[41] http://www.w3.org/XML/Schema

[42] http://www.w3.org/TR/wsdl

[43] http://scripts.incutio.com/xmlrpc/

Chapter 2: XML

142

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
http://scripts.incutio.com/xmlrpc/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
http://scripts.incutio.com/xmlrpc/

class so we can use it to fetch data. Within the constructor, we also define the

XML-RPC methods available from the server and point them at local methods

defined in the class. When an XML-RPC client calls an XML-RPC method, the

processing will be handled by a method inside the ArticleServer class.

File: ExampleApps/XMLRPCArticleServer.php (in SPLIB) (excerpt)

<?php
require_once 'ThirdParty/xmlrpc/IXR_Library.inc.php';

/**
 * XML-RPC Article Server class
 * Builds an XML-RPC server for the articles database using
 * Simon Wilsons XML-RPC implementation
 * http://scripts.incutio.com/xmlrpc/
 * @access public
 * @package SPLIB
 */
class XMLRPCArticleServer extends IXR_Server {
 /**
 * Database access object
 * @access private
 * @var object
 */
 var $db;

 /**
 * XMLRPCArticleServer constructor
 * @param object instance of database access class
 * @access public
 */
 function XMLRPCArticleServer(&$db)
 {
 $this->db = &$db;
 // Define the XML-RPC methods
 $this->IXR_Server(array(
 'articles.getArticles' => 'this:getArticles',
 'articles.getArticleById' => 'this:getArticleById'
));
 }

The getArticles method is used to fetch a list of articles and return them as an

array, which the IXR_Server class will automatically wrap in an XML-RPC re-

sponse document. Notice that when we check for errors, we use the IXR_Error
class to build an error object that’s returned to the XML-RPC client. We’re free

to choose our own error code, but it’s a good idea to avoid those defined in the

143

The Server

http://ThirdParty/xmlrpc/IXR_Library.inc.php';
http://scripts.incutio.com/xmlrpc/

XML-RPC Fault Codes RFC[44], which are implemented by many popular XML-

RPC libraries, in a variety of programming languages.

File: ExampleApps/XMLRPCArticleServer.php (in SPLIB) (excerpt)

 /**
 * Returns an array of articles
 * @return array
 * @access public
 */
 function getArticles()
 {
 $sql = "SELECT article_id, title, author
 FROM articles
 WHERE public = '1'
 ORDER BY title";

 $result = $this->db->query($sql);

 if ($result->isError()) {
 return new IXR_Error(-2, 'Problem fetching data');
 }

 while ($row = $result->fetch()) {
 $articles[] = $row;
 }
 return $articles;
 }

The getArticleById method is used to display a single article, including its

body. It accepts a single parameter, $articleID, which corresponds to the art-
icle_id column in the database. Notice that we’ve been careful to check that

$articleID is a number (if not, we return an error code) and we’ve also been

sure to apply addslashes to the $articleID to prevent any potential SQL injec-

tion attacks (see Volume I, Chapter 3).

File: ExampleApps/XMLRPCArticleServer.php (in SPLIB) (excerpt)

 /**
 * Return a single article
 * @param int article_id
 * @return array
 * @access public
 */
 function getArticleById($articleID)

[44] http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

Chapter 2: XML

144

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

 {
 if (!is_numeric($articleID)) {
 return new IXR_Error(-1, 'Expecting numeric article ID');
 }

 $articleID = addslashes($articleID);

 $sql = "SELECT title, author, body
 FROM articles
 WHERE article_id = '" . $articleID . "'
 AND public = '1'";
 $result = $this->db->query($sql);

 if ($result->isError()) {
 return new IXR_Error(-2, 'Problem fetching data');
 }

 return $row = $result->fetch();
 }
}

That’s the ArticleServer class finished. Now all we need to do is instantiate it

with an example:

File: ExampleApps/XMLRPCArticleServer.php (in SPLIB) (excerpt)

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

// Include the XMLRPCArticleServer
require_once 'ExampleApps/XMLRPCArticleServer.php';

// Define variables for MySQL class
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL class
$mysql = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate ArticleServer class
$server = new XMLRPCArticleServer($mysql);
?>

145

The Server

That’s it. The ArticleServer is ready to begin accepting requests from XML-

RPC clients.

The script executes on your Web server in exactly the same way as would any

PHP script used to deliver (X)HTML to a client Web browser. That is, when an

XML-RPC request is received as an HTTP POST request, the script is executed,

examining the incoming request and returning the appropriate response in the

same way a script might respond to a form. The only difference between serving

XML-RPC and displaying a normal Web page is that the client will not be a Web

browser; perhaps it’s another Web server using an XML-RPC client to fetch data

from your site. This will be clearer once you’ve seen a client script access the

above server, which is exactly what we’re going to do next.

The Client
The “client side” is where we’ll render the HTML to display the articles. Remem-

ber, the client could be placed on a Web server on the far side of the world, al-

though in this example you’ll start by running them from the same Web server.

Of course, someone else using the XML-RPC server may not want to render exactly

the same HTML we create, so it’s important that we provide a client class that

accesses the service without restricting it to any particular output design.

The constructor takes a URL that represents the location of the XML-RPC server,

as well as an optional $debug variable, which, if set to TRUE, will turn on the

display of the Incutio library debugging messages (these are useful for understand-

ing what’s happening between client and server should things go wrong). The

constructor uses the URL to instantiate an instance of IXR_Client provided by

the Incutio library, and stores it in the local data member $client.

File: ExampleApps/XMLRPCArticleClient.php (in SPLIB) (excerpt)

<?php
/**
 * XMLRPCArticleClient class
 * Builds an XML-RPC client for the XMLRPC Articles service
 * Uses Simon Wilson's XML-RPC implementation
 * http://scripts.incutio.com/xmlrpc/
 * @see XMLRPCArticleServer
 * @access public
 */
class XMLRPCArticleClient {
 /**
 * Instance of IXR_Client class
 * @access private

Chapter 2: XML

146

http://scripts.incutio.com/xmlrpc/

 * @var IXR_Client
 */
 var $client;

 /**
 * ArticleClient constructor
 * @param string URL of server
 * @param boolean true switches on debugging
 * @access public
 */
 function XMLRPCArticleClient($url, $debug = false)
 {
 $this->client = new IXR_Client($url);
 $this->client->debug = $debug;
 }

The getArticles method corresponds to the method of the same name on the

server; it uses the data member $client to perform an XML-RPC request via

the query method. The XML-RPC method in this case is articles.getArticles,

which we saw when we registered the methods on the server in the previous sec-

tion.

File: ExampleApps/XMLRPCArticleClient.php (in SPLIB) (excerpt)

 /**
 * Returns an array of articles
 * @return array
 * @access public
 */
 function getArticles()
 {
 if (!$this->client->query('articles.getArticles')) {
 trigger_error($this->client->getErrorCode() .
 ' : ' . $this->client->getErrorMessage());
 return FALSE;
 }
 return $this->client->getResponse();
 }

If anything goes wrong, the method triggers an error using the information

provided by the IXR_Client getErrorCode and getErrorMessage methods.

Otherwise, it returns the response it received from the XML-RPC server, using

the IXR_Client getResponse method; this returns a PHP variable data structure

that’s ready for use; the XML parsing has been handled behind the scenes by the

Incutio library.

147

The Client

The getArticleById method is similar to the getArticles method, but accepts

a parameter, $articleID, which it uses in making the XML-RPC request using

the IXR_Client query method. The response it returns is the article, identified

by the ID.

File: ExampleApps/XMLRPCArticleClient.php (in SPLIB) (excerpt)

 /**
 * Returns a single article
 * @param int article id
 * @return array
 * @access public
 */
 function getArticleById($articleID)
 {
 if (!$this->client->query('articles.getArticleById',
 $articleID)) {
 trigger_error($this->client->getErrorCode() .
 ' : ' . $this->client->getErrorMessage());
 return FALSE;
 }
 return $this->client->getResponse();
 }
}
?>

Now, let’s put the client class into action and use the service. First, we define the

URL of the server (which you should modify to match the location on your own

server), then instantiate the XMLRPCArticleClient class using the URL:

File: 17.php (excerpt)

<?php
// Include the client class
require_once 'ExampleApps/XMLRPCArticleClient.php';

// Define the URL of the server (MODIFY THIS!!)
$server = 'http://localhost/XML/16.php';

// Instantiate the ArticleClient class
$articleClient = new XMLRPCArticleClient($server);

A simple if-else statement displays either a single article, if an article ID was

provided by the visitor (when they clicked on a link), or a list of available articles:

Chapter 2: XML

148

http://localhost/XML/16.php';

File: 17.php (excerpt)

// Start building a table
$table = "<table>\n";

// If we're viewing a single article
if (isset($_GET['id'])) {

 // Get the article from the client class
 if ($article = $articleClient->getArticle($_GET['id'])) {

 // Build the table
 $table .= "<tr>\n<td class=\"title\">" . $article['title'] .
 "</td>\n</tr>\n";
 $table .= "<tr>\n<td class=\"author\">by " .
 $article['author'] . "</td>\n</tr>\n";
 $table .= "<tr>\n<td>" . $article['body'] . "</td>\n</tr>\n";
 } else {
 $table .= "<tr>\n" .
 "<td>Service unavailable at this time</td>\n" .
 "</tr>";
 }
} else {

 // Get an array of articles
 if ($articles = $articleClient->getArticles()) {

 // Loop through each article building the table
 foreach ($articles as $article) {
 $table .= "<tr>\n";
 $table .= "<td><a href=\"" . $_SERVER['PHP_SELF'] .
 "?id=" . $article['article_id'] . "\">" .
 $article['title'] . "</td>";
 $table .= "<td>" . $article['author'] . "</td>";
 $table .= "</tr>\n";
 }
 } else {
 $table .= "<tr>\n" .
 "<td>Service unavailable at this time</td>\n" .
 "</tr>";
 }
}

// Finish the table
$table .= "</table>\n";
?>

149

The Client

The table we’ve constructed can be dropped into a simple HTML page, and dis-

plays the same interactive list of articles as we saw in “How do I perform XPath

queries with PHP?”.

How do I consume SOAP Web services
with PHP?

In the previous solution, you learned to build and use XML-RPC Web services

with PHP. Most of the publicly-available Web services out there, however, use

the newer Simple Object Access Protocol[45] (SOAP), not XML-RPC. In this

solution, I’ll show you how to consume SOAP Web services with your PHP

scripts.

Client-Server or Consume-Deploy?

The Web services terminology describes the use of a client to access a Web service as

consuming the Web service, while the act of providing a Web service is typically referred

to as deploying. This is a marked change from the terms client and server, the exact

definitions of which are blurred by Web services. For instance, your site may act as a

server to visitors using their Web browsers, while simultaneously acting as a client to a

Web service on a remote site.

There’s really nothing new here. PHP scripts, for example, often act as clients to database

servers, while at the same acting as a server to visitors browsing your site. If the act of

consuming a Web service is hard to grasp, just think of it as being the same as connecting

to MySQL and fetching some data.

As I mentioned in the last chapter, SOAP has a supporting technology called

Web Services Description Language[46] (WSDL), which is one of the main

reasons SOAP has an edge over XML-RPC. WSDL is a specification that allows

an XML-based messaging protocol like SOAP to be described in a manner that

relates directly to the object oriented paradigm. In practical terms, all this means

is that you can generate a client to a Web service on the fly if necessary, simply

by reading the associated WSDL document.

CapeScience[47] is one of a number of sites that provide free Web services today.

They have also put together a great set of resources for Web service developers,

[45] http://www.w3.org/TR/SOAP/

[46] http://www.w3.org/TR/wsdl

[47] http://www.capescience.com/

Chapter 2: XML

150

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.capescience.com/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.capescience.com/

including a free-to-download WSDL editor[48], which can help you visualize

what a WSDL document is telling you.

It’s beyond the scope of this book to provide an in-depth analysis of how SOAP

and WSDL work, but if you’ll take my word that you really don’t need to know

much about these technologies to take advantage of them, I’ll use the CapeScience

GlobalWeather service[49] to show you how easy it is.

The WSDL description of this service can be found at

http://live.capescience.com/wsdl/GlobalWeather.wsdl (a nicely-formatted, simpli-

fied version is also available on the site). To cut a long story short, what you

should be most interested in is the contents of the portType tag—namely the

operation names, as these will correspond to the method names you’ll use to

consume the service.

Looking at the GlobalWeather service, in particular the portType element named

StationInfo, this is what we see:

<portType name="StationInfo">
 <operation name="getStation">
 <input message="tns:getStation"/>
 <output message="tns:getStationResponse"/>
 </operation>
 <operation name="isValidCode">
 <input message="tns:isValidCode"/>
 <output message="tns:isValidCodeResponse"/>
 </operation>
 <operation name="listCountries">
 <input message="tns:listCountries"/>
 <output message="tns:listCountriesResponse"/>
 </operation>
 <operation name="searchByCode">
 <input message="tns:searchByCode"/>
 <output message="tns:searchByCodeResponse"/>
 </operation>
 <operation name="searchByCountry">
 <input message="tns:searchByCountry"/>
 <output message="tns:searchByCountryResponse"/>
 </operation>
 <operation name="searchByName">
 <input message="tns:searchByName"/>
 <output message="tns:searchByNameResponse"/>

[48] http://www.capescience.com/downloads/index.shtml

[49] http://www.capescience.com/webservices/globalweather/

151

How do I consume SOAP Web services with PHP?

http://www.capescience.com/downloads/index.shtml
http://www.capescience.com/webservices/globalweather/
http://live.capescience.com/wsdl/GlobalWeather.wsdl
http://live.capescience.com/wsdl/GlobalWeather.wsdl
http://www.capescience.com/downloads/index.shtml
http://www.capescience.com/webservices/globalweather/

 </operation>
 <operation name="searchByRegion">
 <input message="tns:searchByRegion"/>
 <output message="tns:searchByRegionResponse"/>
 </operation>
</portType>

Enough theory! It’s time to put my money where my mouth is, and show you

how easy it is to create SOAP clients with the help of WSDL (as well as

PEAR::SOAP and Shane Caraveo, its maintainer). Using the latest version of

PEAR::SOAP (version 0.75 at time of writing), we can generate a proxy class

from the above WSDL description like this:

File: 18.php

<?php
// Include the PEAR::SOAP client class
require_once 'SOAP/Client.php';

// Instantiate the SOAP_WSDL class using the online document
$wsdl = new SOAP_WSDL(
 'http://live.capescience.com/wsdl/GlobalWeather.wsdl');

// Get the proxy class for the service
$proxy = $wsdl->generateProxyCode('', 'StationInfo');

// Display the code
echo '<pre>';
echo htmlspecialchars($proxy);
echo '</pre>';
?>

What this will display is an outline of a PHP class generated as a result of reading

the WSDL document. Here’s that outline in a more familiar format:

class StationInfo extends SOAP_Client {
 function StationInfo()
 {
 $this->SOAP_Client(
 "http://live.capescience.com:80/ccx/GlobalWeather", 0);
 }
 function getStation($code)
 {
 // Code here
 }
 function isValidCode($code)
 {

Chapter 2: XML

152

http://live.capescience.com/wsdl/GlobalWeather.wsdl');
http://live.capescience.com:80/ccx/GlobalWeather",

 // Code here
 }
 function listCountries()
 {
 // Code here
 }
 function searchByCode($code)
 {
 // Code here
 }
 function searchByCountry($country)
 {
 // Code here
 }
 function searchByName($name)
 {
 // Code here
 }
 function searchByRegion($region)
 {
 // Code here
 }
}

I’ve replaced the code inside each method with a comment to make it easier for

us to see the big picture. Notice that the method names correspond to the names

of the operation elements in the WSDL code we saw above. To use this generated

class, we need only run the generated code using PHP’s eval function, then in-

stantiate the StationInfo class as usual.

Of course, using eval is too much like hard work, given that PEAR::SOAP provides

a getProxy method that does it for you:

File: 19.php (excerpt)

<?php
// Include the PEAR::SOAP client class
require_once 'SOAP/Client.php';

// Include the Session class
require_once 'Session/Session.php';

// Instantiate the Session class
$session = new Session();

// Instantiate the SOAP_WSDL class using the online document

153

How do I consume SOAP Web services with PHP?

$wsdl = new SOAP_WSDL(
 'http://live.capescience.com/wsdl/GlobalWeather.wsdl');

// Get the proxy class for the service
$stationInfo = $wsdl->getProxy();

This time, what we get back in the $stationInfo variable is an object we can

use immediately. Note also that we’ve made the Session class available. One

trick when dealing with Web services is to store fetched data that you can reuse

in a local cache; this avoids the performance delay involved in fetching the data

from the remote site for each page request.

File: 19.php (excerpt)

// If the Countries session variable exists, use it
if ($session->get('Countries')) {
 // Get the data from the local session variable
 $countries = $session->get('Countries');
} else {
 // Otherwise get a list of countries from the service
 $countries = $stationInfo->listCountries();
 $session->set('Countries', $countries);
}

Here, we attempt to use a session variable to get the list of countries, if it has

been created. Otherwise, we call the listCountries SOAP method available

from the GlobalWeather service. What this means is that we only have to fetch

the data from the remote site once; I don’t think there are likely to be any new

countries appearing while the session is active, so I can justify caching this data,

as it is, essentially, static.

Next, we build an HTML select drop-down menu which we’ll display in a page

shortly:

File: 19.php (excerpt)

// A select box to choose a country
$select = "<select name=\"country\">\n";
foreach ($countries as $country) {
 if ($country == 'switzerland') {
 $select .= "<option selected>" . $country . "</option>\n";
 } else {
 $select .= "<option>" . $country . "</option>\n";
 }
}
$select .= "</select>";

Chapter 2: XML

154

http://live.capescience.com/wsdl/GlobalWeather.wsdl');

Now, we check to see if a user has submitted the GET variable country, and, if

he or she has, we begin building a table while calling the GlobalWeather service’s

searchByCountry SOAP method.

File: 19.php (excerpt)

// Initialize a variable to store a table
$table = '';

// If a country search has been performed...
if (isset($_GET['country']) &&
 in_array($_GET['country'], $countries)) {

 // Start building the table
 $table = "<table>\n";
 $table .= "<tr>\n<th>Airports in " . $_GET['country'] .
 "</th>\n</tr>\n";

 // Use the services searchByCountry() method
 $country = $stationInfo->searchByCountry($_GET['country']);

 // Display the airports in the country as table rows
 foreach ($country as $airport) {
 $table .= "<tr>\n<td>" . $airport->string . "</td>\n</tr>\n";
 }
 $table .= "</table>";
}
?>

Finally, we just need some HTML in which to display everything:

File: 19.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Global Weather Service </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<!-- CSS code omitted here for brevity -->
<body>
<form method="GET" action="<?php echo $_SERVER['PHP_SELF']; ?>">
<table>
<tr>
<td>Pick a Country:</td>

155

How do I consume SOAP Web services with PHP?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

<td><?php echo $select; ?></td>
<td><input type="submit" value=" Search " /></td>
</tr>
</table>
</form>
<?php echo ($table);?>
</body>
</html>

The script begins by displaying a list of countries inside a select menu in a form.

On the form’s submission, a search is performed to find all the airports in that

country. Be warned that if you use this script, countries that have a lot of airports,

such as the United States, will probably cause the script to time out as it takes

too long to fetch all the data. In this case, I’ve primed it to search for airports in

Switzerland, as there are only eleven (see Figure 2.11).

Figure 2.11. Airports in Switzerland

Note that the approach we used to cache data in a session variable could be im-

proved upon with PEAR::Cache_Lite[51], which we’ll see in Chapter 5.

[51] http://pear.php.net/Cache_Lite

Chapter 2: XML

156

http://pear.php.net/Cache_Lite
http://pear.php.net/Cache_Lite

How do I build a SOAP server with PHP?
Now that you know how to build an XML-RPC service and consume a Web

service with the help of its WSDL document, it’s time to look at building a SOAP

server using PEAR::SOAP. Again, I’ll have to skip the details of the SOAP protocol

itself and its supporting technology, WSDL, as these subjects potentially could

be a complete book in themselves (see the section called “Further Reading” at

the end of this chapter). However, you should be able to accomplish a lot without

having a detailed understanding of SOAP and WSDL; when you construct SOAP

clients and servers, the implementation you use (in this case, PEAR::SOAP[52])

should handle these issues for you, and allow you to concentrate on getting the

PHP code correct.

NuSOAP

An alternative to PEAR::SOAP is NuSOAP[53], which, in fact, uses the project PEAR::SOAP

as a basis for its code. In comparison, NuSOAP is a lightweight library that’s easy for those

who have trouble with PEAR to install, and is ideally suited to quickly building clients

and servers based on procedural code.

When constructing Web services, you can make it easier for those who will use the service

by providing a downloadable PHP client based on NuSOAP. NuSOAP also has the

getProxy method, which can be used with WSDL documents to generate a class from

a service on the fly, but its WSDL support is not as complete as PEAR::SOAP at the time

of this writing.

Here, we’ll build the Article Server that you saw in “How do I build an XML-

RPC service with PHP?”, but this time we’ll use SOAP instead of XML-RPC.

Again, we’ll use a class to build the server; when dealing with Web services, it

usually proves a lot easier to write classes rather than procedural code, as the

following example should help make clear.

To begin, we need to make available the PEAR::SOAP server class and the MySQL
class we created in Volume I, Chapter 3. First, as usual, we defined some instance

variables:

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

require_once 'SOAP/Server.php';
/**

[52] http://pear.php.net/package/SOAP

[53] http://dietrich.ganx4.com/nusoap/index.php

157

How do I build a SOAP server with PHP?

http://pear.php.net/package/SOAP
http://dietrich.ganx4.com/nusoap/index.php
http://pear.php.net/package/SOAP
http://dietrich.ganx4.com/nusoap/index.php

 * SOAP Article Server class

 * Builds a SOAP server for the articles database using
 * PEAR::SOAP

 * @access public
 * @package SPLIB
*/
class SOAPArticleServer {
 /**
 * Database access object
 * @access private
 * @var object
 */
 var $db;

 /**
 * Instance of PEAR::SOAP Server
 * @access private
 * @var object
 */
 var $soapServer;

 /**
 * SOAP dispatch map maps SOAP methods to class methods
 * defined here
 * @access private
 * @var array
 */
 var $__dispatch_map;

 /**
 * Type definition is used to define the variable types accepted
 * and returned from the server. The type map is used to
 * generate WSDL
 * @access private
 * @var array
 */
 var $__typedef;

The SOAPArticleServer constructor requires an instance of the MySQL class, as

with the XMLRPCArticleServer. The difference this time is that, rather than the

SOAPArticleServer extending another class, it will create its own instance of

the PEAR::SOAP server class (i.e. it composes the SOAP_Server class rather than

extending it—see Volume I, Chapter 2 for further discussion). The class will be

capable of automatically “starting” the SOAP server itself, which makes it easier

to use. However, if necessary, that behavior can be disabled by passing FALSE to

Chapter 2: XML

158

the constructor as a second argument. After doing this, you’d need to call the

start method yourself.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 /**
 * SOAPArticleServer constructor

 * @param object instance of database access class
 * @param boolean auto start server
 * @access public
 */
 function SOAPArticleServer(&$db, $autostart = true)
 {
 $this->db = &$db;
 $this->defineServer();
 if ($autostart) {
 $this->start();
 }
 }

Now, have a look at the defineServer method, which was called by the construct-

or:

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 /**
 * Sets up the dispatch map and type definition for WSDL
 * generation
 * @return void
 * @access private
 */
 function defineServer()
 {
 $this->__dispatch_map['getArticles'] = array(
 'in' => array(),
 'out' => array('result' => '{urn:sitepoint}Articles')
);
 $this->__dispatch_map['getArticleById'] = array(
 'in' => array('article_id' => 'int'),
 'out' => array('result' => '{urn:sitepoint}ArticleFull')
);
 $this->__typedef['Articles'] = array(
 array('article' => '{urn:sitepoint}ArticleShort')
);
 $this->__typedef['ArticleShort'] = array(
 'article_id' => 'int',
 'title' => 'string',

159

How do I build a SOAP server with PHP?

 'author' => 'string'
);
 $this->__typedef['ArticleFull'] = array(
 'title' => 'string',
 'author' => 'string',
 'body' => 'string'
);
 }

What’s happening here is a little more difficult to explain. First, we’ve defined

the dispatch map, which contains a list of the SOAP method calls that can be

made to this server. For each method, we need to define the input (arguments

the method accepts) and the output (the value returned from the method). For

a primitive type (such as a string or integer value) that’s used as input or output,

this can be defined simply by naming the variable type. You can see we’ve specified

that the article_id argument of getArticleById must be of type int (an in-

teger).

The output types in this example are a little more tricky and really require some

understanding of WSDL to be grasped completely. Simply put, because the results

of the two methods are complex types—an array of articles and a full article, re-

spectively—we need to use a pointer to the full type definition. The definition

for the full article type, for example, is provided by this code:

 $this->__typedef['ArticleFull'] = array(
 'title' => 'string',
 'author' => 'string',
 'body' => 'string'
);

Here, you see the name of the complex type, ArticleFull, and a definition of

the primitive types of which it is composed. A complex type definition can also

contain additional complex types. Careful scrutiny of the code will reveal that

we’ve done this to describe the array of articles returned by getArticles.

All this information enables the PEAR::SOAP server to generate a WSDL docu-

ment that describes the server, allowing clients to benefit from the ease of use

that WSDL affords. It’s worth examining the examples provided with

PEAR::SOAP for further help with setting up the dispatch map and type defini-

tions. If you run into trouble, the best place to get help is the PHP SOAP Mailing

list[54].

[54] http://www.php.net/mailing-lists.php

Chapter 2: XML

160

http://www.php.net/mailing-lists.php
http://www.php.net/mailing-lists.php
http://www.php.net/mailing-lists.php

The getArticles method is almost exactly the same as the one we saw for the

XMLRPCArticleServer class, except that if there’s an error, we return an instance

of SOAP_Fault, which will send a SOAP fault message to the client that called

this server method.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 /**
 * Returns an array of articles
 * @return array of objects
 * @access public
 */
 function getArticles()
 {
 $sql = "SELECT article_id, title, author
 FROM articles
 WHERE public = '1'
 ORDER BY title";
 $result = $this->db->query($sql);

 if ($result->isError()) {
 return new SOAP_Fault('Problem fetching data', 'Server');
 }

 $articles = array();
 while ($row = $result->fetch()) {
 $articles[] = $row;
 }
 return $articles;
 }

The getArticleById method is also the same as what we’ve seen before, except

that it uses SOAP_Fault to return errors.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 /**
 * Return a single article
 * @param int article_id
 * @return object
 * @access public
 */
 function getArticleById($articleID)
 {
 if (!is_numeric($articleID)) {
 return new SOAP_Fault('Expecting numeric article ID',
 'Client');

161

How do I build a SOAP server with PHP?

 }
 $articleID = addslashes($articleID);

 $sql = "SELECT title, author, body
 FROM articles
 WHERE article_id = '$articleID'";
 $result = $this->db->query($sql);

 if ($result->isError()) {
 return new SOAP_Fault('Problem fetching data', 'Server');
 }
 return $row = $result->fetch();
 }
?>

The start method creates and invokes a SOAP_Server object. First, it uses the

addObjectMap method to pass it a copy of the SOAPArticleServer object with

the $this variable. The addObjectMap method registers the available methods

in the SOAPArticleServer with the SOAP_Server object, examining the

$__dispatch_map and $__typedef variables to see how the server should behave.

Along with the object, addObjectMap requires a URL—an XML namespace. In

this example, we’ve elected to pass http://www.sitepoint.com/ as that URL.

Namespaces are used in SOAP to allow different SOAP methods of the same

name to coexist. SOAP clients are required to identify the namespace and a

method when making a request. For example, a SOAP server run by SitePoint

might allow clients to retrieve the ten most popular articles published and the

ten most popular posts on the forums. In both cases, the SOAP methods might

be called topTen but to distinguish between the two, one might be assigned to

the namespace http://www.sitepoint.com/#articles, the other to http://www.site-

point.com/#forum. For simple Web services, however, you shouldn’t need to

worry about this—you can simply use a single, convenient URL, such as the URL

of your site.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 /**
 * Starts the server, telling it to listen for incoming
 * requests.

 * Called automatically is auto start argument not passed as
 * false to constructor
 * @return void
 * @access public
 */
 function start()
 {

Chapter 2: XML

162

http://www.sitepoint.com/
http://www.sitepoint.com/#articles,
http://www.site-point

 $this->soapServer = new SOAP_Server();
 $this->soapServer->addObjectMap($this,
 'http://www.sitepoint.com/');

Next, we look to see what the type is of the incoming request. Incoming SOAP

requests will use the HTTP POST method. In this case, we switch on the

PEAR::SOAP Server using its service method and tell it to read the variable

$GLOBALS['HTTP_RAW_POST_DATA'], which is where it will find the incoming

SOAP request.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 if (isset($_SERVER['REQUEST_METHOD']) &&
 $_SERVER['REQUEST_METHOD'] == 'POST') {
 $this->soapServer->service($GLOBALS['HTTP_RAW_POST_DATA']);

If the page was not requested using the HTTP POST method, we’d instantiate

the PEAR::SOAP_Disco class, which deals with the generation of WSDL docu-

ments.

As a result, if you simply point your browser at the server URL (which generates

a GET request), you’ll see an HTML document telling you where to find the

WSDL description. In practice, the WSDL description can be viewed if you add

?wsdl to the end of the server URL.

File: ExampleApps/SOAPArticleServer.php (in SPLIB) (excerpt)

 } else {
 require_once 'SOAP/Disco.php';
 $disco = new SOAP_DISCO_Server($this->soapServer,
 'SitePoint');
 $disco->_service_desc = "SitePoint Article Server";
 if (isset($_SERVER['QUERY_STRING']) &&
 strcasecmp($_SERVER['QUERY_STRING'], 'wsdl') == 0) {
 header("Content-type: text/xml");
 echo $disco->getWSDL();
 } else {
 echo 'This is the SitePoint SOAP Server. Click
 here for WSDL';
 }
 exit;
 }
 }
}
?>

163

How do I build a SOAP server with PHP?

http://www.sitepoint.com/');

As you can see, the SOAPArticleServer class does most of the work involved in

providing this Web service. All we need now is a script that will connect to the

database and create the server:

File: 20.php

<?php
// Include the MySQL class
require_once 'Database/MySQL.php';

// Include the SOAP Article Server
require_once 'ExampleApps/SOAPArticleserver.php';

// Define variables for MySQL class
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate ArticleServer class
$server = new SOAPArticleServer($db);
?>

Now, a server is not much good without a client to access it. As with XML-RPC,

SOAP is a platform- and language-independent protocol, so you could build a

client in any language (ideally, though, the language would have a SOAP library

of some sort so you won’t have to reinvent the wheel). In “How do I consume

SOAP Web services with PHP?”, you learned how to build a SOAP client in PHP

automatically from a Web service’s WSDL description. Here’s how that would

work for this Web service:

File: 21.php

<?php
// Include PEAR::SOAP Client class
require_once 'SOAP/Client.php';

// Instantiate the SOAP_WSDL class
$wsdl = new SOAP_WSDL('http://localhost/XML/20.php?wsdl');

// Instantiate the ArticleClient class
$articleClient = $wsdl->getProxy();

Chapter 2: XML

164

With the proxy object dynamically generated from the WSDL, we’re ready to

use the Web service:

File: 21.php

// If we're viewing a single article
if (isset($_GET['id'])) {
 // Call the getArticle() SOAP method
 $article = $articleClient->getArticle($_GET['id']);

 // Handle any errors
 if (PEAR::isError($article)) {
 $fault = $article->getFault();
 trigger_error('Fault: ' . $fault->faultcode . ' ' .
 $fault->faultstring);
 $table .= "<tr>\n" .
 "<td>Service unavailable at this time</td>\n" .
 "</tr>\n";
 } else {
 // Build the table
 $table .= "<tr>\n<td class=\"title\">" . $article->title .
 "</td>\n</tr>\n";
 $table .= "<tr>\n<td class=\"author\">by " .
 $article->author . "</td>\n</tr>\n";
 $table .= "<tr>\n<td>" . $article->body . "</td>\n</tr>\n";
 }…

If you’re interested in the rest of the code of this script, you’ll find it in the code

archive for this chapter.

Security and Authentication in Web Services
One point you should be aware of when dealing with Web services is that you

may well need to consider the security implications. Do you want all users (and

their dogs) fetching content from your site and displaying it on theirs? You

probably want some kind of authentication mechanism so that only permitted

sites can fetch your content. If the content that’s being sent is confidential, or

you’re using an authentication system and you’re worried about a user “sniffing”

login credentials, you’ll need to make sure that the conversation is encrypted.

Solving these problems is best handled using the mechanisms that are already

available with HTTP, namely SSL to encrypt conversations, and HTTP authen-

tication (which you saw in Chapter 1) to “wrap up” a Web service in an environ-

ment that requires authentication.

165

Security and Authentication in Web Services

Further Reading
� Introduction to XML: http://www.sitepoint.com/article/930

This article contains everything you need to know about the basics of XML.

� XML Namespaces Explained: http://www.sitepoint.com/article/932

An explanation of what XML namespaces are and why they are important is

provided in this tutorial.

� PHP and XML: Parsing RSS 1.0: http://www.sitepoint.com/article/560

This tutorial looks at what RSS is and how it can be parsed with PHP.

� XPath Basics: http://www.devshed.com/Server_Side/XML/XPath/

This article explains what XPath is about and provides an introduction to

using it.

� XPath Tutorial: http://www.zvon.org/xxl/XPathTutorial/General/examples.html

This is an in-depth tutorial that provides plenty of examples and will bring

your XPath knowledge right up to speed.

� Get XSL To Do Your Dirty Work: http://www.sitepoint.com/article/595

Kevin Yank introduces XSL and shows how it can be used to transform XML

into HTML in this handy guide.

� Transform your PHP with XSLT: http://www.sitepoint.com/article/602

Kevin goes on to provide examples of how to use PHP and XSLT to perform

the transformation in this follow-up piece.

� Web Services Demystified: http://www.sitepoint.com/article/692

This article delivers an introduction to the technologies and terminologies

behind Web services.

� Build your own Web Service with PHP and XML-RPC:

http://www.sitepoint.com/article/827

Chapter 2: XML

166

http://www.sitepoint.com/article/930
http://www.sitepoint.com/article/932
http://www.sitepoint.com/article/560
http://www.devshed.com/Server_Side/XML/XPath/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.sitepoint.com/article/595
http://www.sitepoint.com/article/602
http://www.sitepoint.com/article/692
http://www.sitepoint.com/article/827
http://www.sitepoint.com/article/930
http://www.sitepoint.com/article/932
http://www.sitepoint.com/article/560
http://www.devshed.com/Server_Side/XML/XPath/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.sitepoint.com/article/595
http://www.sitepoint.com/article/602
http://www.sitepoint.com/article/692
http://www.sitepoint.com/article/827

This tutorial puts XML-RPC into context with Web services and provides

some simple examples in PHP.

� A Busy Developer’s Guide to SOAP 1.1: http://www.soapware.org/bdg

This article provides a quick tour of SOAP, which should prove familiar to

those who are comfortable with the XML-RPC specification.

� A Busy Developers Guide to WSDL 1.1:

http://radio.weblogs.com/0101679/stories/2002/02/15/aBusyDevelopersGuideToWsdl11.html

Sam Ruby (the brains behind PHP’s Java extension) gives a quick run down

of WSDL in this tutorial.

� Building XML Web Services with PHP and NuSOAP:

http://www.devarticles.com/art/1/414

Consuming and building Web services with the NuSOAP PHP class is the

focus of this article.

167

Further Reading

http://www.soapware.org/bdg
http://radio.weblogs.com/0101679/stories/2002/02/15/aBusyDevelopersGuideToWsdl11.html
http://www.devarticles.com/art/1/414
http://www.soapware.org/bdg
http://radio.weblogs.com/0101679/stories/2002/02/15/aBusyDevelopersGuideToWsdl11.html
http://www.devarticles.com/art/1/414

168

Alternative Content Types3
As you’re probably aware, (X)HTML is not the only format in which you can

display content on the Internet. Aside from .gif, .jpeg and .png there are a

number of other alternative content types which have proven themselves useful

on the Web, including Adobe’s PDF format and Macromedia’s Flash, as well as

alternative XML formats such as SVG (Scalable Vector Graphics), WML (wireless

markup language), and XUL (Mozilla’s XML User interface Language). Each has

its own arena, through which it can enhance your Website and provide visitors

with an alternative experience.

The subject of this chapter is using PHP to render such formats, perhaps as an

alternative or in addition to your existing (X)HTML based content. What this

chapter should also emphasize is that using classes and layering in your applica-

tions can help you add new functionality to your site while taking advantage of

existing code.

How do I render PDF documents with
PHP?

Adobe’s PDF format has established itself as the de facto standard content type

for displaying documents in a predictable form online. Not all users like to read

long articles on a computer monitor, and PDF provides content in a form that’s

easily printed.

PHP has two extensions (PDFlib[1] and ClibPDF[2]) that make it possible to

render PDF documents, but, unfortunately, both are commercial and require the

payment of some kind of license fee if you’re using them in a commercial applic-

ation. This means that many hosts don’t support them and, as a spoilt PHP coder

who always wants something for nothing, I’m not going to use them, either.

Instead, I’m going to work with R&OS PDF Class[3], a PDF rendering class

written purely in PHP. R&OS PDF is one of two respected PDF generating lib-

raries written in pure PHP, the other being FPDF[4]. The drawback to using

either is that it takes a long time to render the PDF and you may find better

maturity and features in one of the extensions. Yet, both pure PHP libraries are

still very capable of rendering an attractive “printable version” of your content,

and with a little cunning, such as caching the rendered PDF file, the performance

impact can be negated.

PDF To Go…
The R&OS PDF library is a truly outstanding piece of open source code. It’s a

true credit to the author, Wayne Munro, that he’s been so generous as to allow

others to use it for free. The version used here is 0.9 and, although it’s not yet a

full release, it’s very stable and really only lacks a few “nice to have” features such

as PDF bookmarks. Otherwise, it provides a powerful and fairly friendly interface

for creating PDF documents, including the ability to add images, links, shapes,

and much more, not to mention encryption, which requires the reader to provide

a password in order to view the document. R&OS PDF has everything you need

to render PDF “on the fly” with PHP.

The documentation provided with the library is very thorough (and in PDF

format, naturally). Here, we’ll concentrate on an example that’s specifically geared

to rendering examples; the comments on R&OS PDF’s classes will be minimal

(you could write a lot about this class), but detailed enough to get you started

and referring to the documentation for further help.

Be warned that building a PDF document with this class takes some patience, as

you’ll need to position some parts of the page (usually, the content you want

[1] http://www.php.net/pdf

[2] http://www.php.net/cpdf

[3] http://www.ros.co.nz/pdf/

[4] http://www.fpdf.org/

Chapter 3: Alternative Content Types

170

http://www.php.net/pdf
http://www.php.net/cpdf
http://www.ros.co.nz/pdf/
http://www.fpdf.org/
http://www.php.net/pdf
http://www.php.net/cpdf
http://www.ros.co.nz/pdf/
http://www.fpdf.org/

displayed on every page) based on x and y coordinates. The work is greatly sim-

plified by the Cezpdf class, which provides a simpler interface to the base Cpdf
class, and handles things like text positioning—so that a new paragraph will always

appear correctly after the last, for example. As mentioned previously, being

written purely in PHP, R&OS PDF takes a little time to render large documents;

you’ll probably want to consider some kind of caching.

At the end of this section, I’ve provided a strategy that may help you plan your

documents; overall, it’s definitely worth the effort.

The first thing you’ll need to do once you download the R&OS PDF library is

edit the file class.ezpdf.php and comment out line three. Here’s how the line

should look:

File: ThirdParty/rospdf/class.ezpdf.php (in SPLIB) (excerpt)

// include_once('class.pdf.php');

This allows you to place both classes in a subdirectory from which you can access

them without having to add them to your include_path; it also means you have

to include both classes specifically:

File: 1.php (excerpt)

<?php
error_reporting(E_ALL ^ E_NOTICE);

// Include the R&OS PDF Classes
require_once 'ThirdParty/rospdf/class.pdf.php';
require_once 'ThirdParty/rospdf/class.ezpdf.php';

Also notice the call to error_reporting, which is necessary because the R&OS

PDF library produces a lot of notices if you don’t suppress them (see Volume I,

Chapter 10 for more on suppressing errors).

Now, let’s see an example. I’ve created two text files, intro.txt and body.txt
from Kevin Yank’s first Build your own Database Driven Website using PHP &
MySQL article[5]. I’ve made sure these are pure text (i.e. they contain no HTML

formatting), so that we can concentrate on getting the PDF document to look

right before we have to deal with HTML (we’ll tackle that problem later in this

chapter).

[5] http://www.sitepoint.com/article/228

171

PDF To Go…

http://www.sitepoint.com/article/228
http://www.sitepoint.com/article/228
http://class.ezpdf.php
http://ThirdParty/rospdf/class.ezpdf.php
http://include_once('class.pdf.php');
http://ThirdParty/rospdf/class.pdf.php';
http://ThirdParty/rospdf/class.ezpdf.php';
http://www.sitepoint.com/article/228

File: 1.php (excerpt)

// Some information about the article
$title = 'Build your own Database Driven Website using ' .
 'PHP & MySQL';
$author = 'Kevin Kank';
$producer = 'SitePoint';
$articleUrl = 'http://www.sitepoint.com/article/228';
$date = 'October 1st 2001';

// Get the intro from a text file
$intro = file('intro.txt');
$intro = implode('', $intro);

// Get the body from a text file
$body = file('body.txt');
$body = implode('', $body);

This code sets up the environment in a way that will simulate a single database

record later.

Now, we start up the PDF generation class. It uses an A4 page size by default.

File: 1.php (excerpt)

// Start the PDF document (A4 size x:595.28 y:841.89)
$pdf = &new Cezpdf();

Next, let’s add the document information, which is available in Acrobat Reader

from the File, Document Properties, Summary menu item:

File: 1.php (excerpt)

// Add document information (File > Document Properties > Summary)
$pdf->addInfo('Title', $title);
$pdf->addInfo('Author', $author);
$pdf->addInfo('Producer', $producer);
$pdf->addInfo('CreationDate', $date);

Next, we set the page margins relative to the outer edges of the page:

File: 1.php (excerpt)

// Set the page margins
$pdf->ezSetMargins(40, 40, 155.28, 90);

The class makes all measurements in points; a single point is 1/72 of an inch.

This information is important when we’re working out the coordinates to place

elements on the page.

Chapter 3: Alternative Content Types

172

http://www.sitepoint.com/article/228';

The Origin is at the Bottom Left

The position x = 0, y = 0 is at the bottom left side of the page. Make sure

you remember that—it can be confusing, as we read from top to bottom.

Next, we create an object and store it in a variable, $headfoot. Objects created

by the openObject method are used to create elements that will repeat throughout

the document. On calling the openObject method, the class stops adding content

to the main document, and adds content to the object instead. Here, we’ve created

an object that will display the SitePoint logo at the top right of the page, as well

as a horizontal line at the top and bottom of each page. The class will continue

to add to the object until we call the closeObject method, at which point it re-

turns to work on the main document.

File: 1.php (excerpt)

// Set up header and footer as a recurring object
$headfoot = $pdf->openObject(); // Create object
$pdf->saveState(); // Save document state
$pdf->addJpegFromFile('sitepoint_logo.jpg', 430, 813, 70, 20);
$pdf->setStrokeColor(0, 0.2, 0.4); // set line color
$pdf->setLineStyle(2, 'round'); // set line style
$pdf->line(155.28, 811.89, 505.28, 811.89); // Add top line
$pdf->line(155.28, 30, 505.28, 30); // Add bottom line
$pdf->restoreState(); // Restore document state
$pdf->closeObject(); // Close the object

Note that I’ve used the saveState method to allow me to make temporary

changes to colors, fonts and so on. When I’m done, the restoreState method

lets me return to the original style values automatically.

Next I’ll create another object which is a link which will appear on the bottom

right of every even page, showing where the original HTML version can be found.

Once created, I’ll add both objects to the document with the addObject method.

File: 1.php (excerpt)

// Set up bottom link object
$bottomUrl = $pdf->openObject(); // Create object
$pdf->saveState(); // Save document state
$pdf->selectFont('rospdf/fonts/Helvetica.afm'); // Select font
$pdf->addText(155.28, 24, 6, 'Found at: ' . $articleUrl);
$pdf->restoreState(); // Restore document state
$pdf->closeObject(); // Close the object

// Add the $headfoot object to every page (all,odd or even)

173

PDF To Go…

$pdf->addObject($headfoot, 'all'); // Add to 'all' pages

// Add the bottom URL to even pages
$pdf->addObject($bottomUrl, 'even'); // Add to 'even' pages

The following block of code builds a title page:

File: 1.php (excerpt)

// Add the title page
$pdf->selectFont('rospdf/fonts/Helvetica-Bold.afm');
$pdf->ezSetY(650); // Set current Y position
$pdf->saveState(); // Save document state
$pdf->setColor(1, 0.4, 0); // Change the text color
$pdf->ezText($title, 20, array('justification' => 'center'));
$pdf->restoreState(); // Restore state (color returns to black)
$pdf->ezSetDy(-50); // Move down 50
$pdf->ezText('by ' . $author, 15,
 array('justification' => 'center')); // Author
$pdf->ezSetDy(-50); // Move down 50
$pdf->ezText("<c:alink:" . $articleUrl . ">" . $articleUrl .
 "</c:alink>", 11,
 array('justification' => 'centre'));
$pdf->ezSetDy(-50); // Move down 50
$pdf->ezText($date, 13, array('justification' => 'center'));
$pdf->ezSetDy(-50); // Move down 50
$pdf->selectFont('rospdf/fonts/Helvetica.afm'); // Change font
$pdf->ezText($intro, 10, array('justification' => 'full'));
$pdf->ezNewPage(); // New page

Notice that where we add the link, we use a special markup to wrap the text.

This is a syntax provided by the R&OS PDF library to allow us to use special

callback functions within the class. The c:alink tag is handled by an in-built

method, called alink, that adds external links to text. You can define more tags

like this by extending the Cezpdf class with another class and defining methods

that correspond to tag names.

Also worthy of note is the use of the ezSetY and ezSetDy methods. The ezSetY
method sets an absolute Y position (remember, 0 is at the bottom of the page)

at which to begin placing content. The ezSetDy method moves the cursor vertic-

ally, relative to its last position (usually you provide a negative number to move

the cursor down).

Chapter 3: Alternative Content Types

174

Where do I get .afm fonts?

Get more .afm fonts from the Adobe FTP site:

ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/

Finally, we start up the page number (after adding the title page) and add the

body text:

File: 1.php (excerpt)

// Start the rest of the document
$pdf->ezStartPageNumbers(505, 24, 6); // Page numbering
$pdf->selectFont('rospdf/fonts/Helvetica.afm'); // Change font
$pdf->ezText($body, 10, array('justification' => 'full')); // Body

// Display the document
$pdf->ezStream();
?>

The library respects the new line character, so basic formatting is preserved. The

ezStream method sends the finished PDF document straight to the Web browser,

taking care to send the right HTTP headers. The alternative is the output
method, which returns the document as a string that can be saved as a file.

Programming Tip

If your scripts automatically send HTTP headers that tell the browser not

to cache pages, this causes problems when Internet Explorer renders PDF

documents on the fly with R&OS PDF. Internet Explorer has a strange way

of caching downloaded files, which involves making two requests for a file.

There are two solutions. You can avoid rendering PDF straight to the browser,

instead using the output method to store it as a file that you can link to

with HTML. Alternatively, make sure you don’t send any headers that in-

struct the browser not to cache; rather, send a Last-Modified header set

to the present time. See Chapter 5 for full details.

Figure 3.1 shows what the page generated by this example will look like in Acrobat

Reader.

175

PDF To Go…

ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/
http://ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/

Figure 3.1. PDF on the Fly

PDF Strategy
To summarize the code above into a more general strategy for creating documents

with R&OS PDF,

Chapter 3: Alternative Content Types

176

1. Begin by defining the document margins; take note of the corresponding X

and Y coordinates defining the edges of the margins, bearing in mind the

paper size you’re using.

2. Create objects for any elements that will repeat throughout the document.

Headers and footers will generally appear outside the margins you’ve defined.

3. If you plan to have a title page, it’s likely you won’t want the headers and

footers to appear there. Make sure you build the title page next, and make

allowances to start page numbering, for example, afterwards.

4. Add the page numbering first, then start building the body of the document.

How do I convert HTML to PDF?
Before we can jump into rendering PDF straight from the content in our database,

there’s a problem we have to overcome. The content we’ve stored contains HTML

markup that we can’t simply “drop” into a PDF document. At the same time,

the HTML is there for a good reason; it provides useful formatting for the content,

positioning text and images correctly, adding links, and so on. We don’t want to

lose this formatting information, so we can’t just strip it out; rather, we need to

use it somehow to lay out the PDF document. For the solution, we turn

toPEAR::XML_HTMLSax[7]. This is a SAX-like parser for “badly formed” XML

documents, which will allow us to strip the HTML out of the content and at the

same time take advantage of the formatting information it contains. The version

used here was 2.0.2.

Parsing HTML with SAX?!?
HTML does not obey the rules of XML; by XML standards, most HTML code

is badly formed. The basic specification allows for tags that are not closed and

attributes that have no values. Worse still, Web browsers allow us to get away

with murder, such as violating the tag nesting and case sensitivity rules (e.g.

<I>Text</I>). Attempt to parse HTML with a normal XML parser, and

it will pass you back error messages in disgust. In other words, the native SAX

XML extension that comes with PHP won’t do.1

[7] http://pear.php.net/XML_HTMLSax
1The good news is that newer incarnations of DOM will be able to parse HTML, but right now that’s

neither stable, nor widely available on common Web hosts.

177

How do I convert HTML to PDF?

http://pear.php.net/XML_HTMLSax
http://pear.php.net/XML_HTMLSax

But if a Web browser can understand HTML, why shouldn’t you be able to parse

it with PHP? You can! PEAR::XML_HTMLSax will let you get away with having

a badly formed HTML document. As a parser, the XML_HTMLSax class guarantees

to parse anything you give it without a word of complaint. The downside of this

is that there are no warnings should something be seriously wrong with the HTML

code. This places a greater burden on you to make sure the document is valid

before you parse it.

Make sure you read the SAX related solutions in Chapter 2 for a general under-

standing of the principles behind SAX.

To see XML_HTMLSax in action, let’s begin with a chunk of HTML stored in our

database:

<p>If you've ever trawled the PHP listings over at Hotscripts in
search of a content management system to save you from writing
your own, you've probably run into
eZ publish, a PHP-based CMS
application, and thought <i>"Wow!"</i> Jubilant, you tried
to install it... to no avail. Desperately, you tried reading the
code, only to discover it made no sense whatsoever. Finally, you
skulked away to a quiet corner to lick your wounds, resorting to
PHP Nuke instead.

<p>This series is all about eZ publish and why it deserves the
title of "PHP's killer app." We'll start from the ground up:
first, we'll install eZ publish in your development environment.

You’ll notice this exhibits two of the classic HTML problems; the p tags are not

closed and we have some incorrectly nested tags here:

<i>"Wow!"</i>

Here’s a simple example of how to parse it with XML_HTMLSax. First, as always,

we need a class to act as the handler for XML_HTMLSax:

File: XML/ParseHTML.php (in SPLIB) (excerpt)

/**
 * ParseHTML class demonostrates simple parsing of HTML using
 * PEAR::XML_HTMLSax
 *
Defines handlers for responding to HTML elements

 * Requires PEAR::XML_HTMLSax
 * @package SPLIB
 * @access public
 */

Chapter 3: Alternative Content Types

178

http://href="http://developer.ez.no/">eZ

class ParseHTML {
 /**
 * Stores the parser
 * @var XML_HTMLSax instance of PEAR::XML_HTMLSax
 * @access private
 */
 var $parser;
 /**
 * ParseHTML Constructor sets up the parser
 * @access public
 */
 function ParseHTML()
 {
 $this->parser = &new XML_HTMLSax();
 $this->parser->set_object($this);
 $this->parser->set_element_handler('open', 'close');
 $this->parser->set_data_handler('data');
 }

In the constructor for ParseHTML, we set up XML_HTMLSax, telling it that we’re

using the current object instance, $this, as the handler object, and the methods

open, close, and data to act as “listeners” for open and closing tags and the data

between them.

Next, we’ll define the handler methods themselves, as well as the method parse,

which simply calls the XML_HTMLSax method of the same name:

File: XML/ParseHTML.php (in SPLIB) (excerpt)

 /**
 * Opening tag event "listener"
 * @param XML_HTMLSax the parser
 * @param string HTML tag name
 * @param array of tag attributes
 * @return void
 * @access private
 */
 function open($parser, $tag, $attr)
 {
 echo '<hr />Opening Tag: ' . $tag . '
';
 if (count($attr) > 0) {
 echo '...has attributes: <pre>';
 print_r($attr);
 echo '</pre>';
 }
 }

179

Parsing HTML with SAX?!?

 /**
 * Closing tag event "listener"
 * @param XML_HTMLSax the parser
 * @param string HTML tag name
 * @return void
 * @access private
 */
 function close($parser, $tag)
 {
 echo 'Closing Tag: ' . $tag . '
';
 }
 /**
 * Character data event "listener"
 * @param XML_HTMLSax the parser
 * @param string character data
 * @return void
 * @access private
 */
 function data($parser, $data)
 {
 echo 'Character data: ' . $data . '
';
 }
 /**
 * Instructs the parser to parse some HTML
 * @param string HTML to parser
 * @return void
 * @access public
 */
 function parse($html)
 {
 $this->parser->parse($html);
 }
}

Now, to use the class:

File: 2.php

<?php
// Include the PEAR::XML_HTMLSax
require_once 'XML/XML_HTMLSax.php';

// Include the ParseHTML class
require_once 'XML/ParseHTML.php';

// A Classic violation of XML rules...
$html = <<<EOD

Chapter 3: Alternative Content Types

180

<p>If you've ever trawled the PHP listings over at Hotscripts in
search of a content management system to save you from writing
your own, you've probably run into
eZ publish, a PHP-based CMS
application, and thought <i>"Wow!"</i> Jubilant, you tried
to install it... to no avail. Desperately, you tried reading the
code, only to discover it made no sense whatsoever. Finally, you
skulked away to a quiet corner to lick your wounds, resorting to
PHP Nuke instead.

<p>This series is all about eZ publish and why it deserves the
title of "PHP's killer app." We'll start from the ground up:
first, we'll install eZ publish in your development environment.
EOD;

// Create the parser
$parseHTML = new ParseHTML();

// Parse the HTML
$parseHTML->parse($html);
?>

The output at the moment is simply a breakdown of the HTML document as

XML_HTMLSax sees it, but we can use this approach to “respond” to HTML tags

in a manner that preserves the formatting as we render a PDF document.

Laying the Foundations
Before we set to work generating PDF from the content in our database, we need

some classes that will do the work of fetching articles in the first place, called

Articles and Article. The Articles class will fetch data from the database,

while the Article class will store the data and provide an API for fetching it.

With this in place, we can then render on top of the data stored by the Article
class any content type we like.

Looking at the public methods in the Articles class, the constructor takes an

instance of the MySQL class from Volume I, Chapter 3 that will be used by the

methods to fetch data:

File: ExampleApps/Articles.php (in SPLIB) (excerpt)

 /**
 * Articles constructor
 * @param object instance of MySQL class
 * @access public

181

Laying the Foundations

http://href="http://developer.ez.no/">eZ

 */
 function Articles(&$db)
 {
 $this->db = &$db;
 }

The getArticles method is used to tell the class to get a selection of articles. It

can take the optional argument $numRows (the number of rows to fetch) and the

argument $startRow, which is the row number from which to begin fetching.

Internally, this method builds an array from the result, each element of the array

corresponding to a row of article data. What’s important to notice is that this

method doesn’t actually return any data—it simply prepares it for retrieval via

another method.

File: ExampleApps/Articles.php (in SPLIB) (excerpt)

 /**
 * Fetches a list of articles into the local array
 * @param int (optional) number of rows to fetch
 * @param int (optional) row to start from
 * @return boolean
 * @access public
 */
 function getArticles($numRows = false, $startRow = false)
 {
 $sql = "SELECT
 article_id, title, intro, body,
 author, published, public
 FROM articles
 ORDER BY published DESC";

 if ($numRows && $startRow) {
 $sql .= " LIMIT $startRow, $numRows";
 } else if ($numRows) {
 $sql .= " LIMIT $numRows";
 }

 $result = $this->db->query($sql);

 if ($result->isError()) {
 trigger_error('Articles::fetchArticles: ' .
 'Unable to fetch articles');
 return FALSE;
 }

 while ($row = $result->fetch()) {

Chapter 3: Alternative Content Types

182

 $this->articles[] = $row;
 }

 return TRUE;
 }

The getArticle method instructs the Articles class to collect a single article

from the database, given its article_id, then store the result in the internal array.

File: ExampleApps/Articles.php (in SPLIB) (excerpt)

 /**
 * Fetches a single article into the local array
 * @param int article_id
 * @return boolean
 * @access public
 */
 function getArticle($articleID)
 {
 if (!is_numeric($articleID)) {
 trigger_error(
 'Articles::fetchArticle: Numeric value for ' .
 '$articleID required');
 }

 $articleID = addslashes($articleID);

 $sql = "SELECT
 article_id, title, intro, body,
 author, published, public
 FROM articles
 WHERE article_id = '$articleID'";
 $result = $this->db->query($sql);

 if ($result->isError()) {
 trigger_error('Articles::fetchArticle: ' .
 'Unable to fetch article');
 return FALSE;
 }

 $this->articles[] = $result->fetch();
 return TRUE;
 }

The fetch method acts as the iterator for fetching the articles from the array

that the Articles class has built. It returns a single object instance of the Article
class (see below), or FALSE when the end of the list has been reached.

183

Laying the Foundations

File: ExampleApps/Articles.php (in SPLIB) (excerpt)

 /**
 * Returns the current article from the internal array
 * and moves the internal array point forward
 * @return object instance of Article
 * @access public
 */
 function fetch()
 {
 $article = each($this->articles);
 if ($article) {
 return new Article($article['value']);
 } else {
 reset($this->articles);
 return FALSE;
 }
 }

Note that the SQL queries in the above class are designed to be used with the

articles table defined in Volume I, Chapter 3. The SQL queries to create this

table and fill it with sample data may be found in the sql directory of the code

archive.

The Article class is simply a store for the article data. The constructor stores in

local variables all the article data it is given:

File: ExampleApps/Article.php (in SPLIB) (excerpt)

 /**
 * Article constructor
 * @param array data from database contain an Article
 * @access public
 */
 function Article($data)
 {
 $this->article_id = isset($data['article_id']) ?
 $data['article_id'] : FALSE;
 $this->title = isset($data['title']) ?
 $data['title'] : FALSE;
 $this->title = isset($data['intro']) ?
 $data['intro'] : FALSE;
 $this->body = isset($data['body']) ?
 $data['body'] : FALSE;
 $this->author = isset($data['author']) ?
 $data['author'] : FALSE;
 $this->published = isset($data['published']) ?

Chapter 3: Alternative Content Types

184

 $data['published'] : FALSE;
 $this->public = isset($data['public']) ?
 $data['public'] : FALSE;
 }

This is followed by the methods that fetch the data from the class:

File: ExampleApps/Article.php (in SPLIB) (excerpt)

 /**
 * Returns the article_id
 * @return int
 * @access public
 */
 function id()
 {
 return $this->article_id;
 }

 /**
 * Returns the article title
 * @return string
 * @access public
 */
 function title()
 {
 return $this->title;
 }

 /**
 * Returns the article intro
 * @return string
 * @access public
 */
 function intro()
 {
 return $this->intro;
 }

 /**
 * Returns the article title
 * @return string
 * @access public
 */
 function body()
 {
 return $this->body;

185

Laying the Foundations

 }

 /**
 * Returns the author
 * @return string
 * @access public
 */
 function author()
 {
 return $this->author;
 }

 /**
 * Returns the data published like "October 1st 2001"
 * @param string (optional) date format
 * @return string
 * @access public
 */
 function published($format = 'F jS Y')
 {
 return date($format, $this->published);
 }

 /**
 * Whether the article is "public" or not
 * @return boolean
 * @access public
 */
 function public()
 {
 return $this->public == 1 ? TRUE : FALSE;
 }
}
?>

The accessor methods above give us an API to the data in the article. Although

this class is relatively simplistic right now, the reason we made it a class was to

give us an easy way to apply transformations on the data, such as those made

with the published method, which converts the UNIX timestamp stored in the

database to a human-readable timestamp.

Putting it Together
Now that we have classes to help us access the data and, from earlier in the

chapter, a general design for our PDF documents, we need a class to act as the

Chapter 3: Alternative Content Types

186

interface to R&OS PDF and reduce the process of building the PDF document

to a few simple methods. We can then use these methods in conjunction with

XML_HTMLSax to render documents directly from the content we’ve stored in the

database.

This class is designed specifically for the PDF format we designed earlier in this

chapter, but it shouldn’t be difficult to modify it for your own purposes, while

keeping the method names the same. Here are the key parts of the class.

The constructor takes the URL at which the original article can be found, as well

as an optional value for the fonts and image directory paths.

File: ExampleApps/ArticlePDF.php (in SPLIB) (excerpt)

 /**
 * ArticlePdf constructor
 * @param string URL of the article
 * @param string font path
 * @param string image path
 */
 function ArticlePdf($url, $fontPath, $imagePath = '')
 {
 $this->articleUrl = $url;
 $this->fontPath = $fontPath;
 $this->imagePath = $imagePath;
 $this->pdf = &new Cezpdf();
 $this->pdf->ezSetMargins(40, 40, 155.28, 90);
 $this->addObjects();
 }

The addInfo method is used to add the Acrobat summary information about the

document.

File: ExampleApps/ArticlePDF.php (in SPLIB) (excerpt)

 /**
 * Adds the PDF summary information
 * @param string title of document
 * @param string author of document
 * @param string producer of document
 * @param string date
 * @return void
 * @access public
 */
 function addInfo($title, $author, $producer, $date)
 {
 $info = array (

187

Putting it Together

 'Title' => $title,
 'Author' => $author,
 'Producer' => $producer,
 'CreationDate' => $date
);
 $this->pdf->addInfo($info);
 }

The addTitlePage method builds the first page of the document.

File: ExampleApps/ArticlePDF.php (in SPLIB) (excerpt)

 /**
 * Adds the title page
 * @param string title of document
 * @param string author of document
 * @param string date
 * @param string introduction
 * @return void
 * @access public
 */
 function addTitlePage($title, $author, $date, $intro) {
 $this->pdf->selectFont($this->fontPath .
 'Helvetica-Bold.afm');
 $this->pdf->ezSetY(650);
 $this->pdf->saveState();
 $this->pdf->setColor(1, 0.4, 0);
 $this->pdf->ezText($title, 20,
 array('justification' => 'center'));
 $this->pdf->restoreState();
 $this->pdf->ezSetDy(-50);
 $this->pdf->ezText('by ' . $author, 15,
 array('justification' => 'center'));
 $this->pdf->ezSetDy(-50);
 $this->pdf->ezText("<c:alink:" . $this->articleUrl . ">" .
 $this->articleUrl . "</c:alink>",
 11, array('justification' => 'centre'));
 $this->pdf->ezSetDy(-50);
 $this->pdf->ezText($date, 13,
 array('justification' => 'center'));
 $this->pdf->ezSetDy(-50);
 $this->pdf->selectFont($this->fontPath . 'Helvetica.afm');
 $this->pdf->ezText($intro, 10,
 array('justification' => 'full'));
 $this->pdf->ezNewPage();
 $this->pdf->ezStartPageNumbers(505, 24, 6);
 }

Chapter 3: Alternative Content Types

188

The addText method wraps the ezText method to provide a method for use with

XML_HTMLSax (coming shortly).

File: ExampleApps/ArticlePDF.php (in SPLIB) (excerpt)

 /**
 * Adds the text to the page
 * @param string text
 * @param int (optional) size of text
 * @param string (optional) justification
 * @return void
 * @access public
 */
 function addText($text, $size = 10, $justification = 'full')
 {
 $this->pdf->ezText($text, $size,
 array('justification' => $justification));
 }

The display method wraps the ezStream method, which sends the PDF document

to the browser. It provides a filename that will be given to the document once

the format of that filename is checked.

File: ExampleApps/ArticlePDF.php (in SPLIB) (excerpt)

 /**
 * Sends the PDF document to the visitors browser
 * @param string (optional) filename
 * @return void
 * @access public
 */
 function display($fileName = 'file.pdf')
 {
 $fileName = explode(',', chunk_split($fileName, 1, ','));
 foreach ($fileName as $key => $char) {
 if (preg_match("/^[A-Za-z0-9_\.]$/",
 $char, $matches) == 0) {
 unset($fileName[$key]);
 }
 }
 $fileName = implode('', $fileName);
 $options = array('Content-Disposition' => $fileName);
 $this->pdf->ezStream($options);
 }

As you can see, the process of building the PDF document is now wrapped up

in three simple methods, plus the constructor, and precludes any code that uses

189

Putting it Together

the class from having to work directly with the R&OS PDF API. As well as

making it much easier to generate documents to our design, this also helps us

should we decide we want to switch to FPDF, or one of the native PHP extensions.

We can use an adapter pattern (see Chapter 7) to deal with the specifics of those

libraries, while still conforming to the ArticlePDF class’s API, which means that

any code using ArticlePDF shouldn’t require much modification.

Note that in the case of R&OS PDF, the author provides a special markup for

constructing links in the PDF document that’s too tempting to ignore, so the

principle of building a library-independent API for generating PDF document

does not quite hold true here. However, with some further effort you could, no

doubt, make it possible to switch libraries, should you need to, with minimal re-

quirement for code modifications.

Let’s take ArticlePDF for a little test drive:

File: 3.php

<?php
// Include the PdfArticle class
require_once 'ExampleApps/ArticlePDF.php';

// Define font path - MODIFY THIS!!!
$fontPath = 'c:/htdocs/phpanth/SPLIB/ThirdParty/rospdf/fonts/';

// Some information about the article
$title = 'Build your own Database Driven Website using ' .
 'PHP & MySQL';
$author = 'Kevin Kank';
$producer = 'SitePoint';
$articleUrl = 'http://www.sitepoint.com/article/228';
$date = 'October 1st 2001";

// Get the intro from a text file
$intro = file('intro.txt');
$intro = implode('', $intro);

// Get the body from a text file
$body = file('body.txt');
$body = implode('', $body);

$pdfArticle = new ArticlePDF($articleUrl, $fontPath);
$pdfArticle->addInfo($title, $author, $producer, $date);
$pdfArticle->addTitlePage($title, $author, $date, $intro);
$pdfArticle->addText($body);

Chapter 3: Alternative Content Types

190

http://www.sitepoint.com/article/228';

$pdfArticle->display();
?>

With that class ready, next, we need to put together a handler class that will use

XML_HTMLSax and listen for HTML tags. This class will also use the ArticlePDF
class and, as it encounters HTML tags, will use the ArticlePDF API to generate

the PDF document. The handler itself builds up a text buffer of the HTML it

has parsed, adding any R&OS PDF markup for links, bold, and italic tags as it

finds them. The text buffer will then be committed to the document every time

an opening p or br tag is encountered. HTML header tags (e.g. h5) will be treated

as a special case, as they’re committed to the document immediately.

Here are the key parts of this class from the point of view of how we’d use it.

The constructor takes an instance of the ArticlePDF class as its only parameter.

This allows us to use ArticlePDF to start creating the document (such as adding

the title page) outside of HTMLtoPDF, then pass it to the constructor in preparation

for writing HTML content to the PDF. The constructor instantiates XML_HTMLSax
as we saw before with the ParseHTML class.

File: XML/HTMLtoPDF.php (in SPLIB) (excerpt)

 /**
 * HTMLtoPDF Constructor
 * @param ArticlePDF instance of ArticlePDF
 * @access public
 */
 function HTMLtoPDF(&$articlePDF)
 {
 $this->articlePDF = &$articlePDF;
 $this->parser = new XML_HTMLSax();
 $this->parser->set_object($this);
 $this->parser->set_element_handler('open', 'close');
 $this->parser->set_data_handler('data');
 }

The two remaining public methods are the parse method, which tells the parser

to begin work, and the getPdf method, which returns the completed document

after parsing is finished.

File: XML/HTMLtoPDF.php (in SPLIB) (excerpt)

 /**
 * Triggers parsing and converts newlines to <br /%gt;
 * @param string HTML document
 * @return void
 * @access public

191

Putting it Together

 */
 function parse($html)
 {
 $this->parser->parse(nl2br($html));
 }

 /**
 * Adds any remaining text in the buffer then
 * returns the ArticlePDF object
 * @return object instance of ArticlePDF
 * @access public
 */
 function getPdf()
 {
 $this->articlePDF->addText($this->buffer);
 return $this->articlePDF;
 }

The internals of the class—the handler methods themselves—look like this:

File: XML/HTMLtoPDF.php (in SPLIB) (excerpt)

 /**
 * Opening tag event "listener"
 * @param XML_HTMLSax instance of the parser
 * @param string HTML tag name
 * @param array of tag attributes
 * @return void
 * @access private
 */
 function open($parser, $tag, $attr)
 {
 $tag = strtolower($tag); // Convert tag to lower case
 switch ($tag) {
 case 'a':
 if (isset($attr['href'])) {
 $this->open = '<c:alink:' . $attr['href'] . '>';
 $this->close = '</c:alink>';
 }
 break;
 case 'b':
 $this->open = '';
 $this->close = '';
 break;
 case 'br':
 $this->articlePDF->addText($this->buffer);
 $this->buffer = '';

Chapter 3: Alternative Content Types

192

 break;
 case 'h1':
 $this->header = '12';
 break;
 case 'h2':
 $this->header = '10';
 break;
 case 'h3':
 $this->header = '8';
 break;
 case 'h4':
 $this->header = '6';
 break;
 case 'h5':
 $this->header = '4';
 break;
 case 'i':
 $this->open = '<i>';
 $this->close = '</i>';
 break;
 case 'p':
 $this->articlePDF->addText($this->buffer);
 $this->buffer = '';
 break;
 case 'strong':
 $this->open = '';
 $this->close = '';
 break;
 }
 }
 /**
 * Character data event "listener"
 * @param XML_HTMLSax instance of the parser
 * @param string character data
 * @return void
 * @access private
 */
 function data($parser, $data)
 {
 $data = str_replace(
 array('>', '<', '"', '&', ' '),
 array('>', '<', '"', '&', ' '),
 $data);
 if (isset($this->open) && isset($this->close)) {
 $this->buffer .= $this->open . $data . $this->close;
 $this->open = NULL;

193

Putting it Together

 $this->close = NULL;
 } else if (isset($this->header)) {
 $this->articlePDF->addText($data, 10 + $this->header,
 'left');
 $this->header = NULL;
 } else {
 $this->buffer .= $data;
 }
 }
 /**
 * Closing tag event "listener"
 * @param XML_HTMLSax instance of the parser
 * @param string HTML tag name
 * @return void
 * @access private
 */
 function close($parser, $tag)
 {
 // Do nothing
 }

We won’t go into the handlers too deeply here, but suffice it to say that the

strategy we’ve employed deals with tags in either the open or data handler, ignor-

ing the close handler. This helps us cope with HTML such as unclosed p and

br tags.

Now we’re ready. Using together all the classes we’ve defined so far, we have a

collection of code that allows us to render articles as both HTML and PDF:

File: 4.php (excerpt)

<?php
// No time limit for large documents
set_time_limit(0);

// Include the MySQL class
require_once 'Database/MySQL.php';

// Include the two data fetching article classes
require_once 'ExampleApps/Articles.php';

// Include the ArticlePDF class
require_once 'ExampleApps/ArticlePDF.php';

// Include the HTMLtoPDF converter
require_once 'XML/HTMLtoPDF.php';

Chapter 3: Alternative Content Types

194

// Define font path - MODIFY THIS!!!
$fontPath = 'c:/htdocs/phpanth/SPLIB/ThirdParty/rospdf/fonts/';

First, we set the time limit of the execution of this code to unlimited; rendering

large PDF documents can take more than PHP’s default thirty-second execution

time.

Then, we include all the classes we need. Some of these include other classes in

turn, such as the R&OS PDF classes and PEAR::XML_HTMLSax, so that a total

of eight classes are involved in the process of turning our HTML-based content

into a PDF document. Despite the number, the code that uses the classes is very

simple and again exemplifies why object oriented programming is a Good Thing[8];

in developing each class, we were able to focus on each problem we were trying

to solve “in a box”, without having to struggle through reams of procedural code.

The classes hide the complexity of the problem behind their API, making the

code that finally delivers a document to an end user fairly simple.

Next, we set up a couple of variables that we need for PDF generation, then we

start up the MySQL and Articles classes, which allow us to fetch articles from

the database.

File: 4.php (excerpt)

// Define variables for MySQL class
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Settings for PDF generation
$baseUrl =
'http://localhost/phpanth/AlternativeContentTypes/4.php?id=';
$producer = 'SitePoint';

// Instantiate MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate Articles class
$articles = new Articles($db);

We use simple if-else constructs to decide which content to display. In a pro-

duction environment, we might consider building a class to handle these decisions,

[8] http://info.astrian.net/jargon/terms/g/Good_Thing.html

195

Putting it Together

http://info.astrian.net/jargon/terms/g/Good_Thing.html
http://localhost/phpanth/AlternativeContentTypes/4.php?id=';
http://info.astrian.net/jargon/terms/g/Good_Thing.html

but for this example if-elses will suffice. As you can see, if the URL ends with

?id=3&mime=pdf, it will display the article with the ID 3 in PDF format.

File: 4.php (excerpt)

// If viewing an article
if (isset($_GET['id'])) {

 // Get the article from the client class
 if ($articles->getArticle($_GET['id'])) {

 // Fetch the article object
 $article = $articles->fetch();

 // If PDF format has been requested
 if (isset($_GET['mime']) && $_GET['mime'] == 'pdf') {

Here’s how the PDF generation code works:

File: 4.php (excerpt)

 // Instantiate the PdfArticle class
 $articlePDF = &new ArticlePDF($baseUrl . $article->id(),
 $fontPath);

 // Add the "meta" information
 $articlePDF->addInfo($article->title(),
 $article->author(),
 $producer,
 $article->published());

 // Add the title page
 $articlePDF->addTitlePage($article->title(),
 $article->author(),
 $article->published(),
 $article->intro());

 // Instantiate the HTMLtoPDF class
 $htmlToPdf = new HTMLtoPDF($articlePDF);

 // Parse the article body
 $htmlToPdf->parse($article->body());

 // Get back the ArticlePDF object
 $articlePDF = $htmlToPdf->getPdf();

 // Display the PDF document
 $articlePDF->display($article->title() . '.pdf');

Chapter 3: Alternative Content Types

196

 // Terminate execution to avoid mixed headers
 exit();
 } else {

It’s very simple. You can examine the rest of the code on your own, as it’s pure

HTML and very similar to examples we’ve seen in earlier chapters, such as

Chapter 2.

We now have the option of displaying either HTML, as shown in Figure 3.2…

Figure 3.2. Article as HTML

…or PDF, as shown in Figure 3.3!

197

Putting it Together

Figure 3.3. Article as PDF

Chapter 3: Alternative Content Types

198

It’s also important to realize that creating the correct layers in our application

helped us reuse the data we fetched from the database to deliver multiple (and

radically different) content types. This organization is illustrated in Figure 3.4.

Figure 3.4. Layered Application

199

Putting it Together

Using the layering in this application, we were able to take the data delivered

from the application logic tier and render both HTML and PDF at the presentation

logic tier. For a more detailed discussion of layering and N-Tier applications, see

Chapter 6.

An alternative, and potentially more powerful approach to that presented here

would be to take advantage of XSL Formatting Objects[9] (XSL-FO), an XML

standard designed to provide page-based formatting for XML documents. By

using XML_HTMLSax to convert the stored HTML into XML-FO formatting instruc-

tions, you could use an XSL-FO processor, such as the Apache FOP[10]

(Formatting Objects Processor) project, to render it directly to PDF format. You

could even get away from XML_HTMLSax, thanks to an interesting open source

project that converts HTML to XSL-FO, HTML2FO[11], which is written in

C++ and is available for most platforms. To use Apache FOP in PHP, you can

look to PEAR::XML_fo2pdf[12]. This does, however, require use of the PHP Java

extension as well as the Java SDK, which few hosts offer.

How do I render SVG with PHP?
Scalable Vector Graphics[13] (SVG) is a W3C XML standard for describing

graphics. As a technology, it represents an alternative to animated GIFs or Flash

movies. Being XML, it is more easily renderable with PHP than are binary formats

such as Flash. To display your SVG creations, a visitor needs a browser plug-in,

which today means the Adobe SVG Viewer[14]. Adobe is one of the main pro-

moters of SVG. Mozilla browsers will also have SVG support built right in[15]

relatively soon, and the Apache Group provides a Java-based SVG viewer known

as Batik[16].

It’s beyond the scope of this book to look at the SVG format in detail, but you’ll

find an excellent resource listed under the section called “Further Reading” at

the end of this chapter. A worthwhile, and free, tool for drawing simple SVG

images is Dia[17].

[9] http://www.w3.org/TR/xsl/

[10] http://xml.apache.org/fop/index.html

[11] http://html2fo.sourceforge.net/

[12] http://pear.php.net/XML_fo2pdf

[13] http://www.w3.org/TR/SVG/

[14] http://www.adobe.com/svg/viewer/install/main.html

[15] http://www.mozilla.org/projects/svg/

[16] http://xml.apache.org/batik/index.html

[17] http://www.lysator.liu.se/~alla/dia/

Chapter 3: Alternative Content Types

200

http://www.w3.org/TR/xsl/
http://xml.apache.org/fop/index.html
http://html2fo.sourceforge.net/
http://pear.php.net/XML_fo2pdf
http://www.w3.org/TR/SVG/
http://www.adobe.com/svg/viewer/install/main.html
http://www.mozilla.org/projects/svg/
http://xml.apache.org/batik/index.html
http://www.lysator.liu.se/~alla/dia/
http://www.w3.org/TR/xsl/
http://xml.apache.org/fop/index.html
http://html2fo.sourceforge.net/
http://pear.php.net/XML_fo2pdf
http://www.w3.org/TR/SVG/
http://www.adobe.com/svg/viewer/install/main.html
http://www.mozilla.org/projects/svg/
http://xml.apache.org/batik/index.html
http://www.lysator.liu.se/~alla/dia/

Here’s a simple example of a PHP script that renders an SVG image (you’ll need

a viewer to see it):

File: 5.php

<?php
header('Content-type: image/svg+xml');
echo '<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>';
?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <circle cx="50" cy="50" r="40" fill="navy"/>
</svg>

First, we send the SVG Content-type header to tell the client browser what it’s

dealing with, then we simply display the SVG document as plain text.

XML Processing Instructions and PHP

The XML specification recommends that all XML documents should begin

with a <?xml ?> processing instruction that identifies the version of XML

in use and a number of options, like the character set. In the case of XHTML

documents, it is currently prudent to leave out this optional element, because

it interferes with Internet Explorer 6 for Windows’ ability to identify the

document type.

In other documents, like the SVG document above, this element should be

included, however. Unfortunately, the default configuration will cause the

PHP engine to attempt to process XML processing instructions as if they

contain PHP code, producing nasty error messages.

To get around this, you need to write the processing instruction with a PHP

echo statement, as demonstrated in the example above.

Viewing this page displays a circle in navy blue with a radius of forty pixels, which

is centered at x = 50, y =50 from the top left of the image, as shown in Figure 3.5.

Figure 3.5. Join the Dots

201

How do I render SVG with PHP?

http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"
http://xmlns="http://www.w3.org/2000/svg"
http://xmlns:xlink="http://www.w3.org/1999/xlink"

The following tag embeds an SVG image in an HTML document:

<object data="image.svg" width="100" height="100"
 type="image/svg+xml" />

SVG and Netscape 4

Since Netscape 4 doesn't support the object tag, you need to use an embed
tag to display SVG in this antiquated browser:

<embed src="image.svg" width="100" height="100"
 type="image/svg+xml" />

Be aware that embed is not standards-compliant HTML, and should therefore

be avoided if you can spare Netscape 4 support.

What makes SVG a potentially powerful tool when combined with PHP is its

ability to render fully interactive images that not only look good but, with some

help from JavaScript, are able to “do” things such as communicate with a Website

using simple HTTP GET/POST requests, or even take advantage of the Web

services protocols XML-RPC and SOAP. The implementation of such function-

ality relies on the viewer and, where Web services are concerned, there is still

some more work to do. Adobe is planning to release version 4 of the viewer, while

the Batik project is making steady progress and will likely reach the same point

as Adobe eventually. Mozilla is further ahead, providing SOAP and XML-RPC

support courtesy of the XPCom library (more on that later). Some early adopters

have had success implementing SOAP and XML-RPC clients in JavaScript.

Where SVG has really taken off, though, is in rendering online maps. An example

that shows the potential is the Open SVG Map Server[18], which provides some

fascinating examples of what SVG and PHP can do together. I’ve also heard of

a company using PHP and SVG to implement a nationwide IP router monitoring

tool, which displays network status against an interactive SVG map from a

Webs i te . For an interact ive map of Canada , t ry

http://www.svgmapper.com/example/example3/North_America.htm.

SVG Network Clock
To give you a feel for SVG’s potential, here’s an SVG digital clock that gets the

time from a PHP script:

[18] http://www.carto.net/projects/open_svg_mapserver/

Chapter 3: Alternative Content Types

202

http://www.carto.net/projects/open_svg_mapserver/
http://www.svgmapper.com/example/example3/North_America.htm
http://www.svgmapper.com/example/example3/North_America.htm
http://www.carto.net/projects/open_svg_mapserver/

File: 6.php

<?php
// Send SVG header
header('Content-type: image/svg+xml');
echo '<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>';

// Edit this line
$timeUrl =
 'http://localhost/sitepoint/AlternativeContentTypes/7.php';
?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 onload="init(evt);">
<script type="text/ecmascript">
<![CDATA[
 var clock;

 function init(e) {
 if (window.svgDocument == null) {
 svgDocument = e.target.ownerDocument;
 }
 clock = svgDocument.getElementById("clock").firstChild;
 getTime();
 }
 function getTime() {
 getURL('<?php echo $timeUrl; ?>', showTime);
 }
 function showTime(response) {
 clock.data = response.content;
 setTimeout('getTime()', 1000);
 }
]]>
</script>
<text id="clock" x="80" y="20" fill="navy" text-anchor="middle">
 Time goes here
</text>
</svg>

The SVG example above uses JavaScript (also known as ECMAScript) to fetch

the contents of a URL using the SVG getUrl function. The SVG image updates

itself every second, repeating the fetch from the script:

203

SVG Network Clock

http://localhost/sitepoint/AlternativeContentTypes/7.php';
http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"
http://xmlns="http://www.w3.org/2000/svg"
http://xmlns:xlink="http://www.w3.org/1999/xlink"
http://e.target.ownerDocument;

File: 7.php

<?php
echo date('H:i:s d M Y');
?>

To display, we use a simple piece of HTML:

File: 8.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> SVG Network Clock </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<style type="text/css">
body {
 font-family: verdana;
 font-size: 13px;
 font-weight: bold;
 color: red;
}
</style>
<body>
<p>The time sponsored by SVG is

<object data="6.php" width="200" height="30"
 type="image/svg+xml" />
</p>
</body>
</html>

The result is a clock that updates itself from your Web server every second (barring

network delays), as shown in Figure 3.6

Figure 3.6. SVGWatch

Obviously, this is a somewhat irritating example that will have your site’s visitors

running for miles, but it demonstrates the basic principle nicely. What’s more,

Adobe have been sure to implement JavaScript within their viewer to a degree

that’s comparable to Mozilla, so there are no hassles regarding browsers that

don’t support your code.

Chapter 3: Alternative Content Types

204

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

Most work editing SVG documents is likely to be done with tools like Adobe’s

Illustrator or GoLive, but as SVG is, in the end, just text, there’s no reason why

you shouldn’t render a complete SVG using PHP. A solid basis for getting started

is Charlie Killian’s SVG classes[20], which were described in some detail in Wrox’s

Professional PHP 4 XML. The book has a full chapter on SVG, so if you’re inter-

ested, grab a copy while they can still be found.

How do I render WML with PHP?
Wireless Markup Language (WML) is an XML format designed to allow hand

held devices to access content on the Web using Wireless Application Protocol

(WAP). As the first generations of WAP enabled devices use LCD displays and

are usually grayscale, developing WML based sites may not seem too exciting,

but the potential for teams of people on the go to work together via a WML-

based site makes it an interesting technology.

The first problem to overcome when trying to develop WML-based sites is finding

a browser that displays WML. Obviously, your mobile network provider would

love you to do the testing with your own phone, but that’s a fast track to a large

bill. Thankfully, Opera (ideally version 7+) comes ripe with WML support and

is perfect for designing a WML-based site. Not too far behind is Mozilla with a

WML browser[21] that’s currently a work in progress, but should be fairly handy

in the not too distant future, thanks to the ease of developing XUL applications

(see the next solution).

With that problem solved, it’s time to build a WML page with a little help from

PHP:

File: 9.php

<?php
header('Content-type: text/vnd.wap.wml');
echo '<?xml version="1.0"?>';
?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="index" title="PHP and WAP in Action" newcontext="true">
 <big>Menu:</big>

 News

 Products

[20] http://www.phpclasses.org/browse.html/package/457.html

[21] http://wmlbrowser.mozdev.org/

205

How do I render WML with PHP?

http://www.phpclasses.org/browse.html/package/457.html
http://wmlbrowser.mozdev.org/
http://text/vnd.wap.wml');
http://www.wapforum.org/DTD/wml_1.1.xml"
http://www.phpclasses.org/browse.html/package/457.html
http://wmlbrowser.mozdev.org/

</card>

<card id="news" title="News">
 <p align="right"><small>Back</small></p>
 <big>News:</big>

 Something happened

 Something else happened

</card>

<card id="news1" title="Something happened">
 <p align="right"><small>Back</small></p>
 Yep something happened.
</card>

<card id="news2" title="Something else happened">
 <p align="right"><small>Back</small></p>
 Oh and something else happened
</card>

<card id="products" title="For Sale">
 <p align="right"><small>Back</small></p>
 Here are some things to buy...
</card>
</wml>

WML is designed to limit the number of requests a browser has to make, which

reflects the fact that mobile networks are not high speed, and makes using WML-

based sites friendly on the thumb. Hence, a WML document is made up of cards,

which are separate pages loaded at the same time. The above examples should

give you a feel for the markup, which is very similar to HTML for the most part,

though be warned—WML must conform to the rules of well formed XML (e.g.

tags must be closed).

“Internal” links can be made between cards using #id_name, which points at the

id attribute of another card. Links to other WML documents are handled in the

same way as an HTML link, and there’s even support for forms. An online refer-

ence is suggested at the end of this chapter.

Figure 3.7 shows what the front page of our simple example looks like in Opera.

Chapter 3: Alternative Content Types

206

Figure 3.7. A WML Article Listing

207

How do I render WML with PHP?

HAWHAW
Now that we understand the basics, it’s time to meet HAWHAW[22] (the HTML

and WML hybrid adapted Webserver), a PHP class library that makes serving

WML pages easy. Using HAWHAW to construct WML pages is much like using

the DOM extension to create XML, as we saw in Chapter 2. In the HAWHAW

document model, the parent of all elements is the HAW_deck class, to which other

elements are added, as described in the online documentation[23].

HAWHAW doesn’t make use of multiple cards, but instead places all elements

within a single card. This is to some extent a shortcoming, but helps HAWHAW

provide support for older wireless formats, including HDML, as well as other

formats such as MML, which is used by some Japanese devices.

The code for this chapter includes the HAWHAW library.2

At the start of this chapter, we looked at rendering PDF files from the articles
table. Here’s how we could render WML from the same data:

File: 10.php (excerpt)

<?php
// Switch off error notices - required for HAWHAW
error_reporting(E_ALL ^ E_NOTICE);

// Include MySQL, Articles and Article class
require_once 'Database/MySQL.php';
require_once 'ExampleApps/Articles.php';

// Include the HAWHAW library
require_once 'ThirdParty/hawhaw/hawhaw.php';

// Define variables for MySQL class
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// (Modify this) Specify the root URL of the site

[22] http://www.hawhaw.de/

[23] http://www.hawhaw.de/ref/php/
2I’ve renamed the file from hawhaw.inc to hawhaw.php. Files that Apache doesn’t recognize as

being PHP have a nasty habit of being open to public viewing.

Chapter 3: Alternative Content Types

208

http://www.hawhaw.de/
http://www.hawhaw.de/ref/php/
http://www.hawhaw.de/
http://www.hawhaw.de/ref/php/

$url =
 'http://localhost/sitepoint/AlternativeContentTypes/10.php';

Note that we have to switch error notices off, otherwise HAWHAW will generate

some minor complaints about undefined variables and ruin our austere WML

output. The $url variable is used to make life simpler when we build links in the

document.

Now, we must instantiate the MySQL and Articles classes as before. We then

instantiate the root node class Haw_deck, passing it the document title. The

set_waphome method is used to specify a URL that is only displayed to Web

browsers. HAWHAW renders a simple HTML page (shown at the end of this

code) with a “Powered by HAWHAW” link that points to the value specified by

set_waphome, via a logging script on the HAWHAW Website. This link is only

displayed to Web browsers, not to WAP devices.

File: 10.php (excerpt)

// Instantiate MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Instantiate Articles class
$articles = new Articles($db);

// Instantiate the HAW_Deck root node
$wml = new HAW_deck('SitePoint Articles');

// For Web browsers...
$wml->set_waphome('http://www.sitepoint.com/');

The HAW_Deck class comes with methods for the addition of other elements, so

the next step is to create a HAW_Link node, give it some text to display and a URL

to link to, and then add it using the add_link method. This demonstrates how

we can add elements to the root node:

File: 10.php (excerpt)

// Instantiate HAW_link for the "Home" url
$home = new HAW_link('Home', $url);

// Add the link to the WML document
$wml->add_link($home);

To display a single article, we’ve opted to use a table, adding each element from

the table as a new row. Here we see the process of adding the title to the table:

209

HAWHAW

http://localhost/sitepoint/AlternativeContentTypes/10.php';
http://wml->set_waphome('http://www.sitepoint.com/');

File: 10.php (excerpt)

// If viewing a single article
if (isset($_GET['id'])) {
 // Prepare the article
 if ($articles->getArticle($_GET['id'])) {
 // Get the article object
 $article = $articles->fetch();

 // Create a HAW_Table
 $table = new HAW_table();

 // Create a HAW_Row
 $row = new HAW_row();

 // Create a text node for the title
 $title = new HAW_text($article->title(),
 HAW_TEXTFORMAT_BOLD);

 // Add the title to the row
 $row->add_column($title);

 // Add the row to the table
 $table->add_row($row);

The subsequent rows follow the same pattern. Finally, we add the table to the

root node using the add_table method. Note that we’ve chosen not to display

the body of the article, as many mobile devices can only handle a limited amount

of text. We’ll simply tease visitors with the introductory section, in which you’ll

note we used PHP’s strip_tags function to ensure no HTML markup finds its

way into the WML page.

File: 10.php (excerpt)

 // The author row
 $row = new HAW_row();
 $author = new HAW_text($article->author(),
 HAW_TEXTFORMAT_SMALL);
 $row->add_column($author);
 $table->add_row($row);

 // The date row
 $row = new HAW_row();
 $date = new HAW_text($article->published(),
 HAW_TEXTFORMAT_SMALL);
 $row->add_column($date);
 $table->add_row($row);

Chapter 3: Alternative Content Types

210

 // The intro
 $row = new HAW_row();
 $intro = new HAW_text(strip_tags($article->intro()),
 HAW_TEXTFORMAT_SMALL);
 $row->add_column($intro);
 $table->add_row($row);

 // Add table to document
 $wml->add_table($table);

If there’s any problem displaying the article, we can provide the visitor with an

error message:

File: 10.php (excerpt)

 } else {
 // Error message
 $wml->add_text(new HAW_text('Sorry:', HAW_TEXTFORMAT_BIG));
 $wml->add_text(
 new HAW_text('Service unavailable at this time'));
 }

If the visitor isn’t viewing a single article, the following code handles the request:

File: 10.php (excerpt)

} else {
 if ($articles->getArticles()) {
 // Build a table and loop through the rows
 $table = new HAW_table();
 while ($article = $articles->fetch()) {
 $row = new HAW_row();
 $title = new HAW_link($article->title(),
 $url . '?id=' . $article->id());
 $author = new HAW_text($article->author(),
 HAW_TEXTFORMAT_SMALL);
 $row->add_column($title);
 $row->add_column($author);
 $table->add_row($row);
 }
 $wml->add_table($table);
 } else {
 $wml->add_text(new HAW_text('Sorry:', HAW_TEXTFORMAT_BIG));
 $wml->add_text(
 new HAW_text('Service unavailable at this time'));
 }
}

211

HAWHAW

Essentially, it’s the same thing, but we build the rows within the while loop.

Finally, we display the page and HAWHAW takes care of the rest:

File: 10.php (excerpt)

// Display the page
$wml->create_page();
?>

The result is shown in Figure 3.8.

Chapter 3: Alternative Content Types

212

Figure 3.8. A WML Table

One point to note about HAWHAW is that in its downloadable form, it’s a little

too rigid to be convenient as an alternative content type in the sense of the ap-

plications we saw at the start of this chapter, which were capable of rendering

HTML and PDF documents from the same data. The problem we have to solve

213

HAWHAW

for WAP-enabled devices is to detect them when they visit the site, and deliver

them a WML document. They don’t have the option of viewing an HTML page

from which they could choose to view a WML version, as they would with PDF

versions of the content. It would be nice if HAWHAW provided a convenient

API so that you could detect the device yourself, but in its present form, it handles

the client detection internally and needs some modification to be used this way.

WML, Sessions and Security
One aspect of WAP devices of which you need to be aware is that many are not

able to save cookies locally, as they’re not backed by a spare gigabyte or two of

available disk space. This presents a problem for sessions, as you won’t be able

to use the cookie mechanism to allow clients to provide their session ID to you.

The alternative mechanism PHP provides is to add the session ID as a GET

variable, rewriting every URL in your page to add a variable typically named

PHPSESSID. This can be invoked by HAW_deck’s enable_session method, but

comes at a price; non-relative URLs will not have the session ID added to them

for the sake of security.

In cases where you need it, you can add the session ID yourself, like this:

<?php
session_start();
?>

<a href="http://www.sitepoint.com/?<?php echo SID;
?>">SitePoint

Be careful not to add the session ID to external links; this will broadcast it to

those linked sites, and can potentially lead to session hijacking.

Overall, as you can see, building a WML-based site is very easy. Yet, you may

be wondering whether it’s worth it, given the limited number of people who surf

that way. Let me just give you a tip—developers working in this area get paid

almost twice what their HTML-based brethren receive. Enough said.

Chapter 3: Alternative Content Types

214

http://href="http://www.sitepoint.com/?<?php

How do I render XUL with PHP?
XML User interface Language[24] (XUL) is the innovation of the developers

working on the Mozilla project[25]. (X)HTML is easy, right? The idea behind

XUL is to make building desktop applications (or rich clients) as easy as working

with HTML. What’s more, it allows rich clients to be launched from your Website.

For an introduction to XUL, try SitePoint’s Introducing XUL: The Net’s Biggest
Secret[26], which comes as a three-part series and provides plenty of resources to

get you started.

Now, assuming you have a grasp of what XUL is about, the question is: can it be

applied to your Website in a useful manner? Given the popularity of Internet

Explorer, requiring visitors use Mozilla, Firebird, Camino, or one of the other

Gecko-based browsers is obviously not going to be popular. But for the “back

end”—the interface you provide for administering your site—there’s much to be

gained from XUL. You can reasonably require your site’s administrators to use

a Gecko-based browser, perhaps purely as a tool for administering your site.

What’s more, the work of administration often places a much heavier load on

your bandwidth and resources, for example, as you switch numerous times between

a list of your site’s users and the detailed view of an individual user selected from

the list. This is exactly where XUL can provide significant value.

The easiest way to launch an XUL application from your Website is to send the

correct HTTP header, which a Gecko-based browser will recognize and respond

to with the page it gets by building the XUL application. To demonstrate, let’s

put together a simple but effective XUL application that helps us administer users

we have registered.

To start, we’ll include the MySQL class and select a list of users from the user
table (see Volume I, Chapter 9 for the structure of the table).

File: 11.php (excerpt)

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Define the base URL for editing users - MODIFY THIS!!!
$baseUrl =

[24] http://www.mozilla.org/projects/xul/

[25] http://www.mozilla.org/

[26] http://www.sitepoint.com/article/1140

215

How do I render XUL with PHP?

http://www.mozilla.org/projects/xul/
http://www.mozilla.org/
http://www.sitepoint.com/article/1140
http://www.sitepoint.com/article/1140
http://www.mozilla.org/projects/xul/
http://www.mozilla.org/
http://www.sitepoint.com/article/1140

 'http://localhost/phpanth/AlternativeContentTypes/12.php';

// Define variables for MySQL class
$host = 'localhost'; // Hostname of MySQL server
$dbUser = 'harryf'; // Username for MySQL
$dbPass = 'secret'; // Password for user
$dbName = 'sitepoint'; // Database name

// Instantiate MySQL class
$db = &new MySQL($host, $dbUser, $dbPass, $dbName);

// Select all the available users
$sql = "SELECT * FROM user ORDER BY user_id";
$result = $db->query($sql);

// Send XUL content header
header("Content-type: application/vnd.mozilla.xul+xml");
echo '<?xml version="1.0"?>';
echo '<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>';
?>

With the list ready, we send the XUL content type application/vnd.moz-
illa.xul+xml, followed by a couple of XML processing instructions, which are

recognized by Gecko based browsers. Now, let’s render some XUL. I’ll keep the

detail on XUL to a minimum, so if you’re puzzled by any of the elements you

see, be sure to visit XULPlanet[27], where the Element Reference[28] should clear

things up.

File: 11.php (excerpt)

<window id="admin" title="Admin Interface"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns=
"http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
 <script type="application/x-javascript">
 <![CDATA[
 var baseUrl = '<?php echo $baseUrl; ?>'; /* Base URL */
 /* Redirects XUL browser element to correct editing URL */
 function editUser(id) {
 var user_edit = document.getElementById('user_edit');
 user_edit.setAttribute('src', baseUrl + id);
 }
]]>
 </script>

[27] http://www.xulplanet.com/

[28] http://www.xulplanet.com/references/elemref/

Chapter 3: Alternative Content Types

216

http://www.xulplanet.com/
http://www.xulplanet.com/references/elemref/
http://localhost/phpanth/AlternativeContentTypes/12.php';
http://application/vnd.mozilla.xul+xml");
http://xmlns:html="http://www.w3.org/1999/xhtml"
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
http://www.xulplanet.com/
http://www.xulplanet.com/references/elemref/

The window element is typically the root element of all XUL applications. Beneath

this, we’ve placed a simple JavaScript function that redirects a browser element

(which we’ll create momentarily) to a Web page; here, we’ll place a form that

will allow us to edit a single user.

Next, we lay out the user interface:

File: 11.php (excerpt)

 <grid flex="1" style="background-color: silver">
 <columns>
 <column flex="1" />
 <column flex="3" />
 </columns>
 <rows>
 <row flex="1">
 <browser id="user_edit" src="<?php echo $baseUrl; ?>"/>
 <listbox flex="1">
 <listhead>
 <listheader/>
 <listheader label="Login"/>
 <listheader label="Name"/>
 <listheader label="Email"/>
 </listhead>
 <listcols>
 <listcol flex="0.3"/>
 <listcol flex="1"/>
 <listcol flex="1"/>
 <listcol flex="1"/>
 </listcols>

The grid element is used to help position widgets on the user interface. Of note

is the browser element, a special XUL widget that is a Web browser. Its src at-

tribute is used to point it at a URL, the fetched Web page being displayed in the

XUL application. The listbox is where we’ll place a list of users. Notice the

listhead element; here, we specify labels that correspond to column headers in

the user table. You can probably see where this is going…

File: 11.php (excerpt)

 <?php
 $alt = '#d3d3d3';
 while ($user = $result->fetch()) {
 $alt = $alt == '#d3d3d3' ? 'silver' : '#d3d3d3';
 ?>
 <listitem
 onclick="editUser('?id=<?php echo $user['user_id'];

217

How do I render XUL with PHP?

 ?>')"
 style="background-color: <?php echo $alt; ?>">
 <listcell label="<?php echo $user['user_id']; ?>"/>
 <listcell label="<?php echo $user['login']; ?>"/>
 <listcell label="<?php echo $user['firstName'] . ' ' .
 $user['lastName']; ?>" flex="1"/>
 <listcell label="<?php echo $user['email']; ?>"/>
 </listitem>
 <?php
 }
 ?>
 </listbox>
 </row>
 </rows>
 </grid>
</window>

Here, we’ve rendered with PHP multiple listitem elements that correspond to

the rows from the database. Notice, in particular, the onclick attribute of the

listitem; this calls the JavaScript function we defined earlier. Note also that the

value it sends to the editUser JavaScript function begins with ?id=. We’re

building a query string such as ?id=4, which will identify a user to the PHP script

where we’ll place a form for editing users.

For the page with the editing form, we simply used QuickForm as you’ve seen

before in Volume I, Chapter 9. Note the script in question, 12.php is only a mock

up; it’s capable of fetching user details, but not updating them. I’ll leave it to you

to explore that code and deal with updating the database with changes, as you’ve

seen it before in Volume I, Chapter 9.

When viewed with Mozilla or Firebird, it looks like Figure 3.9.

Chapter 3: Alternative Content Types

218

Figure 3.9. XUL Administration

The left hand side shows the form generated (as HTML) by QuickForm and

displayed thanks to the XUL browser element. On the right hand side is the list

of users, built as an XUL listbox. Whenever we click on the name of a user in

the list, a new page request is made to the form, showing the details for that user,

while the entire user list remains available on the right hand side.

The advantage of using XUL here is that we need only perform the query that

fetches the user list once. It then becomes part of the application running on my

own computer, and does not need to be refreshed repeatedly as I perform routine

administration tasks. Using other XUL elements like tabpanels, I could easily

load a large part of the administration interface for the site in one go, which

would allow me to swap between tabs to access each view available for adminis-

tering the site.

A user interface that is part XUL and part HTML (via the browser element) is

a little crude, but it makes a very adequate quick and dirty solution. As the

“rendering engine” is effectively my Web browser, I can use sessions to secure

the interface so that a valid user name and password combination is required to

load it in the first place. The Mozilla team is also working on support for SOAP

and WSDL, so, if you needed a more rigorous solution you could build an applic-

ation that, once loaded, was capable of fetching data from a PHP script acting

as a SOAP server (see Chapter 2 for details).

219

How do I render XUL with PHP?

Further Reading
� Generate PDFs with PHP: http://www.sitepoint.com/article/1225

This tutorial discusses PDF generation with the PHP PDFLib extension.

� KevLinDev: http://www.kevlindev.com/

This excellent set of examples and tutorials on SVG begins with the basics

and moves on to examine the use of JavaScript with SVG.

� WML: An Introduction: http://www.sitepoint.com/article/351/1

This tutorial provides a fast start on WML markup.

� WML Reference:

http://www.devguru.com/Technologies/wml/quickref/wml_index.html

This must-see reference has all the WML tags you need.

Chapter 3: Alternative Content Types

220

http://www.sitepoint.com/article/1225
http://www.kevlindev.com/
http://www.sitepoint.com/article/351/1
http://www.devguru.com/Technologies/wml/quickref/wml_index.html
http://www.sitepoint.com/article/1225
http://www.kevlindev.com/
http://www.sitepoint.com/article/351/1
http://www.devguru.com/Technologies/wml/quickref/wml_index.html

Stats and Tracking4
Ever since Perl and CGI made their way onto the Internet, Webmasters have

suffered an insatiable thirst for knowing who’s visiting their site. Over time,

gathering information about a site’s visitors has become a discipline in itself;

today, tracking tools offer advanced features such as the analysis of visitors’ click

paths through your site, and some even attempt to locate a visitor’s geographical

location based on the details of his or her ISP. This area of Webmastership has

also gained a reputation for being part of the murkier side of the Internet, however,

with advertising agencies using banner ads to monitor surfers’ movements across

multiple sites, wherever the agencies’ banners are placed. There’s a fine line

between gathering data in order to help improve a site for its visitors and spying;

I leave it up to you to make the value judgments.

Building a system that tracks visitors and logs their progress through our sites

can be extremely valuable from the perspectives of both security and improving

visitors’ experience of the site. A tracking system can also help you determine

the searches that brought visitors to your site, and identify sites that link to yours,

helping you to place the site where people will find it.

In this chapter, we’ll look at the basics of storing visitor information with some

simple PHP scripts, then defer to phpOpenTracker[1]. This excellent tracking

tool offers some “state of the art” features that any good tracker should provide,

[1] http://www.phpopentracker.de/

http://www.phpopentracker.de/
http://www.phpopentracker.de/

and uses a very well structured, object oriented design that makes it possible to

customize the product without breaking a sweat.

We’ll also be looking at phpSniff[2], a handy tool for the identification of Web

browsers and their specific capabilities. A fairly complex task, browser sniffing is

often important if you use some of the more advanced elements of CSS and

JavaScript on your site, but want to be sure that people using older browsers

aren’t deterred.

What information can I gather about my
site’s visitors?

Assuming you’re using Apache, you have access to a wealth of information about

visitors—data that’s communicated by their browsers to your Web server.

Here’s a script which demonstrates the point:

File: 1.php

<?php
echo 'Nearest IP address: ' . @$_SERVER['REMOTE_ADDR'] . '
';
echo 'Nearest Hostname: ' .
 @gethostbyaddr(@$_SERVER['REMOTE_ADDR']) . '
';
echo 'Useragent: ' . @$_SERVER['HTTP_USER_AGENT'] . '
';
echo 'Request: ' . @$_SERVER['REQUEST_URI'] . '
';
echo 'Preferred Language: ' . @$_SERVER['HTTP_ACCEPT_LANGUAGE'] .
 '
';
echo 'Referer: ' . @$_SERVER['HTTP_REFERER'] . '
';

echo '<p>Click <a href="' . $_SERVER['PHP_SELF'] .
 '?link=referer">here';
?>

The output this generates, if you click on the link, is as follows:

Nearest IP address: 127.0.0.1
Nearest Hostname: localhost
Useragent: Mozilla/4.0 (compatible; MSIE 6.0; MSIE 5.5; Windows NT
5.1) Opera 7.01 [en]
Request: /sitepoint/StatsAndTracking/1.php?link=referer
Preferred Language: en
Referer: http://localhost/sitepoint/StatsAndTracking/1.php

[2] http://phpsniff.sourceforge.net/

Chapter 4: Stats and Tracking

222

http://phpsniff.sourceforge.net/
http://127.0.0.1
http://localhost/sitepoint/StatsAndTracking/1.php
http://phpsniff.sourceforge.net/

The Golden Rule

Remember the golden rule: never trust anything from the browser. There are ways

to “spoof” almost anything that might come from a browser.

Be especially wary of the $_SERVER['HTTP_REFERER'] value. I’ve seen

some people build security mechanisms based around this—a very bad idea.

Also be aware, when dealing with these variables, that they are only created

by PHP if they have a value, so you may need to be careful to check that

they exist in your code before you do anything with them. In the example

above, we used the error suppression operator (@) to handle this issue.

Given the basic information from the above script, we already have a foundation

for building a stats and tracking system; we can store this information in a data-

base, then use it later to display a report of what’s been happening on the site.

The hostname of the visitor, obtained with the gethostbyaddr function1, can

be used to tell me the domain from which the visitor came. Running this example

on my own machine, I’m told that localhost is the host name, but on a live site

you’ll get values such as ottawa-hse-ppp266908.sympatico.ca. The .ca at the

end tells us the visitor came from Canada, so we could build a report that tells

us which countries site visitors come from, with the exception of the .com, .net
and .org domains, which tend to be used internationally.

The $_SERVER['HTTP_USER_AGENT'] value tells us about the visitor’s browser.

In the example above, you’ll notice this value contains information about both

the Web browser (Opera 7.01 [en]) and the operating system (Windows NT
5.1, which is how Windows XP advertises itself). Of course, if you’ve built a site

that’s compatible with all browsers, you won’t need to worry about this informa-

tion…

The $_SERVER['REQUEST_URI'] data can be used to determine exactly which

page a user was viewing. This is important with PHP, where the difference between

URLs like index.php?view=news and index.php?view=articles can be very

significant. This is the basis of click path analysis.

$_SERVER['HTTP_REFERER'] tells you whether the visitor followed a link to get

to the current page. Although this information can’t be relied upon, it generally

does provide useful data about sites that are linked to yours.

1Please note that gethostbyaddr is quite slow as functions go, as it must contact another server

to perform a reverse DNS lookup. Using this function heavily is one way to quickly bog down a

speedy server.

223

What information can I gather about my site’s visitors?

$_SERVER['HTTP_ACCEPT_LANGUAGE'] tells you which language the browser ad-

vertises as being the visitor’s preferred choice; you can use this information to

present content to visitors in different languages.

IP Addresses
Every computer surfing the Internet must have an IP address to be able to com-

municate. Although they’re often compared to phone numbers, IP addresses are

far easier to come by, and make it far more difficult to identify exactly who the

user is (some say this is a very good thing). If you use a dial up Internet connection

from home, you’ve probably already used at least 100 IP addresses, before we

even begin to consider the times you surfed from the Internet café down the

street, the local library, and so on. The story with IP addresses becomes even

more convoluted when you take into account proxy servers, which act as “middle

men” between your browser and a Website, network address translation, and

more. One thing to be aware of is that AOL uses a particularly bizarre mechanism;

their members are assigned a new IP address upon practically every page request,

which basically defeats any IP-based security mechanism you might care to use

(e.g. confining a user’s session to a single IP address).

The $_SERVER['REMOTE_ADDR'] variable tells you the nearest Internet IP address

to the Web browser (i.e. it will not show the local address of the computer if it

resides on a private network). What’s important to realize is that this could be

a proxy server; should this be the case, you need to check

$_SERVER['HTTP_X_FORWARDED_FOR'] to obtain the client’s actual IP address. Of

course, life is never that simple! Depending on the type of proxy server clients

use, and whether they’re using network address translation, there are other vari-

ables you may need to consider, such as $_SERVER['HTTP_CLIENT_IP'], which

is sometimes used to advertise a client’s IP address when a proxy server is used,

along with $_SERVER['HTTP_VIA'], which identifies the type of proxy server in

use.

Here’s a function that can be used to obtain the Internet IP address nearest to

the end user, based on the REMOTE_ADDR, HTTP_X_FORWARDED_FOR and

HTTP_CLIENT_IP values:

function getAddress()
{
 if (!empty($_SERVER['HTTP_CLIENT_IP'])) {
 $ip_expl = explode('.', $_SERVER['HTTP_CLIENT_IP']);
 $referer = explode('.', $_SERVER['REMOTE_ADDR']);
 if ($referer[0] != $ip_expl[0]) {

Chapter 4: Stats and Tracking

224

 $ip = array_reverse($ip_expl);
 $return = implode('.', $ip);
 } else {
 $return = $client_ip;
 }
 } elseif (!empty($_SERVER['HTTP_X_FORWARDED_FOR'])) {
 if (strstr($_SERVER['HTTP_X_FORWARDED_FOR'], ',')) {
 $ip_expl = explode(',', $_SERVER['HTTP_X_FORWARDED_FOR']);
 $return = end($ip_expl);
 } else {
 $return = $_SERVER['HTTP_X_FORWARDED_FOR'];
 }
 } else {
 $return = $_SERVER['REMOTE_ADDR'];
 }
 return $return;
}

Note that you can’t rely completely upon this information either; it’s possible

for a visitor to fake these details, which will allow a determined hacker to get

past nearly any security system that’s based purely on checking the IP address.

But 99.9% of your visitors will provide accurate information, which will be handy

for later analysis.

How do I store visitor statistics with
PHP?

Although most Web hosts provide tools for viewing your site’s statistics—one of

the most popular tools for the job being AWStats[3]—typically, these will not

be under your control (i.e. you can only view the results), and they may not meet

the needs of a site owner hoping to analyze in detail the path a visitor takes

through his or her site (known as the click path). Also, you may have need for

a logging mechanism that’s integrated with your application, and is capable of

capturing detailed information related to the actions a user can perform, rather

than simply logging all traffic to your server in an application-agnostic fashion.

If you’ve built an ecommerce system based on PHP and MySQL, for example,

and you believe your navigation system could be improved to help customers

explore your site, being able to see exactly which pages visitors are viewing, and

how they got there, may help boost your site’s sales.

[3] http://awstats.sourceforge.net/

225

How do I store visitor statistics with PHP?

http://awstats.sourceforge.net/
http://awstats.sourceforge.net/

Logging Strategy
There are a few practical tips you should be aware of when using PHP to log

traffic from your site. These points usually become obvious only after you’ve

been gathering traffic information for a while.

First of all, be aware that tracking can generate a lot of data. A visitor who views

five pages on your site may generate at least five new rows in your database—pos-

sibly more in other tables, depending on your implementation. Make sure before

you “go live” with any logging system that you also have a mechanism in place

for archiving and purging old data, otherwise you’ll quickly have a massive

database on your hands. In practice, this might mean something like a cron job,

which executes a command line PHP script on a regular basis, the script “dumping”

data older than a certain age to some useful file format (e.g. XML), then purging

it from the database. You can then move the files off your server for digestion at

your leisure.

The data itself can be categorized as raw data, such as an IP address, a hostname,

or a user agent, or derived data, such as the identity of a visitor’s browser and

operating system, derived from the user agent field, or even a daily total of visits

from a particular country, based on the host name. It may be a wise decision to

store the raw data in one table, then populate other, related tables with the derived

data. As the size of your logs grows, asking PHP or MySQL to re-execute calcula-

tions on the raw data to generate derived data every time you request the report

page will result in a long wait, not to mention the process overhead it will place

on your server. It may also be worth regarding the building of a report from your

log data as a task that’s best performed “offline”—on your desktop PC, for ex-

ample. If you’re feeling adventurous, perhaps consider building a SOAP server

(see Chapter 2) on your site from which you can fetch the data, and then store

and analyze it locally.

How you capture the data itself requires a little consideration. One approach is

simply to include in every page you want monitored a logging PHP script that

stores usage data in the database as each page is viewed. If you use this approach,

you’ll need to take care not to slow your site with logging processes and queries.

In other words, it’s best to store only the raw data, and leave the processing asso-

ciated with derived data generation until later—to be handled by a cron job,

perhaps, or dealt with the first time a report on the data is requested.

An alternative approach is to get the visitors’ browsers to execute the logging

script separately from the page itself, meaning the task of storing the data occurs

independently of the main script. “How?” you may ask. In Volume I, Chapter 9,

Chapter 4: Stats and Tracking

226

we looked at how to display an image with a PHP script that had been fetched

from a database. To execute this script, you would use an ordinary HTML img
tag:

logo.php would contain something like the code below, which sends an image

file to the browser:

header('content-type: image/gif');
readfile('/home/username/www/images/logo.gif');

But what’s to stop you putting other PHP code in there? Nothing! And if the

logo is being displayed on every page, it’s also the perfect tool to capture Web

traffic information.

Note that it’s a good idea to call PHP’s flush function right after readfile, before

you begin a time consuming number crunching routine. Otherwise, the image

may only finally be sent to the client Web browser after the script has finished

execution, which will have people wondering where the logo went. Some cunning

is needed to allow the “real page” being viewed to pass information to the script

that displays the image, for example, giving it the REQUEST_URI data from the

page on which the image is displayed:

<img src="logo.php?page=<?php
echo urlencode($_SERVER['REQUEST_URI']); ?>" />

An alternative mechanism (that’s less reliable, as it depends upon the browser

passing on the information), is to use the HTTP_REFERER value, which should

contain the URL of the page in which the img tag was used.

The rest is just a database query to store the information. As this approach will

have no impact on the rendering of the main page, you might even consider doing

some of the calculations that create the derived data from the raw data here. A

further advantage of this approach is that it allows you to log statistics from any

type of Web page, including static HTML pages. The only downside is that it

relies on the browser fetching the image; a PHP or Perl script that is pretending

to be a browser will generally only load the HTML of the page, and will skip

fetching the image, which means the statistics-gathering script is never executed.

Don’t worry too much if this isn’t clear right now. phpOpenTracker[4] solves

most of these problems, allowing you to concentrate on the specifics of your online

[4] http://www.phpopentracker.de/

227

Logging Strategy

http://www.phpopentracker.de/
http://www.phpopentracker.de/

application. In addition to basic logging functionality, some of the advanced

features that phpOpenTracker offers are:

� logging for multiple sites

� reports are generated as images (with JpGraph[5])

� click path analysis reports (requires Graphviz[6] to generate the click path

diagrams)

� automatic exit link generation (no need to modify your HTML)

� tracking the number of users online at a given instant

� incoming search phrases from search engines

As it has a solid object oriented design, it’s possible to utilize phpOpenTracker

in many ways without having to alter radically your site’s code. We’ll focus here

on the basics of phpOpenTracker to get you started; covering all the advanced

features are beyond the scope of this book, but I hope you’ve already got the

(accurate) impression that phpOpenTracker is a very mature package, and one

of the best you could build your Web traffic logging around.

Installing phpOpenTracker
The version of phpOpenTracker used here was 1.0.2.

To install phpOpenTracker, you can use the PEAR package manager (see Ap-

pendix D), which, assuming you have the PEAR directory in your include path,

will make phpOpenTracker available to any script on your server. You can also

install phpOpenTracker manually without too much trouble. The main script,

phpOpenTracker.php, includes some further files, which it expects will reside,

by default, in a directory named phpOpenTracker that’s placed in some other

directory on the include path (typically, the PEAR directory). You can get around

this in your code by defining the following constant:

define('POT_INCLUDE_PATH', '/home/username/lib/phpOpenTracker/');

[5] http://www.aditus.nu/jpgraph/

[6] http://www.research.att.com/sw/tools/graphviz/

Chapter 4: Stats and Tracking

228

http://www.aditus.nu/jpgraph/
http://www.research.att.com/sw/tools/graphviz/
http://www.aditus.nu/jpgraph/
http://www.research.att.com/sw/tools/graphviz/

If you place the code in any public directory on your site, make sure you place

a .htaccess file in the conf subdirectory of the installation with the following

contents2:

<Files ~ "\.ini$">
 Order deny,allow
 Deny from all
</Files>

The configuration files use the extension .ini, which will not be handled by the

PHP engine if anyone views them; your database password could quickly become

the latest topic for discussion on Slashdot[7] if you don’t take the above measure!

In the docs/sql/mysql subdirectory of the phpOpenTracker package, you’ll find

a query, mysql.sql, which you can run to create the tables needed for

phpOpenTracker, using either a tool like phpMyAdmin[8], or by typing the fol-

lowing from the command line:

mysql database_name < mysql.sql

Now, edit the file phpOpenTracker.ini.dist in the conf directory and save it

as phpOpenTracker.ini. To start with, all you need to do is modify the database

settings. For example:

; Database Connection

db_type = "mysql"
db_host = "localhost"
db_port = "default"
db_socket = "default"
db_user = "harryf"
db_password = "secret"
db_database = "sitepoint"

With that done, all that remains is to add phpOpenTracker to your own page,

and tell it to log all views:

File: 2.php

<?php
// Include phpOpenTracker

2This code is of course Apache specific. If you use IIS or some other Web server, you’ll need to use

it’s access control facilities to block access to your .ini files.

[7] http://www.slashdot.org/

[8] http://www.phpmyadmin.net/

229

Installing phpOpenTracker

http://www.slashdot.org/
http://www.phpmyadmin.net/
http://phpOpenTracker.ini.dist
http://www.slashdot.org/
http://www.phpmyadmin.net/

include 'phpOpenTracker.php';

// Log
phpOpenTracker::log();

echo 'This page view was logged!';
?>

The alternative approach is to use a PHP script masquerading as an image, known

as a Web bug in the phpOpenTracker documentation. You first need to copy

the file image.php from docs/scripts (under the phpOpenTracker directory)

to a public directory on your Website. Here’s an example of a page that uses the

Web bug:

File: 3.php

<?php
$webbugUrl = 'image.php?document_url=' . $_SERVER['REQUEST_URI'] .
 '&referer=' . @$_SERVER['HTTP_REFERER'];
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-type"
 content="text/html; charset=iso-8859-1" />
<title> phpOpenTracker Web Bug </title>
</head>
<body>
<img alt="" src="<?php echo $webbugUrl; ?>" />
This page is logged.
</body>
</html>

That’s it; phpOpenTracker is now installed and logging traffic to your site! Notice

that when we built the $webugUrl variable, we passed two variables via the query

string—the (relative) URL of the above script itself, and the referer field, which

the Web bug needs as the referer it “sees” will be the above script, rather than

the true referer.

Be aware that phpOpenTracker, when used “inline” in your scripts, will log the

complete URI, such as page.php?var1=Hello&var2=World. This may not be

particularly easy to read when it comes to viewing the log, so you might like to

override this behavior by defining an array that contains a document element,

and giving it a value that will make sense when you view the log. For example:

Chapter 4: Stats and Tracking

230

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

File: 4.php

<?php
// Include phpOpenTracker
include 'phpOpenTracker.php';

// Redefine document name
$params = array('document' => 'Article: Stats with PHP');

// Log
phpOpenTracker::log($params);

echo 'This page view was logged!';
?>

If you want to log traffic for multiple sites, usually all you need to do is pass in

the array a unique client_id value, which will be used to identify the site in

question. Here’s how it would look for the first site:

$params = array('client_id' => 1);
phpOpenTracker::log($params);

You probably won’t be in a position to include the phpOpenTracker code in the

scripts on the remote site, so the preferred mechanism is to use the Web bug

method to record data for you. The example provided with phpOpenTracker is

already primed to accept the client ID via a query string variable:

The phpOpenTracker API
When you include the phpopentracker.php file in your script, you can use one

of three methods:

phpOpenTracker::log() As you’ve seen, this method instructs phpOpenTracker

to log an entry in its database.

phpOpenTracker::get() This method is used to build reports, including click

path analysis.

phpOpenTracker::plot() This method is used for drawing graphs from

phpOpenTracker.

231

The phpOpenTracker API

So far, we’ve seen the log method, which is the simplest to use. We’ll look at

the other two methods as this chapter progresses. For full details, be sure to ex-

amine the documentation on the phpOpenTracker Website[9].

How do I recognize returning visitors?
As mentioned earlier in this chapter, IP addresses are easy to come by, and fre-

quently change. As a result, they cannot be used as a reliable source of information

for recognizing returning visitors—they may not even be useful for gathering stats

as visitors progress through your site. If they’re using a dial up connection, for

example, they may disconnect while reading downloaded content, then reconnect

to surf further.

Should you wish to be able to recognize a returning visitor, or monitor a visitor’s

path across your site, you’ll need to make use of cookies.

Sessions vs. Cookies

Although PHP sessions use cookies to pass an identifying token to a client, the session

and cookie functionality provided by PHP is best applied to other problems.

Sessions are intended for use on a “per visit” basis. They store data that’s required only

for the current visit, and the data “belongs to” the Web server only (the session files being

stored locally), as we saw in Chapter 1.

Cookies are best applied to data that should persist across multiple visits to your site, such

as viewing preferences or the visitor’s name. Cookies should not be used to store sensitive

information, as this data is stored on the client, and may be subject to interception if

you’re not using SSL; it’s also available to anyone who has access to the client machine’s

file system.

Some may argue this is an overly paranoid point of view, and certainly, sites that use

cookies to ensure regular visitors are “always logged in” would lose this feature without

them. The problem is that, should someone gain access to my computer, in theory, he or

she could use the cookies I have stored to log in as me, without requiring my user name

or password.

Using a cookie, you can store for visitors a unique identifier (assigned on their

first visit), which you can use to identify them on subsequent visits. For example:

[9] http://www.phpopentracker.de/

Chapter 4: Stats and Tracking

232

http://www.phpopentracker.de/
http://www.phpopentracker.de/

File: 5.php

<?php
// Note rand() must be seeded for PHP < 4.2.0
// see: http://www.php.net/rand
$uniqueId = md5('example' . uniqid(rand(), TRUE));

// Set the cookie
if (!isset($_COOKIE['MyIdentifier'])) {
 setcookie('MyIdentifier', $uniqueId,
 time() + 60 * 60 * 24 * 120, "/");
 echo 'Cookie Set';
} else {
 echo 'MyIdentifier: ' . $_COOKIE['MyIdentifier'];
}
?>

Once it’s set, the cookie identifier can be stored in the raw log data for every page

viewed. This allows you to build reports that display an individual visitor’s progress

across your site for current and future visits, and perform queries that order or

group results by the unique ID; this can prove invaluable for understanding how

visitors use your site.

Setting this up with phpOpenTracker is easy. Modify the following section in

your phpopentracker.ini file:

; Returning Visitors Handling

track_returning_visitors = On
returning_visitors_cookie = "pot_visitor_id"
returning_visitors_cookie_lifetime = 365

The track_returning_visitors setting is used to switch this functionality on.

The returning_visitors_cookie setting specifies a name for the cookie, while

returning_visitors_cookie_lifetime assigns it a lifetime in seconds. With

the phpOpenTracker database, the pot_visitors table will use the same ID

(visitor_id) to record page views for visitors that have a cookie, so reports that

are built from the database will be able to identify a given user.

We’ll be looking at how to take advantage of this later in the chapter.

233

How do I recognize returning visitors?

http://www.php.net/rand

How do I track exit links?
It’s fine to know where visitors are coming from, courtesy of the HTTP_REFERER
value Apache makes available to PHP, but what about where they go when they

leave your site? Such information can be valuable in building “networks” with

other sites to which you’re providing traffic.

The solution to this problem is to use a script through which all external links

are passed. For example, a link to http://www.sitepoint.com/ might use a URL

like this:

http://www.mydomain.com/exit.php?url=http://www.sitepoint.com/

The script exit.php first logs the URL of the link to which the visitor is being

sent, then sends an HTTP location header to forward them to the new site, in

this case http://www.sitepoint.com/.

Among the example scripts provided with phpOpenTracker, the following

(exit.php) demonstrates how this works:

File: 6.php

<?php
// Include the phpOpenTracker code
require_once 'phpOpenTracker.php';

// The link for forward to is passed using the GET variable "url"
if (isset($_GET['url'])) {
 // Convert HTML entities back to URI entities
 $exitURL = str_replace('&', '&',
 base64_decode($_GET['url']));

 // Set up the config, database and container objects
 $config = &phpOpenTracker_Config::singleton();
 $db = &phpOpenTracker_DB::singleton();
 $container = &phpOpenTracker_Container::singleton(
 array(
 'initNoSetup' => true
)
);

 // Perform the query which logs the exit URL
 $db->query(
 sprintf(
 'UPDATE %s

Chapter 4: Stats and Tracking

234

http://www.sitepoint.com/
http://www.sitepoint.com/
http://www.mydomain.com/exit.php?url=http://www.sitepoint.com/
http://www.sitepoint.com/

 SET exit_target_id = %d
 WHERE accesslog_id = %d
 AND document_id = %d
 AND timestamp = %d',

 $config['accesslog_table'],
 $db->storeIntoDataTable($config['exit_targets_table'],
 $exitURL),
 $container['accesslog_id'],
 $container['document_id'],
 $container['timestamp']
)
);

 // Redirect to the new site
 header('Location: http://' . $exitURL);
}
?>

If the code above is a little confusing, don’t worry. phpOpenTracker implements

its own database classes, which makes it very easy to fit into any site, but does

take a little effort to understand when you need to modify it. The examples

provided are generally ready to use, which should help matters a lot.

Note that the example expects you to have used base64_encode to encode the

URL and have stripped out the leading http://. This has the advantage of “for-

cing” visitors to use the link, rather than simply copying the address straight into

their browsers’ address bars. It is intended for use with a function like this:

File: 7.php

<?php
// Modifies links to point an exit handling script
function encodeExitUrls($content, $exitScript)
{
 return preg_replace(
 "#<a href=(\"|')http://([^\"']+)(\"|')#ime",
 '"<a href=\"$exitScript?url=" . base64_encode(\'\\2\') . "\""'
 , $content);
}

$content = <<<EOD
This is some text containing a <a href="http://www.sitepoint.com/"
>link to sitepoint.com
EOD;

235

How do I track exit links?

http://href="http://www.sitepoint.com/"
http://www.sitepoint.com</a

echo encodeExitUrls($content, '6.php');
?>

This can be used automatically to format content as it is displayed, so that links

can be entered normally, but are altered when they’re sent to a visitor’s browser

to pass through the exit script. Note that the above regular expression in the

encodeExitUrls function leaves room for improvement. It will “catch” the vast

majority of links but there are some exceptions, the most obvious being a link to

an FTP site, for example.

How do I record search engine queries?
Wouldn’t it be nice if you knew which searches being performed on Google lead

people to your site? Well, the good news is that you can—and, even better,

phpOpenTracker has a plug-in that takes care of all the work for you.

The general trick that Webmasters employ when gathering this data is to examine

the referer field made available from the browser and mine it for the search

keywords the visitor used to find your site. If you visit Google, for example, and

search for “php and mysql,” the following URL will display your search results:

http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=php+and+m

ysql&btnG=Google+Search

Hard as it may be to see, in the above URL you’ll find the string

&q=php+and+mysql, which contains the search string you gave to Google. Now,

when a user is referred to our site from Google, all we need to do is extract that

information from the URL and store it in our database.

Installing the phpOpenTracker Search Engine
Plug-in

The Search Engine plug-in is available as a separate download via the same

SourceForge project space[11] from which you downloaded phpOpenTracker itself.

You can either install it with the PEAR installer (see Appendix D), or manually

place the files in your phpOpenTracker directory. If you extract the plug-in ZIP

file, you’ll find that the directory structure is the same as it should be in the main

phpOpenTracker directory; simply copy the files over as you find them. Then,

[11] http://sourceforge.net/projects/phpopencounter/

Chapter 4: Stats and Tracking

236

http://sourceforge.net/projects/phpopencounter/
http://www.google.com/search?hl=en&lr=&ie=ISO-8859-
http://sourceforge.net/projects/phpopencounter/

run the SQL script ./phpOpenTracker/docs/sql/mysql/mysql.sql against your

MySQL database.

Now, modify your phpopentrack.ini file to tell it about the plug-in:

; Plugins

logging_engine_plugins = "search_engines"

That’s it! Your site is now recording search engine queries. Later, we’ll look at

how to access the data that’s collected.

How do I exclude search engines from
my logs?

Chances are, once you’re over the novelty of having your Website spidered by a

search engine robot, you won’t want the logs of the robot’s movements cluttering

up your Weblogs. Although you could filter out the logs you don’t want to see,

why waste valuable disk space with data you don’t need? A mechanism is needed

to tell the logging engine what not to log, based on the user agent supplied by

the robots.

Handling this with phpOpenTracker is, as always, wonderfully simple. Just head

to your phpopentracker.ini file and edit the following:

; Locking

locking = On
log_reload = Off

With locking switched on, phpOpenTracker watches for robots and excludes

them from the database. Note also the log_reload setting here, which is used

to control whether refreshed (reloaded) pages are logged.

What actually determines the robots that phpOpenTracker ignores is defined by

the file lock.ini, found in the same directory as phpopentracker.ini. By default

it’s named lock.ini.dist, so you’ll need to rename it. The content is a list of

user agents used by search engine robots. For a useful list of further robots, try

http://www.jafsoft.com/searchengines/webbots.html.

237

How do I exclude search engines from my logs?

http://www.jafsoft.com/searchengines/webbots.html
http://./phpOpenTracker/docs/sql/mysql/mysql.sql
http://www.jafsoft.com/searchengines/webbots.html

How do I get reports on my site’s
statistics?

What good are all the stats if you can’t view them in a useful report? Again,

phpOpenTracker makes mining your Web statistics easy; it provides the get
method to simplify the process of getting the information you need. Provided

with phpOpenTracker is an example that’s useful as a general, simple report much

like that provided by Webalizer, and as a reference for setting up your own reports.

Building reports can be a little tricky to begin with. In conjunction with other

packages, phpOpenTracker offers a range of features. These include visual click

path analysis, with help from PEAR::Image_GraphViz[13] and the GraphViz

software; XML tree generation, with the aid of PEAR::XML_Tree[14]; and chart

generation with the assistance of jpGraph, which we examined in Volume I,

Chapter 7. Providing an in-depth discussion is beyond the scope of this book

(and could even become a book in itself, when you consider the statistical manip-

ulation involved in the creation of detailed reports). Here, I’ll give a rough guide

to the reporting API so you know your way around.

All requests to the phpOpenTracker report API are made via the

phpOpenTracker::get method; this accepts an array which itself specifies further

method calls. The generalized form of this array is:

array(
 'api_call' => 'method_name',
 '1st_param_name' => 'value',
 '2nd_param_name' => 'value',
 /* etc. */
);

It’s worth delving into the phpOpenTracker documentation to spend some time

experimenting with what’s on offer. Here are a couple of simple examples.

An easy task is to find out how many visitors are currently online:

File: 8.php

<?php
// Include phpOpenTracker
require_once 'phpopentracker.php';

[13] http://pear.php.net/Image_GraphViz

[14] http://pear.php.net/XML_Tree

Chapter 4: Stats and Tracking

238

http://pear.php.net/Image_GraphViz
http://pear.php.net/XML_Tree
http://pear.php.net/Image_GraphViz
http://pear.php.net/XML_Tree

$visitors_online = phpOpenTracker::get(
 array(
 'api_call' => 'visitors_online'
)
);

echo 'There are currently ' . count($visitors_online) .
 ' visitors online';
?>

The $visitors_online variable is assigned an array of arrays, each element of

the “main” array corresponding to a single online visitor. Each of the “sub” arrays

contains information about a particular visitor, such as the operating system in

use, the time of last access, and the browser type.

Most other information available from phpOpenTracker requires you to specify

a time range over which you want data returned. For example, how might you

ascertain the total number of visitors and page impressions your site clocked up

today?

File: 9.php

<?php
// Include phpOpenTracker
require_once 'phpopentracker.php';

$page_count = phpOpenTracker::get(
 array(
 'api_call' => 'page_impressions',
 'range' => 'today'
)
);

$num_visitors = phpOpenTracker::get(
 array(
 'api_call' => 'visits',
 'range' => 'today'
)
);

echo 'Total page impressions for ' . date('d M Y') . ': ' .
 $page_count . '
';
echo 'Total visitors for ' . date('d M Y') . ': ' .
 $num_visitors . '
';
?>

239

How do I get reports on my site’s statistics?

The parameters we specify to the phpOpenTracker::get method depend on the

value of the first array element, api_call. The parameters include range, as seen

in the example above, which is used to specify a time range (e.g. the current

month). constraints is itself an array in which you can specify the criteria by

which the report should be built, such as page or browser. result_format allows

you to specify how the data should be output, such as XML, CSV, or GraphViz.

An additional method, phpOpenTracker::plot is used to generate charts with

jpGraph.

Usually, the report API will give you most of the tools you need, but in rare cases

you may have to build your own SQL queries in order to get precisely what you

want. Make sure you examine the documentation that explains the relationships

between the tables phpOpenTracker uses.

Further Reading
� Take Web data Analysis to the next level with PHP:

http://www.ibm.com/developerworks/web/library/wa-phpolla/?ca=dgr-lnxw06PHPchi

Analyzing your Web traffic can be high powered stuff, as this article explains.

Chapter 4: Stats and Tracking

240

http://www.ibm.com/developerworks/web/library/wa-phpolla/?ca=dgr-lnxw06PHPchi
http://www.ibm.com/developerworks/web/library/wa-phpolla/?ca=dgr-lnxw06PHPchi

Caching5
In the good old days, back when building Websites was as easy as knocking up

a few HTML pages, the delivery of a Web page to a browser was a simple matter

of having the Web server fetch a file. A site’s visitors would see its small, text-

only pages almost immediately, unless they were using particularly slow modems.

Once the page was downloaded, the browser would cache it somewhere on the

local computer so that, should the page be requested again, after performing a

quick check with the server to ensure the page hadn’t been updated, the browser

could display the locally cached version. Pages were served as quickly and effi-

ciently as possible, and everyone was happy (except those using 9600 bps mo-

dems).

The advent of dynamic Web pages spoiled the party, effectively “breaking” this

model of serving pages by introducing two problems:

� When a request for a dynamic Web page is received by the server, some inter-

mediate processing, such as the parsing of scripts by the PHP engine, must

be completed. This introduces a delay before the Web server begins to deliver

the output to the browser. For simple PHP scripts this may not be significant,

but for a more complex application, the PHP engine may have a lot of work

to do before the page is finally ready for delivery. This extra work results in

a noticeable lag between the users’ requests and the actual display of pages

in their browsers.

� A typical Web server, such as Apache, uses the time of file modification to

correctly inform a Web browser of a requested page’s cache status. With dy-

namic Web pages, the actual PHP script may change only occasionally, while

the content it displays, which is perhaps fetched from a database, will change

frequently. The Web server has no way of knowing about updates to the

database, however, so it doesn’t send a last modified date. If the client

(browser) has no indication of how long the data is valid, it will take a guess,

which usually means it will request the same page again. The Web server will

always respond with a fresh version of the page, regardless of whether the

data has changed. To avoid this shortcoming, most Web developers use a

meta tag or HTTP headers to tell the browser never to use a cached version

of the page. However, this negates the Web browser’s natural ability to cache

Web pages, and involves some serious disadvantages. For example, the content

delivered by a dynamic page may change once a day, so there’s certainly a

benefit to be gained by having the browser cache a page—even if only for

twenty four hours.

It’s usually possible to live with both problems given a small PHP application,

but as the complexity of, and traffic to, your site increases, you may run into

difficulties. However, both these issues can be solved, the first with server side

caching, the second, by taking control of client side caching from within your

application. The exact approach you use to solve the problem will depend on

your application, but in this chapter, we’ll see how you can solve both using PHP

and a number of class libraries from PEAR.

Note that in this chapter’s discussions of caching, we’ll look at only those solutions

implemented in PHP. These should not be confused with some of the script

caching solutions that work on the basis of optimizing and caching compiled

PHP scripts. Included in this group are the Zend Accelerator[1], iconCube PHP

Accelerator[2], and Turck MMCache[3], the latter being the only accelerator

that’s ready for use with Windows based PHP installations today.

How do I prevent Web browsers caching
a page?

Before we look at the approaches you can take to client and server side caching,

the first thing we need to understand is how to prevent Web browsers (and proxy

[1] http://www.zend.com/store/products/zend-performance-suite.php

[2] http://www.phpaccelerator.co.uk/

[3] http://www.turcksoft.com/en/e_mmc.htm

Chapter 5: Caching

242

http://www.zend.com/store/products/zend-performance-suite.php
http://www.phpaccelerator.co.uk/
http://www.phpaccelerator.co.uk/
http://www.turcksoft.com/en/e_mmc.htm
http://www.zend.com/store/products/zend-performance-suite.php
http://www.phpaccelerator.co.uk/
http://www.turcksoft.com/en/e_mmc.htm

servers) from caching pages in the first place. The most basic approach to doing

this utilizes HTML meta tags:

<meta http-equiv="Expires" content="Mon, 26 Jul 1997 05:00:00 GMT"
/>
<meta http-equiv="Pragma" content="no-cache" />

By inserting a past date into the Expires meta tag, we can tell the browser that

the cached copy of the page is always out of date. This means the browser should

never cache the page. The Pragma: no-cache meta tag is a fairly well-supported

convention that most Web browsers follow. Upon encountering this tag, they

usually won’t cache the page (although there’s no guarantee; this is just a conven-

tion).

It sounds good, but there are two problems associated with the use of meta tags:

1. If a tag wasn’t present when the page was first requested by a browser, but

appears later (for example, you modified the included pageheader.php file,

which contains the top of every Web page), the browser will remain blissfully

ignorant and keep its cached copy of the original.

2. Proxy servers that cache Web pages, such as those common to ISPs, generally

will not examine the HTML documents themselves. Instead, they rely purely

on the Web server from which the documents came, and the HTTP protocol.

In other words, a Web browser might know that it shouldn’t cache the page,

but the proxy server between the browser and your Web server probably

doesn’t—it will continue to deliver the same out-of-date page to the client

A better approach is to use the HTTP protocol itself, with the help of PHP’s

header function, to produce the equivalent of the two meta tags above:

<?php
header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');
header('Pragma: no-cache');
?>

We can go one step further, using the Cache-Control header that’s supported

by HTTP 1.1 capable browsers:

<?php
header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');
header('Cache-Control: no-store, no-cache, must-revalidate');
header('Cache-Control: post-check=0, pre-check=0', FALSE);
header('Pragma: no-cache');
?>

243

How do I prevent Web browsers caching a page?

This essentially guarantees that no Web browser or intervening proxy server will

cache the page, so visitors will always receive the latest content. In fact, the first

header should accomplish this on its own; this is the best way to ensure a page

is not cached. The Cache-Control and Pragma headers are added for “insurance”

purposes. Though they don’t work on all browsers or proxies, they will catch

some cases in which the Expires header doesn’t work as intended (e.g. if the

client computer’s date is set incorrectly).

Of course, to disallow caching entirely introduces the problems we discussed at

the start of this chapter. We’ll look at the solution to these issues in just a mo-

ment.

Internet Explorer and File Download Caching

Our discussion of PDF rendering in Chapter 3 explained that issues can arise when you’re

dealing with caching and file downloads. In serving a file download via a PHP script that

uses headers such as Content-Disposition: attachment, filename=myFile.pdf
or Content-Disposition: inline, filename=myFile.pdf, you’ll have problems

with Internet Explorer if you tell the browser not to cache the page.

Internet Explorer handles downloads in a rather unusual manner, making two requests to

the Website. The first request downloads the file, and stores it in the cache before making

a second request (without storing the response). This request invokes the process of deliv-

ering the file to the end user in accordance with the file’s type (e.g. it starts Acrobat

Reader if the file is a PDF document). This means that, if you send the cache headers that

instruct the browser not to cache the page, Internet Explorer will delete the file between

the first and second requests, with the result that the end user gets nothing. If the file

you’re serving through the PHP script will not change, one solution is simply to disable

the “don’t cache” headers for the download script.

If the file download will change regularly (i.e. you want the browser to download an up-

to-date version), you’ll need to use the last-modified header, discussed later in this

chapter, and ensure that the time of modification remains the same across the two consec-

utive requests. You should be able to do this without affecting users of browsers that

handle downloads correctly. One final solution is to write the file to your Web server and

simply provide a link to it, leaving it to the Web server to report the cache headers for

you. Of course, this may not be a viable option if the file is supposed to be secured by the

PHP script, which requires a valid session in order to provide users access to the file; with

this solution, the written file can be downloaded directly.

Chapter 5: Caching

244

How do I capture server side output for
caching?

It’s time to look at how we can reduce server side delay by caching output. The

general approach begins by rendering the page as normal, performing database

queries and so on with PHP. However, before sending it to the browser, we

capture and store the finished page somewhere, for instance, in a file. The next

time the page is requested, the PHP script first checks to see whether a cached

version of the page exists. If it does, the script sends the cached version straight

to the browser, avoiding the delay involved in rebuilding the page.

What about Template Caching?

Template engines such as Smarty[4] often talk about template caching.

Usually, these engines offer an in-built mechanism for storing a compiled

version of a template (i.e. the native PHP generated from the template),

which prevents us having to recompile the template every time a page is re-

quested. This should not be confused with output caching, which refers to

the caching of the rendered HTML (or other output) that PHP sends to the

browser. You can successfully use both types of caching together on the same

site.

Here, we’ll look at PHP’s in-built caching mechanism, the output buffer[5], which

can be used with whatever page rendering system you prefer (templates or no

templates). Consider a situation in which your script displays results using, for

example, echo or print, rather than sending the data directly to the browser. In

these cases, you can use PHP’s output control functions to store the data in an

in-memory buffer, which your PHP script has both access to and control over.

Here’s a simple example:

File: 1.php

<?php
// Start buffering the output
ob_start();

// Echo some text (which is stored in the buffer);
echo '1. Place this in the buffer
';

[4] http://smarty.php.net/

[5] http://www.php.net/outcontrol

245

How do I capture server side output for caching?

http://smarty.php.net/
http://www.php.net/outcontrol
http://smarty.php.net/
http://www.php.net/outcontrol

// Get the contents of
$buffer = ob_get_contents();

// Stop buffering and clean out the buffer
ob_end_clean();

// Echo some text normally
echo '2. A normal echo
';

// Echo the contents from the buffer
echo $buffer;
?>

The buffer itself stores the output as a string. So, in the above script, we commence

buffering with ob_start and use echo to display something. We then use

ob_get_contents to fetch the data the echo statement placed in the buffer, and

store it in a string. The ob_end_clean function stops the output buffer and trashes

the contents; the alternative is ob_end_flush, which displays the contents of the

buffer.

The above script displays:

2. A normal echo
1. Place this in the buffer

In other words, we captured the output of the first echo, then sent it to the

browser after the second echo. As this simple example suggests, output buffering

can be a very powerful tool when it comes to building your site; it provides a

solution for caching, as we’ll see in a moment, and is an excellent way to hide

errors from your site’s visitors (see Volume I, Chapter 10). It even provides a

possible alternative to browser redirection in situations such as user authentication.

HTTP Headers and Output Buffering

Output buffering can help solve the most common problem associated with

the header function, not to mention session_start and set_cookie.

Normally, if you call any of these functions after page output has begun,

you’ll get a nasty error message. With output buffering turned on, the only

output types that can escape the buffer are HTTP headers. Using ob_start
at the very beginning of your application’s execution, you can send headers

at whichever point you like, without encountering the usual errors. You can

then write out the buffered page content all at once, when you’re sure there

are no more HTTP headers required.

Chapter 5: Caching

246

Using Output Buffering for Server Side Caching
Now you’ve seen a basic example of output buffering, here’s the next step, in

which the buffer is stored as a file:

File: 2.php

<?php
// If a cached version exists use it...
if (file_exists('./cache/2.cache')) {

 // Read and display the file
 readfile('./cache/2.cache');
 exit();

}

// Start buffering the output
ob_start();

// Display some HTML
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Cached Page </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
This page was cached with PHP's
Output Control
Functions
</body>
</html>

<?php
// Get the contents of the buffer
$buffer = ob_get_contents();

// Stop buffering and display the buffer
ob_end_flush();

// Write a cache file from the contents
$fp = fopen('./cache/2.cache', 'w');

247

Using Output Buffering for Server Side Caching

http://file_exists('./cache/2.cache')
http://readfile('./cache/2.cache');
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"
http://href="http://www.php.net/outcontrol">Output
http://fopen('./cache/2.cache',

fwrite($fp, $buffer);
fclose($fp);
?>

First, the above script checks to see if a cached version of the page exists and, if

it does, the script reads and displays it. Otherwise, it uses output buffering to

create a cached version of the page. It stores this as a file, while using

ob_end_flush to display the page to the visitor.

The file 2.cache looks exactly like the HTML that was rendered by the script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Cached Page </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
This page was cached with PHP's
Output Control
Functions
</body>
</html>

Chunked Buffering
A simplistic approach to output buffering is to cache an entire page. However,

this approach forfeits the real opportunities presented by PHP’s output control

functions to improve your site’s performance in a manner that’s relevant to the

varying lifetimes of your content.

No doubt, some parts of the page you send to visitors change very rarely, such

as the page’s header, menus and footer. But other parts, such as the table contain-

ing a forum discussion, may change quite often. Output buffering can be used

to cache sections of a page in separate files, then rebuild the page from these—a

solution that eliminates the need to repeat database queries, while loops, and

so on. You might consider assigning each block of the page an expiry date after

which the cache file is recreated, or alternatively, you may build into your applic-

ation a mechanism that deletes the cache file every time the content it stores is

changed.

Here’s an example that demonstrates the principle:

Chapter 5: Caching

248

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"
http://href="http://www.php.net/outcontrol">Output

File: 3.php (excerpt)

<?php
/**
 * Writes a cache file
 * @param string contents of the buffer
 * @param string filename to use when creating cache file
 * @return void
 */
function writeCache($content, $filename)
{
 $fp = fopen('./cache/' . $filename, 'w');
 fwrite($fp, $content);
 fclose($fp);
}

/**
 * Checks for cache files
 * @param string filename of cache file to check for
 * @param int maximum age of the file in seconds
 * @return mixed either the contents of the cache or false
 */
function readCache($filename, $expiry)
{
 if (file_exists('./cache/' . $filename)) {
 if ((time() - $expiry) > filemtime('./cache/' . $filename)) {
 return FALSE;
 }
 $cache = file('./cache/' . $filename);
 return implode('', $cache);
 }
 return FALSE;
}

The first two functions we’ve defined, writeCache and readCache, are used to

create cache files and check for their existence, respectively. The writeCache
function takes rendered output as its first argument, as well as a filename that

should be used when creating the cache file. The readCache function takes a fi-

lename of a cache file as its first argument, along with the time in seconds after

which the cache file should be regarded as having expired. If it finds a valid cache

file, the script will return it; otherwise it returns FALSE to instruct the calling file

that either no cache file exists, or it’s out of date.

For the purposes of this example, I used a procedural approach. However, I

wouldn’t recommend doing this in practice, as it will result in very messy code

(see later solutions for better alternatives) and is likely to cause issues with file

249

Chunked Buffering

locking (e.g. what happens when someone accesses the cache at the exact moment

it’s being updated?).

Let’s continue this example. After the output buffer is started, processing begins.

First, the script calls readCache to see whether the file 3_header.cache exists;

this contains the top of the page—the HTML head section and the start of the

body. We’ve used PHP’s date function to display the time at which the page

was actually rendered, so you’ll be able to see the different cache files at work

when the page is displayed.

File: 3.php (excerpt)

// Start buffering the output
ob_start();

// Handle the page header
if (!$header = readCache('3_header.cache', 604800)) {
 // Display the header
 ?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title> Chunked Cached Page </title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 </head>
 <body>
 The header time is now: <?php echo date('H:i:s'); ?>

 <?php
 $header = ob_get_contents();
 ob_clean();
 writeCache($header,'3_header.cache');
}

Note what happens when a cache file isn’t found. Some content is output and

assigned to a variable with ob_get_contents, after which the ob_clean function

empties the buffer. This allows us to capture the output in “chunks” and assign

it to individual cache files with writeCache. The header of the page is now stored

as a file, which can be reused without our needing to re-render the page. Look

back to the start of the if condition for a moment. When we called readCache,

we gave it an expiry time of 604800 seconds (one week); readCache uses the file

modification time of the cache file to determine whether the cache is still valid.

Chapter 5: Caching

250

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

For the body of the page, we’ll use the same process as before. However, this

time, when we call readCache, we’ll use an expiry time of five seconds; the cache

file will be updated whenever it’s more than five seconds old:

File: 3.php (excerpt)

// Handle body of the page
if (!$body = readCache('3_body.cache', 5)) {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $body = ob_get_contents();
 ob_clean();
 writeCache($body, '3_body.cache');
}

The page footer is effectively the same as the header. After this, the output buf-

fering is stopped and the content of the three variables that hold the page data

is displayed:

File: 3.php (excerpt)

// Handle the footer of the page
if (!$footer = readCache('3_footer.cache', 604800)) {
 ?>

 The footer time is now: <?php echo date('H:i:s'); ?>

 </body>
 </html>

 <?php
 $footer = ob_get_contents();
 ob_clean();
 writeCache($footer, '3_footer.cache');
}
// Stop buffering
ob_end_clean();

// Display the contents of the page
echo $header . $body . $footer;
?>

The end result looks like this:

The header time is now: 17:10:42
The body time is now: 18:07:40
The footer time is now: 17:10:42

251

Chunked Buffering

The header and footer are updated on a weekly basis, while the body is updated

whenever it is more than five seconds old.

The diagram in Figure 5.1 summarizes the chunked buffering methodology.

Chapter 5: Caching

252

Figure 5.1. Chunked Buffering Flow Diagram

253

Chunked Buffering

Nesting Buffers

You can nest one buffer within another practically ad infinitum simply by

calling ob_start more than once. This can be useful if you have multiple

operations that use the output buffer, such as one that catches the PHP error

messages, and another that deals with caching. Care needs to be taken to

make sure that ob_end_flush or ob_end_clean is called every time

ob_start is used.

How do I implement a simple server side
caching system?

Now that we have a grasp of the ideas behind output buffering, it’s time to see

how we can put this process into action in a manner that will be easy to maintain.

To do this, we’ll use a little help from PEAR::Cache_Lite (version 1.1 was used

in the examples here).

As I mentioned, in the interests of keeping your code maintainable and having

a reliable caching mechanism, it’s a good idea to delegate the responsibility of

caching logic to classes you trust. Cache_Lite provides a solid but easy to use

library for caching, handling issues such as file locking, creating, checking for,

and deleting cache files, controlling the output buffer, and directly caching the

results from function and class method calls. More to the point, Cache_Lite

should be relatively easy to apply to an existing application, requiring only minor

code modifications.

There are three main classes in Cache_Lite. First is the base class, Cache_Lite,

which deals purely with creating and fetching cache files, but makes no use of

output buffering. This class can be used alone for caching operations in which

you have no need for output buffering, such as storing the contents of a template

you’ve parsed with PHP. The examples here will not use Cache_Lite directly,

but will instead focus on the two subclasses. Cache_Lite_Function can be used

to call a function or class method and cache the result; this might prove useful

for storing a MySQL query result set, for example. The Cache_Lite_Output class

uses PHP’s output control functions to catch the output generated by your script,

and store it in cache files; it allows you to perform tasks such as those we com-

pleted in the previous solution.

Here’s an example of how you might use Cache_Lite to accomplish the task we

completed in the last solution. When instantiating any of Cache_Lite’s classes,

we must first provide an array of options that determine the behavior of

Chapter 5: Caching

254

Cache_Lite. We’ll look at these in detail in a moment. Note that the cacheDir
directory specified must be one to which the script has read and write access.

File: 4.php (excerpt)

<?php
// Include the PEAR::Cache_Lite Output class
require_once 'Cache/Lite/Output.php';

// Define options for Cache_Lite
$options = array(
 'cacheDir' => './cache/',
 'writeControl' => 'true',
 'readControl' => 'true',
 'readControlType' => 'md5'
);

// Instantiate Cache_Lite_Output
$cache = new Cache_Lite_Output($options);

For each chunk that we want to cache, we need to set a lifetime (in seconds) for

which the cache should live before it’s refreshed. Next, we use the start method,

available only in the Cache_Lite_Output class, to turn on output buffering. The

two arguments passed to the start method are an identifying value for this par-

ticular cache file, and a cache group. This is an identifier that allows a collection

of cache files to be acted upon; it’s possible to delete all cache files in a given

group, for example (more on this in a moment). Once the output for this chunk

has finished, we use the end method to stop buffering and store the content as

a file.

File: 4.php (excerpt)

// Set lifetime for this "chunk"
$cache->setLifeTime(604800);

// Start the cache with an id and group for this chunk
if (!$cache->start('header', 'Static')) {
 ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title> PEAR::Cache_Lite example </title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 </head>
 <body>

255

How do I implement a simple server side caching system?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

 <h2>PEAR::Cache_Lite example</h2>
 The header time is now: <?php echo date('H:i:s'); ?>

 <?php
 // Stop and write the cache
 $cache->end();
}

Caching the body and footer follows the same procedure as the header. Note that

we again specify a five second lifetime when caching the body:

File: 4.php (excerpt)

$cache->setLifeTime(5);
if (!$cache->start('body', 'Dynamic')) {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $cache->end();
}

$cache->setLifeTime(604800);
if (!$cache->start('footer', 'Static')) {
 ?>
 The footer time is now: <?php echo date('H:i:s'); ?>

 </body>
 </html>
 <?php
 $cache->end();
}
?>

On viewing the page, Cache_Lite creates in the cache directory files with these

names:

./cache/cache_Static_header

./cache/cache_Dynamic_body

./cache/cache_Static_footer

When the same page is requested later, the code above will use the cached file if

it is valid and has not expired.

Protect your Cache Files

Make sure that the directory in which you place the cache files is not publicly

available, or you may be offering your site’s visitors access to more than you

realize.

Chapter 5: Caching

256

Cache_Lite Options
When instantiating Cache_Lite (or any of its subclasses, such as

Cache_Lite_Output), there are a number of ways to control its behavior. These

should be placed in an array and passed to the constructor as in the previous ex-

ample:

File: 4.php (excerpt)

// Define options for Cache_Lite
$options = array(
 'cacheDir' => './cache/',
 'writeControl' => TRUE,
 'readControl' => TRUE,
 'readControlType' => 'md5'
);

// Instantiate Cache_Lite_Output
$cache = new Cache_Lite_Output($options);

In the current version (1.1) the available options are:

cacheDir This is the directory in which the cache files will be

placed. This defaults to the current script execution

directory.

caching This option switches on or off the caching behavior

of Cache_Lite. If you have numerous Cache_Lite calls

in your code and want to disable the cache for debug-

ging, for example, this will be important. The default

value is TRUE (caching enabled).

lifetime This represents the default lifetime (in seconds) of

cache files. It can be changed using the setLifeTime
method. The default value is 3600 (one hour).

fileNameProtection With this option activated, Cache_Lite uses an MD5

encryption hash to generate the filename for the cache

file. This protects you from error when you try to use

IDs or group names containing characters that aren’t

valid for filenames; it must be turned on when you

use Cache_Lite_Function. The default is TRUE (en-

abled).

257

Cache_Lite Options

fileLocking This is used to switch the file locking mechanisms on

or off. The default is TRUE (enabled).

writeControl This checks that a cache file has been written correctly

immediately after it has been created, and throws a

PEAR::Error if it finds a problem. Obviously, this

would allow your code to attempt to rewrite a cache

file that was created incorrectly, but comes at a cost

in terms of performance. The default is TRUE (enabled).

readControl This checks cache files that are being read for corrup-

tion. Cache_Lite is able to place inside the file a value,

such as the string length of the file, which can be used

to confirm that the cache file isn’t corrupted. There

are three alternative mechanisms for checking that a

file is valid, and they’re specified using the

readControlType option. These mechanisms come at

the cost of performance, but should help guarantee

your visitors aren’t seeing scrambled pages. The default

value is TRUE (enabled).

readControlType This specifies the type of read control mechanism to

use. The available mechanisms are a cyclic redundancy

check ('crc32', the default value) using PHP’s crc32
function, an MD5 hash using PHP’s md5 function

('md5'), or a simple and fast string length check

('strlen'). Note that this mechanism is not intended

to provide security from people tampering with your

cache files; it’s just a way to spot corrupt files.

pearErrorMode This tells Cache_Lite how it should return PEAR errors

to the calling script. The default is

CACHE_LITE_ERROR_RETURN, which means Cache_Lite

will return a PEAR::Error object

memoryCaching With memory caching enabled, every time a file is

written to the cache, it is stored in an array in

Cache_Lite. The saveMemoryCachingState and

getMemoryCachingState methods can be used to store

and access the memory cache data between requests.

The advantage of this is that the complete set of cache

files can be stored in a single file, reducing the number

Chapter 5: Caching

258

of disk read/writes by reconstructing the cache files

straight into an array to which your code has access.

We’ll be sticking to the normal Cache_Lite mechanism

here, but memoryCaching may be worth further invest-

igation if you run a large site. The default value is TRUE
(disabled).

onlyMemoryCaching If this is enabled, only the memory caching mechanism

will be used. The default value is TRUE (disabled).

memoryCachingLimit This places a limit on the number of cache files that

will be stored in the memory caching array. The more

cache files you have, the more memory will be used

up by memory caching, so it may be a good idea to

enforce a limit that prevents your server from having

to work too hard. Of course, this places no restriction

on the size of each cache file, so just one or two massive

files may cause a problem. The default value is 1000.

Purging the Cache
Cache_Lite’s in-built lifetime mechanism for cache files provides a good foundation

for keeping your cache files up to date, but there will be some circumstances in

which you need the files to be updated immediately. For such cases, the methods

remove and clean come in handy. The remove method is designed to delete a

specific cache file; it takes the cache ID and group name of the file. To delete the

page body cache file we created above, we’d use:

$cache->remove('body', 'Dynamic');

Using the clean method, we can delete all the files in our cache directory simply

by calling the method with no arguments; alternatively, we can specify a group

of cache files to delete. If we wanted to delete both the header and footer created

above, we could do so like this:

$cache->clean('Static');

The remove and clean methods should obviously be called in response to events

within an application. For example, if you have a discussion forum application,

you probably want to remove the relevant cache files when a visitor posts a new

message. Although it may seem like this solution entails a lot of code modifica-

tions, with some care it can be applied to your application in a global manner.

259

Purging the Cache

If you have a central script that’s included in every page a visitor views, you can

simply watch for incoming events (e.g. a variable like $_GET['newPost']) and

have some code respond by deleting the required cache files. This keeps the cache

file removal mechanism central and easier to maintain. You might also consider

using the php.ini setting auto_prepend_file to include this code in every PHP

script.

Caching Function Calls
In Chapter 2, we looked at accessing remote Web services with SOAP and XML-

RPC. Because Web services are accessed over a network, it’s often a very good

idea to cache results so that they can be fetched locally, rather than repeating

the same slow request multiple times. A simple approach might be to use PHP

sessions, as we considered in that chapter, but as this solution operates on a per

visitor basis, the opening requests for each visitor will still be slow. This is where

Cache_Lite can come in very handy.

PEAR uses Cache_Lite

The PEAR Web installer (see Appendix D) takes advantage of Cache_Lite

by caching the XML-RPC requests it makes to the PEAR Web server.

In “How do I consume SOAP Web services with PHP?” in Chapter 2, we built

a client for a SOAP Web service based on its WSDL file; the service provided

weather information for airports around the world. Here’s the code that fetched

the data from the remote server:

 $countries = $stationInfo->listCountries();

and

 $country = $stationInfo->searchByCountry($_GET['country']);

In both cases, these calls correspond to a request for data that’s made over the

network. Using Cache_Lite_Function, we could cache the results so the data

returned from the service could be reused; this would avoid unnecessary network

calls and significantly improve performance. Note that we’re focusing on only

the relevant code here. At the top, we include Cache_Lite_Function:

File: 5.php (excerpt)

// Include PEAR::Cache_Lite_Function
require_once 'Cache/Lite/Function.php';

Chapter 5: Caching

260

Further down, we instantiate the Cache_Lite_Function class with some options:

File: 5.php (excerpt)

// Define options for Cache_Lite_Function
// NOTE: fileNameProtection = TRUE!
$options = array(
 'cacheDir' => './cache/',
 'fileNameProtection' => TRUE,
 'writeControl' => TRUE,
 'readControl' => TRUE,
 'readControlType' => 'strlen',
 'defaultGroup' => 'SOAP'
);

// Instantiate Cache_Lite_Function
$cache = new Cache_Lite_Function($options);

It’s important that the fileNameProtection option is set to TRUE (this is in fact

the default value, but in this case I’ve set it manually to emphasize the point).

If it were set to FALSE, the filename will be invalid, so the data will not be cached.

Here’s how we make the calls to our SOAP client class:

File: 5.php (excerpt)

 $countries = $cache->call('stationInfo->listCountries');

And:

File: 5.php (excerpt)

 $country = $cache->call('stationInfo->searchByCountry',
 $_GET['country']);

If the request is being made for the first time, Cache_Lite_Function stores the

results as serialized arrays in cache files (not that you need to worry about this),

and this file is used for future requests until it expires. The setLifeTime method

can again be used to specify how long the cache files should survive before they’re

refreshed; right now, the default value of 3,600 seconds (one hour) is being used.

In general Cache_Lite provides a solid, easy-to-implement library for solving

caching issues. As we move to the “next level” of caching, for sites with particularly

high traffic, it’s worth examining PEAR::Cache[6], Cache_Lite’s big brother.

PEAR::Cache is a complete caching framework that offers greater flexibility than

[6] http://pear.php.net/package/CACHE

261

Caching Function Calls

http://pear.php.net/package/CACHE
http://pear.php.net/package/CACHE

Cache_Lite, and ties in with database abstraction libraries such as PEAR::DB[7].

It also offers advanced features such as caching to shared memory, as an altern-

ative to the file system, or, with help from the Msession PHP extension[8], storing

cache data in load balanced sessions, which is particularly useful for load balanced

Web servers. Further PEAR::Cache reading material is recommended for at the

end of this chapter. Cache_Lite, however, offers more than enough functionality

to meet the requirements of the majority of sites.

How do I control client side caching with
PHP?

Having seen how to disable client side caching and deal with server side caching,

it’s time to look at a mechanism that allows us to take advantage of client side

caches in a way that can be controlled from within a PHP script. This approach

will only work if you are running PHP with an Apache Web server, because it

requires use of the function getallheaders to fetch the HTTP headers sent by

a Web browser. This function only works with Apache.

New Function Names

If you’re using PHP version 4.3.0+ on Apache, HTTP headers are available

with the functions apache_request_headers[9] and

apache_response_headers[10]. The function getallheaders has be-

come an alias for the new apache_request_headers function.

The mechanism for dealing with Web browser caches is again HTTP. A number

of headers are involved in instructing Web browsers and proxy servers whether

to cache a page; the situation is further complicated by the fact that some are

only available with HTTP 1.1.

Examine HTTP Headers in your Browser

A simple but very handy tool for examining request and response headers is

LiveHttpHeaders[11], which is an add-on to the Mozilla browser. It’s worth

knowing exactly what headers your script is sending, particularly when you’re

dealing with HTTP cache headers.

[7] http://pear.php.net/package/DB

[8] http://www.php.net/msession

[9] http://www.php.net/apache_request_headers

[10] http://www.php.net/apache_response_headers

[11] http://livehttpheaders.mozdev.org/

Chapter 5: Caching

262

http://pear.php.net/package/DB
http://www.php.net/msession
http://www.php.net/apache_request_headers
http://www.php.net/apache_response_headers
http://livehttpheaders.mozdev.org/
http://pear.php.net/package/DB
http://www.php.net/msession
http://www.php.net/apache_request_headers
http://www.php.net/apache_response_headers
http://livehttpheaders.mozdev.org/

From the point of view of keeping it simple, we’ll concentrate here on the HTTP

1.0 caching headers only, namely Expires, Last-Modified, and If-Modified-
Since, as well as HTTP status code 304 (Not Modified).

Those headers available with HTTP 1.1, such as Cache-Control and ETAG, are

intended to provide an advanced mechanism that can be used in conjunction

with a Web session’s state; in other words, the version of a given page displayed

to a visitor who’s not logged in may differ vastly from that displayed to a logged-

in user. The HTTP 1.1 headers were added primarily to allow the caching of such

pages.

Page Expiry
The header that’s easiest to use is the Expires header, which sets a date (presum-

ably in the future) on which the page will expire. Until that time, Web browsers

are allowed to use a cached version of the page.

An example:

File: 6.php

<?php
/**
 * Sends the Expires HTTP 1.0 header.
 * @param int number of seconds from now when page expires
 */
function setExpires($expires)
{
 header('Expires: ' .
 gmdate('D, d M Y H:i:s', time() + $expires) . 'GMT');
}

// Set the Expires header
setExpires(10);

// Display a page
echo 'This page will self destruct in 10 seconds
';
echo 'The GMT is now ' . gmdate('H:i:s') . '
';
echo '<a href="' . $_SERVER['PHP_SELF'] .
 '">View Again
';
?>

The setExpires function sets the HTTP Expires header to a future time, defined

in seconds. The above example shows the current time in GMT and provides a

link that allows you to view the page again. Using your browser’s Refresh button,

263

Page Expiry

you might tell the browser to refresh the cache. Using this link, you’ll notice the

time updates only once every ten seconds.

Dates and Times in HTTP

HTTP dates are always calculated relative to Greenwich Mean Time (GMT).

The PHP function gmdate is exactly the same as the date function, except

it automatically offsets the time to GMT, based on your server’s system clock

and regional settings.

When a browser encounters an Expires header, it caches the page. All further

requests for the page that are made before the specified expiry time use the cached

version of the page; no request is sent to the Web server.

The Expires header has the advantage of being easy to implement, but for most

cases, unless you’re a highly organized person, you won’t know exactly when a

given page on your site will be updated. Because the browser will only contact

the server after the page has expired, there’s no way to tell browsers that the page

they’ve cached is out of date. You also lose some knowledge of the traffic to your

Website, as the browser will not make contact with the server when requesting

a page that has been cached.

Page Modification Time
A more useful approach is to make use of the Last-Modified and If-Modified-
Since headers, both of which are available in HTTP 1.0. Technically, this is

known as performing a conditional GET; whether you return any content is

based on the condition of the incoming If-Modified-Since request header.

Using this approach, you need to send a Last-Modified header every time your

PHP script is accessed. The next time the browser requests the page, it sends an

If-Modified-Since header containing a time; your script can then identify

whether the page has been updated since the time provided. If it hasn’t, your

script sends an HTTP 304 status code to indicate that the page has not been

modified, and exits before sending the body of the page.

Providing a simple example of conditional GETs is tricky, but PEAR::Cache_Lite

is a handy tool to show how this works. Don’t get confused though; this is not
meant to show server side caching; it simply provides a file that’s updated peri-

odically.

Here’s the code:

Chapter 5: Caching

264

File: 7.php (excerpt)

<?php
// Include PEAR::Cache_Lite
require_once 'Cache/Lite.php';

// Define options for Cache_Lite
$options = array(
 'cacheDir' => './cache/'
);

// Instantiate Cache_Lite
$cache = new Cache_Lite($options);

// Some dummy data to store
$id = 'MyCache';

// Initialize the cache if first time the page is requested
if (!$cache->get($id)) {
 $cache->save('Dummy', $id);
}

// A randomizer...
$random = array(0, 1, 1);
shuffle($random);

// Randomly update the cache
if ($random[0] == 0) {
 $cache->save('Dummy', $id);
}

// Get the time the cache file was last modified
$lastModified = filemtime($cache->_file);

// Issue an HTTP last modified header
header('Last-Modified: ' .
 gmdate('D, d M Y H:i:s', $lastModified) . ' GMT');

// Get client headers - Apache only
$request = getallheaders();

if (isset($request['If-Modified-Since'])) {
 // Split the If-Modified-Since (Netscape < v6 gets this wrong)
 $modifiedSince = explode(';', $request['If-Modified-Since']);

 // Turn the client request If-Modified-Since into a timestamp
 $modifiedSince = strtotime($modifiedSince[0]);

265

Page Modification Time

} else {
 // Set modified since to 0
 $modifiedSince = 0;
}

// Compare time the content was last modified with client cache
if ($lastModified <= $modifiedSince) {
 // Save on some bandwidth!
 header('HTTP/1.1 304 Not Modified');
 exit();
}

echo 'The GMT is now ' . gmdate('H:i:s') . '
';
echo '<a href="' . $_SERVER['PHP_SELF'] .
 '">View Again
';
?>

Remember to use the “View Again” link when you run this example (clicking

Refresh usually clears your browser’s cache). If you click on the link repeatedly,

eventually the cache will be updated; your browser will throw out its cached

version and fetch a new page rendered by PHP.

In the above example we used PEAR::Cache_Lite to create a cache file that is

updated randomly. We ascertain the file modification time of the cache file with

this line:

$lastModified = filemtime($cache->_file);

Technically speaking, this is a hack, as PEAR::Cache_Lite intends its $_file
member variable to be private. However, we must use it to get the name of the

cache file so that we can fetch its modification time.

Next, we send a Last-Modified header using the modification time of the cache

file. We need to send this for every page we render, to cause visiting browsers to

send us the If-Modifed-Since header upon every request.

// Issue an HTTP last modified header
header('Last-Modified: ' .
 gmdate('D, d M Y H:i:s', $lastModified) . ' GMT');

Use of the getallheaders function ensures that PHP gives us all the incoming

request headers as an array. We then need to check that the If-Modified-Since
header actually exists; if it does, we have to deal with a special case caused by

older Mozilla browsers (below version 6), which appended an (illegal) extra field

to their If-Modified-Since headers. Using PHP’s strtotime function, we gen-

Chapter 5: Caching

266

erate a timestamp from the date the browser sent us. If there is no such header,

we set this timestamp to zero, forcing PHP to give the visitor an up-to-date copy

of the page.

// Get client headers - Apache only
$request = getallheaders();

if (isset($request['If-Modified-Since'])) {
 // Split the If-Modified-Since (Netscape < v6 gets this wrong)
 $modifiedSince = explode(';', $request['If-Modified-Since']);

 // Turn the client request If-Modified-Since into a timestamp
 $modifiedSince = strtotime($modifiedSince[0]);
} else {
 // Set modified since to 0
 $modifiedSince = 0;
}

Finally, we check to see whether the cache has been modified since the last time

the visitor received this page. If it hasn’t, we simply send a Not Modified response

header and exit the script, saving bandwidth and processing time by instructing

the browser to display its cached copy of the page.

// Compare the time the content was last modified with cache
if ($lastModified <= $modifiedSince) {
 // Save on some bandwidth!
 header('HTTP/1.1 304 Not Modified');
 exit();
}

If you combine the Last-Modified approach with time values that are already

available in your application (e.g. the time of the most recent news article, or

expiry times from the server side caching system we saw in the last solution), you

should be able to take advantage of Web browser caches and save bandwidth,

while being able to gather your site’s traffic information and improve its perceived
performance.

Be very careful to test any caching performed in this manner, though; if you get

it wrong, you may cause your visitors to have permanently out of date copies of

your site.

267

Page Modification Time

Further Reading
� Caching Tutorial for Web Authors and Webmasters:

http://www.mnot.net/cache_docs/

This article represents the definitive discussion of Web caching.

� Issuing Correct HTTP Headers:
http://perl.apache.org/docs/general/correct_headers/correct_headers.html

This tutorial provides a useful discussion of HTTP headers in Perl, which can

be readily applied to PHP.

� HTTP 1.1 RFC 2616 on Cache Control:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Here, you’ll find a precise description of HTTP 1.1 cache control headers.

� Output Buffering, and how it can Change Your Life:
http://www.zend.com/zend/art/buffering.php

Zeev Suraski gives a short tour of what can be done with PHP’s output buf-

fering in this great article.

� Output Buffering with PHP:

http://www.devshed.com/Server_Side/PHP/OutputBuffering/

this article provides another look at PHP’s output buffering, with notes on

using it to capture PHP errors.

� Caching PHP Programs with PEAR:

http://www.onlamp.com/pub/a/php/2001/10/11/pearcache.html

Sebastian Bergmann introduces PEAR::Cache.

Chapter 5: Caching

268

http://www.mnot.net/cache_docs/
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.zend.com/zend/art/buffering.php
http://www.devshed.com/Server_Side/PHP/OutputBuffering/
http://www.onlamp.com/pub/a/php/2001/10/11/pearcache.html
http://www.mnot.net/cache_docs/
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.zend.com/zend/art/buffering.php
http://www.devshed.com/Server_Side/PHP/OutputBuffering/
http://www.onlamp.com/pub/a/php/2001/10/11/pearcache.html

Development Technique6
In this chapter, we take a step out away from solving particular problems, to look

at general techniques that can make you and me better developers. “Better” may

mean many things: more productive, more relaxed, able to take on more complex

projects, able to deliver reliable and maintainable code… or able to sleep at night.

Some of what you read here may be obvious to you. Other parts may seem un-

usual, and others, completely foreign. In the end, what suits you is a matter of

personal taste, but by trying some of the suggestions here you may find that a

few things grow on you and become part of your development habits.

How do I optimize my code?
“Premature optimization is the root of all evil.”
—Donald E. Knuth

When developing applications, the first stage should be to make design your top

priority; we should sacrifice performance in favor of a well designed application

architecture, and allow our code to be flexible and maintainable. When it comes

to putting your application online, though, performance becomes an issue.

In general, assuming you haven’t made any critical mistakes in your code, per-

formance is really a hardware issue (i.e. you have the option to throw memory,

faster processors etc. at the problem); it may also be solved with Caching (see

Chapter 5).

That said, it’s important to know the techniques you can use to optimize your

code without either breaking it or sacrificing the design. Looking for ways to

optimize code should be a final stage of design.

Here, we’ll look at some specific examples that are common to PHP applications,

and suggest alternative approaches to structure the code and help performance.

I’ll also be introducing you to the Xdebug extension[1], which, aside from being

a very handy script debugging tool, also allows you to profile your code—a

powerful technique for finding bottlenecks in your development. Profiling involves

examining what your code does at runtime from the perspective of the work the

PHP engine has to perform in order to execute it. With Xdebug you can generate

a report of how your code performs; perhaps you’ll format it to show the function

calls that take the most time to execute first, so you can focus on optimizing

those functions without breaking your overall design.

The online documentation does a good job of explaining how to install Xdebug;

it should be easy to set up on all common operating systems where PHP is

used—Linux, Windows and MacOS. Note that on Windows systems, Xdebug

often requires that you have the latest stable release of PHP installed; to this,

Xdebug can be installed as an extension like any other. For example, you could

simply add the following to your php.ini file:

extension = xdebug-4.3.2-1.2.0-win32.dll

Some of the “common optimizations” suggested here have popped up elsewhere

in this book, in highlighting mistakes, or in presenting specific solutions for

problems that, while obscure, yield better performance without requiring radical

alterations to your code.

[1] http://www.xdebug.org/

Chapter 6: Development Technique

270

http://www.xdebug.org/
http://xdebug-4.3.2-1.2.0-win32.dll
http://www.xdebug.org/

The Performance Cost of OOP

Some people writing PHP applications still rail against the idea of using classes and objects

to build applications. They’re opposed to this philosophy because of the cost in performance

it entails, and yes, it’s true—using an object oriented approach to solve a problem will be

a little slower than the equivalent procedural code. What is important to remember about

OOP is that it improves radically your performance as a developer; if you have infinite

time to waste, lucky you! But for the rest of us, the object oriented paradigm far outstrips

procedural coding in terms of reduced development times.

Most Probable First
A core aspect of any PHP application will typically be some sort of control

structure, such as an if-else statement. Often, these are written in a manner

that suits the way humans think, but this may not produce the most effective

code in terms of speed and performance. By placing the most probable condition

first, you can help PHP complete an if-else statement faster.

For example, let’s say we have a function, isBlue, which checks to see if a variable

passed to it has the value 'blue'. If, most of the time, the value is given the

function 'red', rather than 'blue', it would be better to react to that condition

first.

The following example serves as a test to prove this:

File: 1.php (excerpt)

<?php
// Check Xdebug is installed
if (!extension_loaded('xdebug')) {
 die('Xdebug ' .
 'required');
}

// Start Xdebug profiling
xdebug_start_profiling();

// A array of colors "weighted" to red
$colors = array('red', 'red', 'red', 'red', 'red', 'red', 'red',
 'blue');

// The slow way
function isBlueSlow($color)
{

271

Most Probable First

http://href="http://xdebug.derickrethans.nl/">Xdebug</a

 if ($color == 'blue') {
 return TRUE;
 }
 return FALSE;
}

// The fast way - test for red first
function isBlueFast($color)
{
 if ($color != 'blue') {
 return FALSE;
 }
 return TRUE;
}

To start with, we tell Xdebug to begin profiling. Using the $colors array, we

have some sample data over which we can iterate to prove the point; note that

most of the elements of the array have the value 'red', so this will be the most

probable. The isBlueSlow function is written the way a human being would

probably think about the problem; it simply checks whether the color is blue,

and if not, it returns FALSE. The isBlueFast function first tests that the color

isn’t blue, and is based on prior knowledge of the data that’s being tested; other-

wise, it’s logically the same as the isBlueSlow function, from the point of view

of the values it will return.

To test the functions, we can use the following code:

File: 1.php (excerpt)

for ($i = 0; $i < 50; $i++) {
 if (!$color = each ($colors)) {
 reset($colors);
 $color = each($colors);
 }
 if (isBlueSlow($color['value'])) {
 // Do something here
 }
}

for ($i = 0; $i < 50; $i++) {
 if (!$color = each($colors)) {
 reset($colors);
 $color = each($colors);
 }
 if (isBlueFast($color['value'])) {
 // Do something here

Chapter 6: Development Technique

272

 }
}

// Display the Xdebug report grouped by function call
xdebug_dump_function_profile(XDEBUG_PROFILER_NC);
?>

We test each of the functions with fifty function calls, iterating over the $colors
array using PHP’s each function. The report generated by Xdebug should look

something like Figure 6.1, though of course, the absolute times will depend on

the speed of your server.

Figure 6.1. Most Probably Faster

As you can see, when tested over fifty iterations, isBlueSlow turned out to take

almost twice as long as isBlueFast. Of course, in a real application, the results

would be unpredictable; it could be that on a particular run all the values were

'blue', which would make isBlueSlow quicker. But by designing the code to

reflect the most probable input, you can improve the overall performance of the

application on average.

Note that when we called xdebug_dump_function_profile, we passed it the

constant XDEBUG_PROFILE_NC, which tells XDebug to merge all function calls

from the same line in the script into a single entry in the output. There are a

number of different profiling modes which XDebug provides to give you different

“views” of what’s actually happening in your PHP script. These modes range

from a list of slowest function calls in order of execution time, to averages for

each function. See the XDebug documentation for further details.

Although this example may seem trivial, it’s common for applications to have

many such “probable conditions”; by weighting all code to the most probable

outcome, the end effect for a large application can be a significant increase in

performance.

273

Most Probable First

The for Loop
Another common pattern in PHP code is to use a for loop to step through the

elements of an array until the end of the array is reached. PHP provides the

function count to test the size of an array and, although it may look like nice,

clean coding practice to place the count function call in the for loop, consider

the following script:

File: 2.php

<?php
// Check Xdebug is installed
if (!extension_loaded('xdebug')) {
 die('Xdebug ' .
 'required');
}

// Create an array with element values from 1 to 50000
$numbers = range(1, 50000);

// Start Xdebug profiling
xdebug_start_profiling();

// For with count function call in loop
for ($i=0; $i < count($numbers); $i++) {
 // Do something here
}

// Place count() outside for loop
$size = count($numbers);
for ($i=0; $i < $size; $i++) {
 // Do something here
}

// Display the Xdebug line by line report
xdebug_dump_function_profile();
?>

Notice that in the first for loop, the count function is called each time the con-

dition in the for loop is checked. In the second, we call the function only once

and store the result in the variable $size. Xdebug tells me the total time in each

case; the report from my testing is shown in Figure 6.2.

Chapter 6: Development Technique

274

http://href="http://xdebug.derickrethans.nl/">Xdebug</a

Figure 6.2. Taking Forever

The first loop wastes about 0.3 seconds by making 50001 calls to the count
function. This is clearly improved by calling the function only once and storing

the value in a variable.

Don’t Be Greedy
Always be on the lookout for queries like this:

SELECT * FROM table

Generally speaking, you will never need to display the complete contents of a table

to a user and, more importantly, queries like this endanger your application. If

you have a table that gathers visitor stats, for example, it will grow very quickly.

A SELECT * FROM stats, which looked fine when you developed your application,

will eventually bring it to a grinding halt.

You should always be able to apply a limiting clause to a query, such as a WHERE
clause, which fetches results for the last week only, or, if you’re using MySQL, a

LIMIT clause, which returns a limited set of results, allowing you to build a paged

result set interface for your visitors.

Using SELECT * FROM table will select all the columns from a table. For a table

with many fields, this may be unnecessary; consider limiting the query to the

columns you need only (e.g. SELECT title, date FROM articles).

Lazy Inclusion
Including at the start of a script, or in some central include file, all the files you’ll

need to execute your script can make understanding the code easier. However,

where classes are concerned, it may result in a large overhead as you load classes

that aren’t actually used for the current execution. It’s perfectly reasonable to

include the class files at the point at which they’re required. For example:

275

Don’t Be Greedy

File: 3.php

<?php
class LazyInclude {
 var $session;
 function LazyInclude()
 {
 // Include the class as it's needed
 require_once 'Session/Session.php';
 $this->session = &new Session();
 }
}

$li = new LazyInclude();
?>

Notice that in the above example we’ve used the require_once statement imme-

diately before we actually needed to instantiate the Session class.

The trade off here is that it’s harder to see which classes your code uses.

Quotes
Using double quotes when assigning values to strings causes PHP to check the

contents for variables and special character codes; using single quotes tells PHP

simply to regard the contents as a literal string.

Consider this code:

$string = "This string is searched for PHP variables";

The above code is a little slower than this:

$string = 'This string is taken as is';

If you don’t need to place variables in the string, or use escaped characters like

\n (new line), stick to single quotes.

Reference or Copy?
In Volume I, Chapter 2 you learned about the ins of outs of references in PHP.

In general, it takes longer to pass variables by reference than it does to use the

default copying behavior of PHP. This is because the PHP engine has to trace to

the original value in memory when references are used. In some cases that involve

Chapter 6: Development Technique

276

the use of OOP in PHP, references are essential to the design of the application,

but if you’re sure that for a particular problem you can legitimately use a copy of

the object, doing so will result in a saving.

Note that copying variables uses up memory for each copy. This won’t slow down

a simple application under moderate load, but, implemented in large applications

that deal with a lot of requests, could use up the physical memory of your server.

The impact of this could be very significant, as the server must dip into virtual

memory to run your application.

Xdebug
Where Xdebug is particularly useful is in examining applications that are near

completion. The documentation explains the available reports it can generate,

which can give an excellent overview of where the main bottlenecks lie, and help

you focus your effort on specific functions and routines. It also encourages you

to take a more systematic approach to optimizing your application, rather than

using educated guesses in an ad hoc manner.

You can also log Xdebug data to a file, which will allow you to gather profile in-

formation while your application is online. Sometimes, problems won’t show up

until you’re running in a live environment; the impact to a database table which

now contains many megabytes of data, for example, might make itself clear only

once your application’s live and online.

How do I structure my application into
layers?

The term N-Tier may or may not be familiar to you, but it’s definitely a concept

that’s worth being aware of, as it makes a very useful measure of the design of

your application. The “N” means “some number of”, while “tier” refers to the

layers in your application being like tiers on a wedding cake.

Let’s step back into the past for a moment. In the old days of client-server com-

puting on corporate networks, applications shared by multiple users were generally

built with two tiers: a central database or file server, and a desktop application

that accessed the central resource. This worked well for small groups of users,

but as applications were distributed across regional and international networks

and user bases grew, all sorts of problems ensued. The database might be over-

loaded, client side upgrades and maintenance became more expensive, and network

277

Xdebug

latency delivered poor performance to users—and this was before people thought

about putting their applications online!

These days, five is a generally accepted number of tiers for distributed and Web-

based applications. What defines the tiers themselves is open to discussion, but

if we think about a typical PHP application, the tiers could be described as shown

in Figure 6.3.

Figure 6.3. N-Tier PHP

The names of the tiers themselves vary, as N-Tier is not a well-defined standard.

For example, the application logic layer is sometimes referred to as the business

logic layer, while the presentation layer is often confused with the presentation

logic layer. In general, though, what happens at each layer is fairly well agreed

upon, as the diagram suggests; vendors like Sun and Microsoft will generally refer

to a very similar five tier structure, using their own technologies, of course.

The Principles of N-Tier
When we talk about an N-Tier application, a few general principles are inferred;

these principles apply to the tiers themselves.

Chapter 6: Development Technique

278

� Each layer must be able to exist on a physically independent system and be

able to communicate over a network. Having said that, the layers do not have
to be separate systems—they need only be designed in such a way that this

is possible. Communication between layers on separate systems must be able

to be handled over a network, with the help of some intermediate technology

like SOAP or XML-RPC. In other words, this principle is something of a

thought experiment for developers: “Is this layer distributable?” By applying

this principle, the architecture as a whole becomes scalable, for example, al-

lowing it to be expanded with load balancing technologies as site traffic in-

creases.

� Each layer should exchange information only with the layers above and below

it. For example, the presentation logic tier may not exchange information

directly with the data access tier, but must communicate only with the business

tier; this will act as the interface to the data access tier.

� Each layer should be replaceable with other equivalent technologies. At the

presentation layer, this means that Mozilla or Opera should function just as

well as Internet Explorer when viewing a site. For the presentation logic layer,

it should be possible to render alternative content types to HTML, such as

WML (wireless mark up language) or SOAP. Down at the data tier, this might

mean being able to replace MySQL with PostgreSQL. Two further principles

stem from this one:

� Each layer should have a clearly defined interface, or API.

� Layers should expect nothing of other layers, except that they conform to

the defined APIs.

But What’s the point?
The concepts behind N-Tier deliver three key benefits.

First, by designing in accordance with the N-Tier principles, an application has

a better chance of coping with future traffic and performance demands, as it’s

able to scale well within each tier. For example, as traffic increases, you may need

to run multiple MySQL servers with data replication, or use multiple load balanced

Web servers to serve content. When doing this, the preservation of PHP sessions,

for example, becomes a problem, but with a reasonable N-Tier design it should

be possible to adapt the application to the new requirements without any signi-

ficant code rewriting. Perhaps you simply modify your session handling logic so

279

But What’s the point?

that, instead of accessing session data from the local file system, it shares session

data with the help of PHP’s Msession extension[2].

Secondly, N-Tier aims to make developers independent of specific vendors, other

than the vendor of your programming language (the PHP Group and Zend). It

should be possible to swap MySQL for another database server with minimal

impact on your code. It should also be possible for users running browsers other

than Internet Explorer to have the same experience as IE users browsing your

site. Note that database abstraction layers like PEAR::DB go some of the way to

making you independent of a specific database, but, vendors being vendors, all

have their own implementations of SQL, to “keep the punters coming back for

more.” In some cases, the nonstandard syntax, such as MySQL’s LIMIT clause

or FULLTEXT searching, is too tempting to ignore, but be aware that these will

come back to bite you if you wish to move to another database at some point in

the future.

Thirdly, and perhaps most importantly, is that the N-Tier model can help de-

velopers design well structured, flexible applications that are easy to maintain.

By considering your application in terms of “which layer should this code be in?”,

a large chunk of the design decisions fall into place.

Consider the following, fairly typical, procedural PHP script:

File: 4.php

<?php
// Start Data Access Layer
if (!mysql_connect('localhost', 'harryf', 'secret')) {
 die('Could not connect to database server');
}
if (!mysql_select_db('sitepoint')) {
 die('Could not select database');
}
// End Data Access

// Start Presentation Logic
if (isset($_GET['id'])) {

 // Start Application logic
 $sql = "SELECT title, body, published FROM articles
 WHERE article_id='" . $_GET['id'] . "'";
 // End Application logic

[2] http://www.php.net/msession

Chapter 6: Development Technique

280

http://www.php.net/msession
http://www.php.net/msession

 // Start Data Access
 $result = mysql_query($sql);
 $row = mysql_fetch_array($result);
 // End Data Access Layer

 // Start Application logic
 $date = date('Y m d', $row['published']);
 // End Application logic

 // Start Presentation Logic
 echo "<h1>" . $row['title'] . "</h1>\n";
 echo "Published: $date
";
 echo $row['body'] . "
\n";
 // End Presentation Logic

} else {

 // Start Application logic
 $sql = "SELECT article_id, title FROM articles LIMIT 0, 5";
 // End Application logic

 // Start Data Access
 $result = mysql_query($sql);
 while ($row = mysql_fetch_array($result)) {

 // Start Application logic
 $date = date('Y m d', $row['published']);
 // End Application logic

 // Start Presentation Logic
 echo "<a href=\"" . $_SERVER['PHP_SELF'] . "?id=" .
 $row['article_id'] . "\">" . $row['title'] . "" .
 $date . "
\n";
 // End Presentation Logic

 }
 // End Data Access

}
// End Presentation Logic
?>

Now, the three of the five tiers in the N-Tier model that are typically written in

PHP are the data access layer, the application logic layer and the presentation

logic layer. In the above script, I’ve marked the sections of the code that could

be regarded as being parts of one layer or another. Even at a quick glance, it’s

281

But What’s the point?

clear that the layers are mixed together, and there’s no clear order to N-Tier

terms.

Taking a step towards implementing the above code in an N-Tier fashion, the

following example moves as many of the layers as possible into separate classes.

We’ll reuse the Articles and Article classes we developed to render PDFs in

Chapter 3, this time, to render HTML. This is, after all, part of the point of N-

Tier—it helps make code reusable for solving different problems.

File: 5.php

<?php
// Data Access Layer Classes
require_once 'Database/MySQL.php';
require_once 'ExampleApps/Articles.php';

// Application Logic Class
require_once 'ExampleApps/Article.php';

// Presentation Logic Classes
require_once 'ExampleApps/ArticlesView.php';
require_once 'ExampleApps/ArticleView.php';

$db = &new MySQL('localhost', 'harryf', 'secret', 'sitepoint');

if (isset($_GET['id'])) {
 $articles = &new Articles($db);
 $articles->getArticle($_GET['id']);
 $article = $articles->fetch();
 $view = &new ArticleView($article);
} else {
 $articles = &new Articles($db);
 $articles->getArticles();
 $view = &new ArticlesView($articles);
}

echo $view->render();
?>

The if-else condition is still present, which is part of the application logic (re-

placing it completely would make the example overly complicated), but otherwise,

you can see from the classes we’ve included at the start how we’ve broken the

code into a data access layer, an application logic layer, and a presentation logic

layer.

Chapter 6: Development Technique

282

If we want to access an alterative data source, such as PostgreSQL, all we should

need to do is write a PostgreSQL class with the same API as the MySQL class, then

modify the require_once statement to include the correct file, and modify the

class name when we instantiate it.

The same applies to the presentation logic layer. The classes ArticlesView and

ArticleView are currently geared to rendering HTML. If we write with the same

API two classes that render WML instead of HTML, again, all we need to do is

modify the included file names and the names of the classes we instantiate so

that it’s easy to exchange one presentation logic layer for another. Also, we’re

able to use the underlying Articles and Article classes, originally created to

render PDF documents; the presentation logic was very different here, but there

was no need to reproduce the database queries, thanks to these reusable classes.

So, where the presentation logic, in particular, is concerned, the benefit of using

an N-Tier approach to application design is clear. With some care, we can render

all sorts of content types, such as PDF, XHTML, XML, and so on, simply by

“slotting in” the correct class. Achieving the same result with the procedural ex-

ample with which we began would potentially involve writing a completely new

version, reproducing the data access and application logic layers, and would

probably result in many files containing more or less the same code. The moment

we modify a column name in the table, for example, we have to modify all the

files that access the table, whereas with my abstracted, N-Tier version, we’d only

need to change one or perhaps two files, making only minor modifications.

How do I read API documentation?
API documentation is a nicely formatted reference to a set of classes, which a

program has automatically generated based on the source code of those classes.

If you’re used to reading the excellent PHP manual with its detailed function

descriptions, understanding API documentation can be confusing—especially if

your OOP skills are uncertain. Once you grasp the concept, however, reading

this documentation can help make object oriented programming more accessible

to you, and can open you up to the wealth of freely available open source PHP

classes found in various online repositories. No longer will you need to trawl

through the source code, scratching your head…

The first thing to understand is how API documentation is generated. When

writing classes, most developers place comments in the code. One of the many

tools that generates PHP documentation then uses these comments to build the

283

How do I read API documentation?

API documents automatically. This approach to generating API documentation

from source code comments was first introduced to the mainstream by Sun’s

launch of the Javadoc utility, which produces (now famous) API documentation

such as the Java API Reference[3]. Most PHP documentation generation tools

use a similar approach to Javadoc (there’s even a modified version of Javadoc for

PHP, called PHPDoc[4]).

Let’s look at a simple PHP example:

File: 6.php

<?php
/**
 * @abstract
 */
class Something {

}
/**
 * This class does something.
 */
class DoesSomething extends Something {
 /**
 * Stores some string
 * @access private
 * @var string
 */
 var $someString;
 /**
 * Constructs DoesSomething
 * @param string Some string
 */
 function DoesSomething($someString)
 {
 $this->someString = $someString;
 }
 /**
 * Returns the stored someString
 * @param boolean whether to format XML entities
 * @return string
 * @access public
 */
 function getSomeString($specialChars = FALSE)

[3] http://java.sun.com/j2se/1.4.2/docs/api/

[4] http://www.callowayprints.com/phpdoc/

Chapter 6: Development Technique

284

http://java.sun.com/j2se/1.4.2/docs/api/
http://www.callowayprints.com/phpdoc/
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.callowayprints.com/phpdoc/

 {
 if (!$specialChars) {
 return $this->someString;
 } else {
 return htmlspecialchars($this->someString);
 }
 }
}
?>

Notice the comment lines that begin with the @ symbol? These describe the be-

havior of the class, and are extracted by the documentation parser to generate

the API documentation. For more detail, see “ How do I generate API document-

ation? ”

The upshot is that, passed through the right documentation generation tool, the

above classes can be used to generate documentation like that shown in Figure 6.4.

Figure 6.4. Generated API Documentation

What good API documentation should do is tell you what “goes in” to a class,

and what “comes out”, as well as explaining what the available methods are meant

285

How do I read API documentation?

to be used for. Assuming the API documentation is adequate and the class design

is acceptable (e.g. it involves no undeclared dependence on global variables), API

documentation should provide all the information you need to use a class—there’s

no need to worry about what’s happening “behind the scenes” in the source code

itself.

This development experience is much the same as most people’s use of the built-

in PHP functions; when was the last time you looked at the C source code of the

PHP function you just called? If the code is adequately designed, there’s no need

to look under the hood.

The difficult part of dealing with class API documentation is that, if you’re un-

certain of OOP in PHP, it may make you more confused than enlightened. API

documentation does assume a general knowledge of the use of classes and objects

(so make sure you’ve read Volume I, Chapter 2), but you don’t need to be an

OOP guru to be able to benefit from a class someone else has written.

Once you’ve grasped the basics of OOP, the next step is to understand how classes

are normally depicted in API documentation. In Figure 6.4 above, for example,

notice the lines connecting the DoesSomething class to the Something class. This

represents the fact that DoesSomething extends Something (i.e. it’s a subclass of

Something).

Also, the API documentation describes class methods similarly to the way func-

tions are explained in the PHP manual. The getSomeString method in my

DoesSomething class would be described with a signature like this:

string getSomeString([boolean $specialChars = false])

The word “string” identifies the type of data the method returns. The information

inside the parentheses tells us we can pass a Boolean value (TRUE or FALSE) as

an argument to this method, but that the argument has a default value of FALSE.

Private, Protected and Public
In programming languages like Java and C++, it’s common to define some class

methods and member variables as being private (or sometimes, as protected.

where Java is concerned). This tells a compiler that any code that accesses object

instances of the class is not allowed to use these methods or variables directly.

Attempts to do so will usually generate some kind of error at compile time. This

enforces the notion of encapsulation that’s advocated by the object oriented

Chapter 6: Development Technique

286

paradigm: that users of a class should only access objects of that class via the

public doorways—its public methods and variables.

PHP 4 does not restrict what you can and can’t access inside an object. You’re

free to “talk” to any method or member variable you want to. Whether you should
access them directly is another question altogether. Often, the developer who

built the class will provide member variables and methods that are meant for in-

ternal use only, for example, storing some temporary data about the state of the

object while it’s in use. As a result, while there’s no enforcement of object privacy

in PHP 4, many developers will use comments to mark a method or class variable

as private, thereby telling other developers not to use it.

These access control markers will be spotted by an API documentation parser;

the generated documentation will indicate which methods and variables are in-

tended for public use, and which are private.

Access Control in PHP 5

Note that PHP 5 will support the Java convention of being able to declare

private, protected, and public class members, and will enforce those restric-

tions.

Practice Makes Perfect
It’s fine to talk about API documentation, but, unless you’ve got some staring

you in the face, it’s unlikely to make sense. The best approach is to get your

hands dirty by picking some well-known PHP classes and examining the docu-

mentation. Here are some suggestions:

PHPMailer

In Volume I, Chapter 8, we looked at PHPMailer in detail, as a tool for creating

advanced emails that can easily be managed using PHP’s mail function. Because

practically all PHP coders will be very familiar with the issues of sending email

from PHP, this makes a great project to start learning how to use API document-

ation and classes in general. PHPMailer also has a fairly simple class hierarchy,

so you won’t need to worry about issues such as inheritance. Looking at “How

do I simplify the generation of complex emails?” in Volume I, Chapter 8, we had:

<?php
// Include the phpmailer class
require 'ThirdParty/phpmailer/class.phpmailer.php';

287

Practice Makes Perfect

http://ThirdParty/phpmailer/class.phpmailer.php';

// Instantiate it
$mail = new phpmailer();

// Define who the message is from
$mail->From = 'you@yourdomain.com';
$mail->FromName = 'Your Name';

// Set the subject of the message
$mail->Subject = 'Test Message';

// Add the body of the message
$body = 'This is a test';
$mail->Body = $body;

// Add a recicient address
$mail->AddAddress('you@yourdomain.com', 'Your Name');

// Send the message
if (!$mail->Send()) {
 echo 'Mail sending failed';
} else {
 echo 'Mail sent successfully';
}
?>

The PHPMailer API documentation[5] says that the AddAddress method used

above has the following signature:

void AddAddress(string $address[, string $name = ""])

This means that calling this method will return a value of type void (i.e. it doesn’t

return anything). It accepts two strings as arguments, the first being required

(the email address), and the second being optional (the name of the person you’re

sending the email to). Now, let’s look at how we used this method in the example:

$mail->AddAddress('you@yourdomain.com', 'Your Name');

Is it starting to make sense yet? What about the Send method? The documenta-

tion says:

bool Send()

[5] http://phpmailer.sourceforge.net/docs/

Chapter 6: Development Technique

288

http://phpmailer.sourceforge.net/docs/
mailto:you@yourdomain.com';
mailto:mail->AddAddress('you@yourdomain.com',
mailto:mail->AddAddress('you@yourdomain.com',
http://phpmailer.sourceforge.net/docs/

That is, this method returns a Boolean value (either TRUE or FALSE), depending

on the success or failure of the attempt to send the email.

HAWHAW

In Chapter 3, we looked at how to use HAWHAW to generate WML (Wireless

Markup Language) pages for handheld devices. HAWHAW represents another

good way to become more comfortable with API documentation. The HAWHAW

classes have no inheritance relationships, but do involve multiple classes between

which relationships exist.

In “How do I render WML with PHP?” in Chapter 3, we considered an example

that used the HAWHAW library to make articles available to handheld devices.

Let’s look at a small piece of that code now:

// Instantiate the HAW_Deck root node
$wml = new HAW_deck('SitePoint Articles');

// For Web browsers...
$wml->set_waphome('http://www.sitepoint.com/');

// Instantiate HAW_link for the "Home" url
$home = new HAW_link('Home', $url);

// Add the link to the WML document
$wml->add_link($home);

Two classes are instantiated here—the Haw_deck and Haw_link classes. Let’s first

take a glance at the API documentation[6] for the constructor of the Haw_deck
class.

This documentation has a slightly different format from what we’ve seen so

far—the signatures are a little less descriptive than they were for PHPMailer—but

here’s what the API documentation has to say about the constructor:

public HAW_deck(var $title,
 var $alignment,
 var $output)

As you know, constructors never return values, hence there’s no return value

described here. The word public tells us that we’re free to instantiate the class

(thereby using the constructor). In some cases, we may see private or protected

[6] http://www.hawhaw.de/ref/php/index.html

289

HAWHAW

http://www.hawhaw.de/ref/php/index.html
http://wml->set_waphome('http://www.sitepoint.com/');
http://www.hawhaw.de/ref/php/index.html

for a constructor; this means the class is supposed to be created automatically

by some other class, not your code. The three parameters this constructor takes

are not clear in the signature, but if we consult the description that comes with

the constructor, we’ll find noted there the values we’re expected to provide, as

well as the fact that they’re all optional.

More interesting is the point at which the add_link method is used to add the

Haw_link object to the Haw_deck object:

$wml->add_link($home);

The API documentation shows the signature for this method as:

public void add_link(var $link)

We have also to look at the method description, which tells us that this method

“Adds a HAW_link object to HAW_deck.”

Eclipse

The Eclipse PHP library[7] provides a prime example of many of the principles

of the object oriented paradigm, expressed in PHP. It was developed by Vincent

Oostindie, occasional visitor to the SitePoint Forums[8], as part of the course

work for his University studies. Hence, the design is as “by the book” as possible,

making it an excellent library with which to spark your own ideas.

Eclipse “Community Edition”

The Eclipse library is also available on SourceForge[9], where work is in

progress to develop the “Community Edition” of the library and expand on

its functionality.

Among the classes it provides is a database abstraction layer; the API document-

ation[10] for this layer demonstrates how class hierarchies are portrayed. A prime

example is the MyDatabase (MySQL) class, which inherits from the abstract

Database class. Figure 6.5 shows how the API documentation illustrates this re-

lationship.

[7] http://www.students.cs.uu.nl/people/voostind/eclipse/

[8] http://www.sitepointforums.com/

[9] http://sourceforge.net/projects/eclipselib/

[10] http://www.students.cs.uu.nl/people/voostind/eclipse/api/index.html

Chapter 6: Development Technique

290

http://www.students.cs.uu.nl/people/voostind/eclipse/
http://www.sitepointforums.com/
http://sourceforge.net/projects/eclipselib/
http://www.students.cs.uu.nl/people/voostind/eclipse/api/index.html
http://www.students.cs.uu.nl/people/voostind/eclipse/api/index.html
http://www.students.cs.uu.nl/people/voostind/eclipse/
http://www.sitepointforums.com/
http://sourceforge.net/projects/eclipselib/
http://www.students.cs.uu.nl/people/voostind/eclipse/api/index.html

Figure 6.5. MyDatabase Extends Database

Also in the MyDatabase class is the factory method, query, which returns an object

created from a class called MyQueryResult. This class has the following signature:

public MyQueryResult query(var $sql)

The signature tells us that the query method returns a value of type

MyQueryResult (in other words, an object of class MyQueryResult).

Looking at the source code for that method, we see:

 /***
 * @returns MyQueryResult
 ***/
 function &query($sql)
 {
 return new MyQueryResult($this,
 mysql_query($sql, $this->getLink()));
 }

How do I generate API documentation?
Generating your own API documentation for classes you’ve written is surprisingly

easy, and PHP has some excellent tools for the job. The main issue is getting into

the habit of adding to your comments the tags that the documentation generator

extracts and uses to describe the classes, methods, and member variables in your

code. Once you get into the swing of things, you might realize that the types of

comments you currently provide to explain what your code is doing are, in many

ways, unnecessary; a well designed class will be structured so that the names of

the methods themselves suggest what a section of code does. You’ll likely keep

291

How do I generate API documentation?

each method streamlined, rather than writing large blocks of procedural code,

and you’ll come to realize that all that really matters is letting users know what

goes in, what comes out, and a general idea of how to use the class.

The writing of API documentation may lead you to one other healthy practice.

It will encourage you to begin by writing a “blank” class that just defines the

method and member variable names and documents what they do without filling

in any code. This makes a useful hands-on design stage that forces you to consider

your class “from the outside”, that is, from the perspective of the code that will

use it.

All in all, if you’re writing PHP code that’s intended for consumption by others,

publishing API documentation is one of those essential steps without which your

project will be incomplete.

Choose your Weapons
The first problem is which documentation generation tool to choose. This is im-

portant, so it’s worth investigating the options to work out which you prefer.

The documentation syntax used by each tool varies; writing documentation for

one will, at best, be only partially compatible with another. Of the actively de-

veloped alternatives, you have:

Doxygen: http://www.doxygen.org/

Doxygen is a documentation generation tool for multiple languages, including

PHP. It’s popular in the Linux community and is used by eZ systems to

generate the documentation for the eZ publish framework[12]. If you program

with C/C++, Java, or C#, as well as PHP, Doxygen is a great “one size fits

all” solution, though the learning curve required to grasp it is probably slightly

steeper than the alternatives.

PHP Edit: http://www.phpedit.net/

PHP Edit is a Windows IDE for writing PHP code, which comes with a

documentation generation tool. If Windows is your chosen home, PHP Edit

is on its way to becoming a very mature PHP development tool, even

providing support for the generation of XMI (an XML format for UML dia-

grams).

[12] http://ez.no/developer

Chapter 6: Development Technique

292

http://www.doxygen.org/
http://ez.no/developer
http://www.phpedit.net/
http://www.doxygen.org/
http://www.phpedit.net/
http://ez.no/developer

Umbrello UML Modeller: http://uml.sourceforge.net/

Although it’s not a tool for generating API documentation per se, Umbrello

is worthy of note (if you’re a Linux user), as it’s capable of generating PHP

code from UML diagrams; in other words, it codes by drawing. You put to-

gether UML diagrams for your code and specify the APIs, then Umbrello

generates “blank” classes that you fill with code. The problem with tools like

this arises when you want to go in the other direction—from source code to

UML diagram. However, Umbrello can make a very handy first stage in

putting together a whole PHP project.

phpDocumentor: http://www.phpdoc.org/

phpDocumentor is rapidly becoming the standard tool for API documentation

in PHP, and is my own tool of choice. What gives it the edge is that the

documentation it produces is excellent—a very good sign for a tool that’s

supposed to generate documentation! The standard tag library (the @ tags

you’ve seen in code throughout this book) is rich, and there’s also a very

friendly Web-based interface that can have you generating your first API

docs within minutes of unzipping the phpDocumentor download. It’s mature

and stable, and it’s endorsed by PEAR, which means the level of effort going

into further development is higher than the average open source project.

What’s more, it’s capable of generating output in numerous formats, and

provides a range of HTML documentation styles with the base install, as well

as PDF, Windows CHM, and DocBook XML. If you don’t like any of those,

no problem—you can create your own output format, which entails some

template editing. Finally, the documentation attributes production of this

tool to no less than sixteen authors, which means it’s a very well supported

project that’s unlikely to fizzle out in the near future.

For the rest of this solution, we’ll walk through a quick start guide to using php-

Documentor, to start you generating your own API documentation. This isn’t

intended as a comprehensive guide; browsing the phpDocumentor site will provide

you with extensive tutorials and detailed explanations of how to use the software.

Here, we’ll cover only the most common doc tags, so that you can begin using

them straight away to build a class in stages.

We’ll start with an empty class definition prefaced by a couple of sizable com-

ments:

File: 7.php (excerpt)

<?php
/**
 * @package MyFirstDocumentedPackage

293

Choose your Weapons

http://uml.sourceforge.net/
http://www.phpdoc.org/
http://uml.sourceforge.net/
http://www.phpdoc.org/

 */
/**
 * Randomizer Class
 *
 * Given an array this class allows you fetch random
 * elements from it.
 *
 * <code>
 * $randomizer = new Randomizer($array);
 * $randomElement = $randomizer->get();
 * </code>
 *
 * @author Joe Bloggs <joe.bloggs@example.com>
 * @access public
 * @package MyFirstDocumentedPackage
 */
class Randomizer {

}
?>

Sections of comments are called DocBlocks, and are identified with a special

form of the /* */ PHP comment syntax:

/**
 * DocBlock comment here
 */

Each DocBlock is used to describe one element of the code within the file (or the

file itself), such as a class member variable or method. Procedural PHP functions,

the family of include functions, constants, and global variables can also be docu-

mented by phpDocumentor.

First of all, every PHP source file needs to start with a DocBlock that contains

an @package comment to identify which package the file (but not the classes

within the file, only the functions, includes and defines) belongs to. In the above

example, the file belongs to the MyFirstDocumentedPackage package. A package

is no more than a collection of related classes, and the concept of a package is

virtual in PHP (i.e. PHP doesn’t support packages as a language construct). The

idea of grouping classes this way is inspired by Java; you might use it, for example,

to group your database abstraction layer under a package called Database.

The second DocBlock above describes the Randomizer class itself. PHPDocument-

or requires the use of the @package doc tag to identify the package the class be-

longs to, allowing it to distinguish the class from any procedural code in the

Chapter 6: Development Technique

294

mailto:joe.bloggs@example.com

script. The @access tag refers to the point in the code from which the class should

be accessed. In this case, the class is declared public, meaning that this class

may be used by code outside your application (see the previous solution for more

information on public, private, and protected access). Note the code HTML tag

we’ve used. This behaves in much the same way as the equivalent HTML element;

in this case, it allows us to provide an example of how the class should be used.

There are a few HTML-like tags available for use with phpDocumentor, such as

b, ul, and ol, which help make comment text more readable.

Figure 6.6 shows the output phpDocumentor generates from what we’ve got so

far.

Figure 6.6. The Randomizer Class Documentation

Now, let’s define a member variable with its own DocBlock:

File: 7.php (excerpt)

class Randomizer {
 /**
 * Stores the array to be randomized
 * @var array
 * @access private
 */
 var $array = array();
}

295

Choose your Weapons

The @var tag is used to define the type of a declared class member variable, the

convention being to use one of PHP’s native data types, or the name of a class

if the variable will contain an object reference. We don’t want people accessing

the array directly, so we use @access private to mark it as such.

Let’s move on to the constructor:

File: 7.php (excerpt)

 /**
 * Constructs Randomizer
 * @param array the array to be randomized
 * @access public
 */
 function Randomizer($array)
 {
 $this->array = $array;
 srand((float)microtime() * 1000000);
 }

The @param doc tag is used to define the parameters a method accepts. For

methods that accept multiple arguments, we use a series of @param tags in the

order in which the parameters are defined in the method. The word occurring

after the @param describes the type of the parameter (types being the same as for

@var tags); any further text is used to provide a human-readable description of

the parameter.

Now, let’s see a method:

File: 7.php (excerpt)

 /**
 * Gets an element value from the array at random
 * @return mixed
 * @access public
 */
 function get()
 {
 shuffle($this->array);
 return $this->array[0];
 }
}
?>

Chapter 6: Development Technique

296

Here, we’ve used the @return tag to specify the data type that’s being returned.

In this case, the type is mixed because we don’t know what type of array elements

will be passed to the constructor.

It’s now time to document. Simply extract phpDocumentor 1.2.0 (stable) to your

local Web server, then point your browser at it. This will bring up the Web-based

interface, as shown in Figure 6.7.

Figure 6.7. phpDocumentor Web Interface

On the Files tab, specify the name of the file to be documented in the Files to
Parse text area. Then, on the Output tab, specify the Target to point to the directory

in which you want the documentation generated, and the Output Format to

HTML:frames:earthli, which is the name of the desired documentation template

(i.e. the look and feel of the documentation). Then, simply hit the Create button

on the same tab and hey presto—instant documentation!

It really doesn’t get much easier. Of course, phpDocumentor supports alternative

interfaces, such as the command line (with help from the PHP command line

binary), which would allow you to complete tasks such as running the document-

ation generation process using a cron job.

297

Choose your Weapons

The benefit of generating documentation this way is that it becomes very easy

to make your code accessible to other developers with a minimum of hassle and

effort.

How do I set up automated tests of my
code?

“If it’s not tested, it’s broken.”
—Bruce Eckel, Thinking in Java

Next time you write some PHP code—even just a small app—for your own in-

terest, keep a note of how much time you spend bug hunting. I don’t mean

finding parse errors and the like, but actual situations in which the logic of your

code doesn’t perform as you expected it to. My guess is that you’ll probably find

yourself horrified by the amount of energy you waste troubleshooting. What if

I told you that, by putting in a little extra effort up-front, you could more or less

completely eliminate the time you waste on bug hunts, and end up with code

about which you feel a lot more secure? All you need to become is test infected…

Unit Testing is a practical approach to development advocated by the Extreme

Programming (XP) methodology[16]. Much of Extreme programming addresses

issues related to project management, but Unit Testing, in particular, has struck

a nerve among developers in practically every programming language you care to

name—and is rapidly becoming a required development practice.

In the crudest terms, Unit Testing involves writing test code that sticks some

data into your real code, and examines what it gets back to see if the result is

what it’s supposed to be. Before we go any further with the theory, though, let’s

put Unit Testing in context.

The general testing lifecycle of a good software project could be characterized

as follows:

Unit testing testing each piece of code

System or integration

testing

testing the code within the type of environment in

which it will be used

Acceptance testing testing the application from an end user perspective

[16] http://www.extremeprogramming.org/

Chapter 6: Development Technique

298

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

That theory probably doesn’t apply to the majority of PHP projects, where you

knock up a simple application in a matter of minutes. However, unless you’re

planning to delete the source file at the end of the day, it’s likely that the code

will gradually take on a life of its own, becoming a critical component of your

site and a source of panic when you realize you didn’t test it carefully enough.

What Unit Testing can do for you is automate the code testing process. Near the

start of any new piece of code, you write a script that is designed to test it based

on what you want the code in question to do. With the tests in place, you’re able

to re-execute them as many times as you like; they’ll give you a very good idea

of whether the code is broken, and, if there is a problem, a clear indication of

where it lies.

As your projects grow to comprise numerous integrated components that rely on

one another to work properly, being able automatically to test each piece becomes

essential to the success of the project. All you have to do is invest the energy in

writing the test scripts up-front…

There are two approaches to unit testing: black box testing (which is really what

I’m talking about here) and white box testing.

Black box testing works outside the code that’s being tested (the code is referred

to as a black box), passing data to the code and examining what it gets back. This

approach is particularly useful for classes that have a clear API. It also means

that you don’t have to mess with the code you’re testing.

White box testing takes the view that everything can, and perhaps should, be

tested, so there’s no hiding behind APIs for those nasty bugs! It generally requires

implanting the tests directly into the code being tested. In some cases it’s essen-

tial—a class method may return the correct value but some operation it performed

“behind the scenes” could have gone horribly wrong. You may already have used

white box testing without realizing it, for instance, when using print statements

inside a class to find out what it’s doing internally.

Gray Box Testing

The weaker encapsulation of PHP 4 (i.e. its lack of support for private/pro-

tected class members) provides one potential advantage here. It makes it

possible for us to use a hybrid of black box and white box testing (gray box?)

by accessing class member variables directly for test purposes, which can

help pinpoint problems more accurately. You probably won’t impress any

object oriented purists, though…

299

How do I set up automated tests of my code?

Test Infected
Using Unit Testing as a development habit involves more than just adding tests

to a project as an afterthought. In fact, the Extreme Programming methodology

advocates writing the test scripts before you start developing the meat of your

code. The argument behind this is that writing the test scripts helps you analyze

the design of your classes’ APIs without having to sit down and decide, “now,

I’m going to analyze the API.”

The general process of developing with Unit Tests looks like this:

1. Design your class API, perhaps with blank classes.

2. Create a test suite, modifying your API design as required to take into account

this deeper insight.

3. Fill in the “blanks” of your class; write the code that does the real work.

4. Execute the test suite.

5. Fix logic errors, then repeat step 4 ad infinitum.

At first glance, this is clearly more work than the sort of development process

you’ll be used to if you’re not writing Unit Tests today. The mission you have

to set yourself is to become “test infected” by continually trying it until you can’t

code without the warm glow it gives you. Gradually, this approach will start to

become a habit and, I promise you, you’ll be wondering how you ever managed

to code anything without it! If it all goes to plan, you will become so good at

Unit Testing that it will save you time over the old trial-and-error coding method!

Test Drive
Now that we know roughly what Unit Testing is supposed to involve, it’s time

to put it into practice with an example. The first problem to overcome, though,

is selecting a Unit Test framework to help you. There are at least five that I’m

aware of, which can be confusing, as they all have more or less the same name.

On the list of either “very stable or actively developed” are:

PhpUnit: http://phpunit.sourceforge.net/

This is probably the most stable test framework in PHP, though seemingly

no longer being developed.

Chapter 6: Development Technique

300

http://phpunit.sourceforge.net/
http://phpunit.sourceforge.net/

PEAR::PHPUnit: http://pear.php.net/package/PHPUnit

Intended as the test framework for PEAR, PHPUnit is likely to become the

de facto Unit Test tool once PHP 5 arrives. However, the current version

(0.6.2) has a number of bugs and is on hold, pending the release of PHP 5.

SimpleTest: http://www.lastcraft.com/simple_test.php

Developed by Marcus Baker, this is my own test framework of choice, and

the one I used to test the code for this book. Although the current version is

still Alpha, what’s missing is advanced functionality; I’ve found the core to

be very stable, as well as an excellent study of design patterns applied in PHP.

More importantly, it has some important features, in particular Mock Objects

(see below) and “Web test” tools (these are still work in progress), which, at

a trivial level, can help you find broken links on your site, for example. More

importantly, they can be an essential element in checks to confirm your site’s

security.

SimpleTest is the test framework we’ll be using here, to demonstrate how unit

testing works.

First, here are a couple of classes—one with a problem:

File: 8.php

<?php
/**
 * A Class for Collecting Stamps
 * @access public
 */
class StampCollection {
 /**
 * An array of Stamp objects
 * @var Stamp
 * @access private
 */
 var $collection = array();

 /**
 * Adds a stamp to the collection
 * @param Stamp
 * @return void
 * @access public
 */
 function add($stamp)
 {
 $this->collection[] .= $stamp;

301

Test Drive

http://pear.php.net/package/PHPUnit
http://www.lastcraft.com/simple_test.php
http://pear.php.net/package/PHPUnit
http://www.lastcraft.com/simple_test.php

 }

 /**
 * Fetches a stamp to the collection
 * @return mixed
 * @access public
 */
 function fetch()
 {
 $stamp = each($this->collection);
 if ($stamp) {
 return $stamp;
 } else {
 reset($this->collection);
 return FALSE;
 }
 }
}

/**
 * Stores details of a single stamp
 * @access public
 */
class Stamp {
 /**
 * Name of the stamp
 * @var string
 * @access public
 */
 var $name;

 /**
 * Stores the price of the stamp
 * @var int
 * @access public
 */
 var $price;

 /**
 * Constructs Stamp
 * @param string name of stamp
 * @param int price of stamp
 * @access public
 */
 function Stamp($name, $price)
 {

Chapter 6: Development Technique

302

 $this->name = $name;
 $this->price = $price;
 }
}
?>

Don’t look too hard—you’ll spoil the fun!

OK, let’s write a test script for the Stamp class. The general process is to create

another class that extends SimpleTest’s UnitTestCase class, then place into it

methods beginning with the word “test,” which SimpleTest will use to identify

and execute them. First, the necessary includes:

File: 9.php (excerpt)

<?php
if (!defined('SIMPLE_TEST')) {
 // Modify this line to point at your simpletest installation
 define('SIMPLE_TEST', '../../simpletest/');
}
require_once SIMPLE_TEST . 'unit_tester.php';
require_once SIMPLE_TEST . 'reporter.php';
require_once '8.php'; // The StampCollection and Stamp classes

Here, the constructor for the class extends UnitTestCase and calls the

UnitTestCase constructor:

File: 9.php (excerpt)

// Create the test class
class TestOfStamp extends UnitTestCase {
 function TestOfStamp()
 {
 $this->UnitTestCase('Stamp');
 }

Next, we define a test method, testName, within which we create a Stamp object,

then use SimpleTest’s assertEqual method to check whether the name was set

correctly. Pretty simple, don’t you think?

File: 9.php (excerpt)

 // Test the name of the stamp
 function testName()
 {
 // Create a Stamp object
 $stamp = new Stamp('Penny Black', 3500);

303

Test Drive

 // Compare the names of the stamps
 $this->assertEqual($stamp->name, 'Penny Black');
 }

Here’s another test method:

File: 9.php (excerpt)

 // Test the name of the stamp is a string
 function testNameType()
 {
 // Create a Stamp object
 $stamp = new Stamp('Penny Black', 3500);

 // Compare the names of the stamps
 $this->assertTrue(is_string($stamp->name));
 }

Here, we create a fresh Stamp object, and check the type of the $name member

variable with PHP’s is_string function. We use SimpleTest’s assertTrue
method to check that is_string is returning a true value.

Next, we do the same thing to set the contents and type of the stamp price:

File: 9.php (excerpt)

 // Test the price of the stamp
 function testPrice()
 {
 // Create a Stamp object
 $stamp = new Stamp('Penny Black', 3500);

 // Compare the names of the stamps
 $this->assertEqual($stamp->price, 3500);
 }

 // Test the price of the stamp is an int
 function testPriceType()
 {
 // Create a Stamp object
 $stamp = new Stamp('Penny Black', 3500);

 // Compare the names of the stamps
 $this->assertTrue(is_int($stamp->price));
 }
}

Chapter 6: Development Technique

304

Now, you may be fairly underwhelmed by the tests we’ve completed here. Why

bother testing simple variable assignments like this? The Stamp class is very basic,

after all. While that’s true at the moment, this test script defines how we expect

the Stamp API to behave, and by having the test written for it, we’ve essentially

set the API “in concrete.” This is important because other code will depend on

the Stamp class to perform in a particular way. At some point in the future, we

could decide to make a few minor modifications to the Stamp constructor which,

for instance, change the type of the price from an integer to a string; although,

technically, this won’t break the Stamp class, it will change the API (remember

the tags in the method comments that describe the types), which may cause

other code using the class to break. Simple Unit Tests like these will catch these

kinds of mistakes.

In short, the idea is to write the simplest set of tests that will ensure that the behavior
of the class will exactly match its API documentation.

To execute the tests, we finish the script by instantiating the test class, and then,

using an HtmlReporter object (provided by SimpleTest), which displays the test

results in HTML format, we call the run method to execute the tests.

File: 9.php (excerpt)

$test = &new TestOfStamp();
$test->run(new HtmlReporter());
?>

Viewed with a browser, the result looks like Figure 6.8.

Figure 6.8. Congratulations! You’ve Passed!

So far, so good. But what about the StampCollection class?

305

Test Drive

Mock Objects
One area of Unit Testing that you may be wondering about is dealing with situ-

ations where one class uses another. What about classes that make use of data

from an external source, such as a database? These will surely require us to execute

the tests in an environment in which there’s a database with some sample data

we can use, right? Well, not necessarily! In fact, one tenet of Unit Testing is that

you should only test the particular unit in question—not other classes at the

same time. In particular, the tests should be isolated, as much as possible, from

external environments like databases. Otherwise, these external environments

will reduce the scope of the test to a specific case. Testing against databases and

other external data sources is more a part of the integration tests that happen as

the next step in the test lifecycle.

To solve this problem, the answer is to use mock objects. Mock objects are objects

that simulate the behavior of a real object. From the perspective of the API, they

should be indistinguishable from the real thing as far as any other objects using

the mock are concerned. Using mock objects with our test scripts, we can even

do things like set up test data for the mock to return when a particular method

is called.

Let’s say, for example, that we have a class designed to fetch articles from our

database; the class uses other classes to do the work of connecting to the database

and fetching the result, as you’ve seen in Volume I, Chapter 3 with the MySQL
and MySQLResult classes. Let’s imagine we want to test the Articles class we

created in Chapter 3 without having to make any real database connections. To

do so, we’d create mock objects for the MysSQL and MySQLResult classes, which

we then give to the Articles class in exactly the same way as the real database

objects would. The mock objects simulate connecting to and fetching data from

the database without actually doing so. They have exactly the same API as the

real thing, so the articles class has no idea that it’s not getting real data back. We

can thus create tests that focus purely on the Articles class, which is now inde-

pendent of any other class on which it would normally rely.

Mock objects are extremely important for Unit Testing, as they allow you to

break the dependencies between classes so you can test one at a time. Without

mock objects, things can get pretty convoluted. For a fairly complex application,

the class you’re testing may depend on another class, which, in turn, depends on

another class, and so on. You’ll be uncertain if a bug you’ve found is really part

of the class you’re testing, or is caused by one of the other units on which the

class directly or indirectly relies.

Chapter 6: Development Technique

306

Before you groan about this meaning yet more work, SimpleTest makes the cre-

ation of mock objects extremely easy—in fact, they’re created automatically! Let’s

turn back to ourStampCollection class, and I’ll show you how this works.

StampCollection expects us to give it Stamp objects via the add method. To

break the dependence of the StampCollection on the Stamp class, we need a

mock object for Stamp. To give you an idea of how this works, here’s an example

that uses a hack to show you the mock object code generated by SimpleTest:

File: 10.php

<?php
if (!defined('SIMPLE_TEST')) {
 // Modify this line to point at your simpletest installation
 define('SIMPLE_TEST', '../../simpletest/');
}
require_once SIMPLE_TEST . 'unit_tester.php';
require_once SIMPLE_TEST . 'mock_objects.php';
require_once SIMPLE_TEST . 'reporter.php';
require_once '8.php';

echo '<pre>';
// Don't try this at home. _createClassCode is private!
echo Mock::_createClassCode('Stamp', 'MockStamp');
echo '</pre>';
?>

Note that, in this example, I called a private method provided by SimpleTest,

namely _createClassCode. I can do this because I’m a trained PHP stunt man

demonstrating how mock objects work! In other words, don’t try this when

writing your own tests—SimpleTest provides a public API for creating mock ob-

jects that we’ll see in a moment.

Here’s the code for the mock class, as it will be displayed by the above script:

class MockStamp extends SimpleMock {
 function MockStamp(&$test, $wildcard = MOCK_WILDCARD) {
 $this->SimpleMock($test, $wildcard);
 $args = func_get_args();
 $this->_mockMethod("Stamp", $args);
 }
 function &stamp() {
 $args = func_get_args();
 return $this->_mockMethod("stamp", $args);
 }
}

307

Mock Objects

The mock object class contains the same methods as the class it simulates—in

the case of the Stamp class, this is simply the constructor, stamp. The mock object

class, when instantiated as an object, now fully simulates the Stamp API (as the

generated code is pretty complex, you may want just to take my word for this).

Now, let me show you how to create correctly a mock object like this for use in

your testing:

File: 11.php (excerpt)

<?php
if (!defined('SIMPLE_TEST')) {
 // Modify this line to point at your simpletest installation
 define('SIMPLE_TEST', '../../simpletest/');
}
require_once SIMPLE_TEST . 'unit_tester.php';
require_once SIMPLE_TEST . 'mock_objects.php';
require_once SIMPLE_TEST . 'reporter.php';
require_once '8.php';

// Create a MockStamp
Mock::generate('Stamp');

Using the Mock::generate method, the mock object class is generated as above,

and is then automatically made available for instantiation. Now, for the

StampCollection test script:

File: 11.php (excerpt)

// Create the test class
class TestOfStampCollection extends UnitTestCase {
 function TestOfStampCollection()
 {
 $this->UnitTestCase('StampCollection');
 }

 // Test adding with the add method
 function testAdd()
 {
 // Create the MockStamp object
 $mockStamp = &new MockStamp($this);

 // Set the member variables
 $mockStamp->name = 'Penny Black';
 $mockStamp->price = 3500;

 // Create the StampCollection

Chapter 6: Development Technique

308

 $stampCollection = &new StampCollection();

 // Add the MockStamp to the StampCollection
 $stampCollection->add($mockStamp);

 // Get a copy of the stamp back
 $stampCopy = $stampCollection->fetch();

 // Compare the names of the stamps
 $this->assertEqual($stampCopy->name, $mockStamp->name);
 }
}

Here, we’re basically performing a “round trip” with an instance of

StampCollection. We create a MockStamp object, using the add method to add

it to the StampCollection; then, we get a copy back with the fetch method.

Finally, we use the assertEqual SimpleTest method to compare the values of

the MockStamp and the copy we retrieved from StampCollection. What happens?

Take a look at Figure 6.9.

Figure 6.9. Forgery Doesn’t Pay

Failure! How could such a simple operation have gone wrong? Time to take a

close look at our StampCollection class. Here’s the problem, in the add method:

function add($stamp)
{
 $this->collection[] .= $stamp;
}

It looks like we’ve mistakenly used the string append operator (.=) to add the

stamp to the end of the array. We should have used the assignment operator (=)

instead! This is a case where a serious logic bug slips through the cracks of PHP’s

error checking without so much as a warning message, but, thanks to SimpleTest,

the bug could be found and fixed. What’s more, we now have test scripts in place

309

Mock Objects

that we can rerun whenever we need to feel that warm glow of confidence that

the code is stable and bug-free.

Of course, you can do a lot more with SimpleTest, and, thankfully, it’s very well

documented; in-depth tutorials are provided with the download, and there’s more

information on the author’s site. Despite its alpha status, progress is being made

very quickly and it’s likely that SimpleTest will become a very important contri-

bution to the wealth of freely available PHP code.

Further Reading
� A HOWTO on Optimizing PHP:

http://phplens.com/lens/php-book/optimizing-debugging-php.php

An excellent run down of many approaches to optimize PHP code and improve

performance.

� Effortless (or Better!) Bug Detection with PHP Assertions:
http://www.sitepoint.com/article/1008

This article provides a lesson in the importance of testing.

� PEAR::PHPUnit Tutorial:
http://pear.php.net/manual/en/packages.php.phpunit.intro.php

Don’t miss this quick overview of unit testing and examples with

PEAR::PHPUnit.

� Strong Typing vs. Strong Testing: http://mindview.net/WebLog/log-0025

Bruce Eckel makes a fascinating argument that strong testing (i.e. Unit Testing)

levels the playing field between dynamically typed languages (e.g. Python and

PHP) and statically typed languages (such as C++ and Java) in this great

article.

Chapter 6: Development Technique

310

http://phplens.com/lens/php-book/optimizing-debugging-php.php
http://www.sitepoint.com/article/1008
http://pear.php.net/manual/en/packages.php.phpunit.intro.php
http://mindview.net/WebLog/log-0025
http://phplens.com/lens/php-book/optimizing-debugging-php.php
http://www.sitepoint.com/article/1008
http://pear.php.net/manual/en/packages.php.phpunit.intro.php
http://mindview.net/WebLog/log-0025

Design Patterns7
With a grasp of object oriented programming under your belt, thanks to Volume

I, Chapter 2, I’ll bet you’re wide-eyed and wondering what to do with all this

great new stuff that’s supposed to help you write maintainable, well-designed

PHP applications, right? This is a common problem for developers coming to

grips with the object oriented paradigm. It takes a long time to do anything really

useful with OOP, many of their early attempts being no more than long sections

of procedural code wrapped in a few class methods.

Thankfully, object oriented programming has been around for quite some time

and is supported by many languages; overcoming such problems is well-trodden

territory. More importantly, our OOP coding ancestors were kind enough to put

together a catalog of best practices, known as design patterns, which worked

over and over again, and could be readily applied to solving problems in a uniform

manner. The landmark publication was the book, Design Patterns (Addison-Wesley,

ISBN: 0-201-63361-2) by the “Gang of Four” (Erich Gamma, Richard Helm,

Ralph Johnson and John Vlissides), which has become a modern classic in IT

literature—if, indeed, such a thing is possible. Search Amazon for “Design Pat-

terns,” and you can’t miss it. While you’re browsing Amazon, it’s also worth

looking at Martin Fowler’s Patterns of Enterprise Application Architecture (Addison-

Wesley, ISBN: 0-321-12742-0), which provides further patterns, many of which

relate directly to the problems developers encounter when building Web-based

applications.

My own opinion of design patterns is that they provide a shortcut to discovering

the way you’d probably end up solving a particular problem, provided you had

enough time to experiment with all the possible ways you might structure your

code. In other words, they’re down-to-earth descriptions of how a group of pro-

grammers found they could best solve the problems they faced.

Talking about what design patterns are is something I generally prefer to avoid.

It’s like trying to explain the concept of snow to someone who’s grown up in the

Sahara desert; until you’ve seen snow for yourself, it’s not going to make much

sense. Reading the solutions in this chapter, which look at specific examples using

real code, is, in my opinion, a far better way to grasp the concepts.

But, to give you a rough idea of where this chapter is headed, consider this: in

your Web building experience, have you ever had a feeling of déjà vu? Have you

ever said to yourself, “I’ve done this before,” or, “I’m sure I saw a really good

solution to this problem. Now, where was it?”

What the Gang of Four did with Design Patterns was identify twenty three common

problems that give developers that déjà vu feeling, and provide guidelines for how

we could best solve each. Time has shown that the Gang of Four (GoF) got it

right; use of their solutions typically helps developers write applications that are

easy to maintain, yet are able to cope with the special cases that occur in the real

world. The adage “design is dead,” often quoted these days in discussions of the

visual design of Websites, can also be applied to object oriented programming,

thanks to design patterns. If you can learn to spot the problem in the first place,

the solution is just a matter of identifying and applying the right pattern.

A welcome side-effect of studying design patterns is that they often help people

learn how to get the most out of the object oriented paradigm. In reading this

chapter, you may find that object oriented PHP becomes much richer, rather

than feeling overwhelmed by a whole load of new syntax that you have no idea

what to do with.

Although the GoF laid out a catalog of twenty three patterns, we’ll only cover

the five that I’ve found to be used or useful in PHP 4, to give you a taste of what

design patterns are about. A more in depth analysis of object oriented program-

ming is beyond the scope of this book. This is not to say that other patterns1

cannot be usefully applied in PHP, but I’ve included here the patterns that can

be easily applied to any PHP application, and do not suggest some sort of

framework that affects the structure of your application.

1The Model-View-Controller (MVC) pattern, the Command Pattern and the Template Method, to

name a few.

Chapter 7: Design Patterns

312

There are a couple of factors that you should be aware of when considering which

design patterns can be applied in PHP 4:

� Some of the problems the GoF were aiming to address simply never raise their

heads in the development of Web-based applications for the Apache/PHP

environment, where an application remains memory-resident for only as long

as it takes to build a Web page. The Memento pattern is one such example.

� PHP 4 doesn’t support some of the features found in other languages (e.g.

Java), such as static class member variables. As such, trying to apply some

patterns2 results in awkward workarounds that often cause more problems

than they solve. One of the main drivers behind PHP 5 was to make PHP

well suited to design patterns.

Enough said. Time for some patterns!

The Factory Method
In most programming languages that support the object oriented paradigm, it’s

possible to use class methods or functions to create and return new objects. An

example in PHP might be:

<?php
// A PHP Function which creates an object
function &createSomeObject()
{
 return new SomeClass();
}

// Get an instance of SomeClass
$someObject = &createSomeObject();

It may be unclear why anyone would want to do what we’ve done in this example.

Rest assured there are a number of specific problems that can be solved with this

approach, which is known as the factory method pattern. The following situations

and examples should make things clear.

Imagine that you’re working on an application. Within it, you create objects from

a given class in many places—including inside other classes. You’re aware, however,

that there may be a need to use a different class at some future time. If you use

a function or class method to create the object for you, changing the class from

2The Singleton pattern, for instance.

313

The Factory Method

which that object is created will require you to modify only the method that

creates it.

For example, in Chapter 1 we developed the class Auth, which creates an instance

of the Session class:

class Auth {
 function Auth(&$db, $redirect, $hashKey, $md5 = TRUE)
 {
 $this->db = &$db;
 $this->redirect = $redirect;
 $this->hashKey = $hashKey;
 $this->md5 = $md5;

$this->session = &new Session(); // Session created
 $this->login();
 }

What happens if, instead, we use a function called createSession, to create the

object for us? In that case, we can replace the Session class with some other class

of a different name without having to modify the Auth class:

class Auth {
 function Auth(&$db, $redirect, $hashKey, $md5 = TRUE)
 {
 $this->db = &$db;
 $this->redirect = $redirect;
 $this->hashKey = $hashKey;
 $this->md5 = $md5;

$this->session = &createSession(); // Fetch new object
 $this->login();
 }

This is particularly useful when writing unit tests that use mock objects (see

Chapter 6). In this case, we can modify the behavior of the createSession
function in the test script so that MockSession is used by Auth, rather than the

real Session class.

Another problem to which the factory method can provide a solution occurs when

the choice of class will depend on runtime circumstances that you can’t predict

in advance. You might wish to avoid writing conditional logic at the point at

which the object is created, in order to help keep the code maintainable and allow

the same conditions to be used elsewhere in your application. Using a factory

method, you can separate the task of instantiating the objects from the code that

needs to use them.

Chapter 7: Design Patterns

314

For example, let’s say we want to analyze a text document to ascertain how many

vowels and consonants it contains. We might parse the document, then create

objects to represent the elements of the document in which we’re interested. We

can then go back and analyze these objects to get the statistics we’re interested

in.

To start, let’s put together a class, TextStats, which will parse documents using

a character by character approach, taking advantage of PHP’s ability to treat

strings as arrays:

File: 1.php (excerpt)

/**
 * Class for Analyzing Text
 */
class TextStats {
 /**
 * The document to analyze
 */
 var $doc;
 /**
 * An array of Vowel and Consonant objects
 */
 var $chars = array();

 function TextStats($doc)
 {
 $this->doc = $doc;
 $this->buildStats();
 }

 /**
 * Calls a factory method to get a Vowel or Consonant
 */
 function buildStats()
 {
 $length = strlen($this->doc);
 for ($i=0; $i<$length; $i++) {
 // Factory method called here
 if ($char = &CharFactory::getChar($this->doc[$i])) {
 $this->chars[] = $char;
 }
 }
 }

315

The Factory Method

Of particular interest in the above section of code is the buildStats method,

which statically calls the factory method, getChar, in the CharFactory class.

Using this approach, we can leave to the factory method the task of working out

what to do with the current character; this keeps the buildStats method very

simple.

To finish off the TextStats class, we add a couple of methods to determine how

many vowels and consonants the document contains:

File: 1.php (excerpt)

 /**
 * Find out how many Vowels in document
 */
 function numVowels()
 {
 $vowels = 0;
 reset($this->chars);
 foreach ($this->chars as $char) {
 if (is_a($char, 'Vowel')) {
 $vowels++;
 }
 }
 return $vowels;
 }

 /**
 * Find out how many Consonants in document
 */
 function numConsonants()
 {
 $consonants = 0;
 reset($this->chars);
 foreach ($this->chars as $char) {
 if (is_a($char, 'Consonant')) {
 $consonants++;
 }
 }
 return $consonants;
 }
}

Now, let’s look at the factory method itself. It takes a single character as its argu-

ment and examines it first with a regular expression. Should it decide that the

character is a letter of the alphabet, it then performs a second check to see

Chapter 7: Design Patterns

316

whether the letter is a vowel. The factory method then creates an instance of

either Vowel or Consonant, and returns it to the caller.

File: 1.php (excerpt)

/**
 * Factory for creating Vowel and Consonant objects
 */
class CharFactory {
 /**
 * The factory method
 */
 function &getChar($byte)
 {
 if (preg_match('/[a-zA-Z]/', $byte)) {
 $vowels = array('a', 'e', 'i', 'o', 'u');
 if (in_array(strtolower($byte), $vowels)) {
 $char = &new Vowel($byte);
 } else {
 $char = &new Consonant($byte);
 }
 return $char;
 }
 }
}

Finally, we define the Vowel and Consonant classes. Now, it’s time to test drive

our text statistics package on the home page of sitepoint.com.

File: 1.php (excerpt)

/**
 * Class representing a Vowel
 */
class Vowel {
 var $letter;
 function Vowel($letter)
 {
 $this->letter = $letter;
 }
}

/**
 * Class representing a Consonant
 */
class Consonant {
 var $letter;

317

The Factory Method

http://www.sitepoint.com

 function Consonant($letter)
 {
 $this->letter = $letter;
 }
}

// Get some document
$doc = file_get_contents('http://www.sitepoint.com/');

// Remove HTML tags
$doc = strip_tags($doc);

// Create a TextStats object
$ts = new TextStats($doc);
?>
Today at http://www.sitepoint.com/ there are
<?php echo $ts->numConsonants(); ?> consonants and
<?php echo $ts->numVowels(); ?> vowels. Amazing huh?

Viewed as a UML diagram, the collection of classes is as shown in Figure 7.1.

Figure 7.1. Learning to Spell with Factory Methods

Although our factory method is only making a decision about which of two classes

to instantiate, it’s clear that we can easily modify it to create other objects, such

Chapter 7: Design Patterns

318

http://file_get_contents('http://www.sitepoint.com/');
http://www.sitepoint.com/

as a Number or Period class, without having to modify the buildStats method.

Without too much work, we can build a package that allows us to perform all

sorts of statistical analyses of text documents, as the factory method allows us

to add functionality in stages.

Now, imagine you’ve developed a package of classes that you’ve distributed to a

group of users. Here, the factory method can help you provide those users with

a simple API for getting to the “parts” of the package they need for their partic-

ular circumstances, and which allows them to switch “parts” with minimum effort.

A good example of this is the PEAR::DB package, which provides a database ab-

straction layer to help you write applications that can be used with different

vendors’ database software. When working with DB, you’ll likely only work with

one type of database at a time, so you’ll only need to use the classes in PEAR::DB

that relate to that database.

The DB::connect method does just this. It uses a factory method to give you

objects with which you can access the database you’re interested in; to create

these objects, you simply provide the method an identifying string (the DSN).

For example, we could use the following to connect to MySQL:

$dsn = 'mysql://harryf:secret@localhost/sitepoint';
$db = &DB::connect($dsn);

The $db variable now contains an instance of DB_MySQL. Were we to modify the

$dsn variable to pgsql://harryf:secret@localhost/sitepoint to connect to

PostgreSQL instead, we’d get back an instance of DB_PgSQL. The factory method

DB::connect allows us to avoid dealing with the question of which class to in-

stantiate; should we require our application to run on a database that’s different

from that for which it was originally designed, the modifications required should

be reduced.

One final approach to applying the factory method pattern—an approach that

seasoned programmers might regard as the “true” factory method—is to have

multiple factory methods in an inheritance hierarchy of factory classes. This allows

you to get back from the factory different objects, depending on which subclassed

factory method was called.

To illustrate, let’s imagine we use an email package in which the body of the

email message is handled by separate classes, a plain text message and an HTML

email each representing a single class. We want to be able to create instances of

these classes without explicitly identifying them in our code, so that we can send

emails to a list of customers based on whether they declared a preference for

319

The Factory Method

plain text or HTML emails. Using the strict, Gang of Four-approved approach

to a factory method, the first step is to create a hierarchy of factory classes, each

of which provides the method getBody. What happens upon any call to getBody
will depend on which subclass of EmailFactory we’re dealing with.

File: 2.php (excerpt)

/**
 * Base factory class
 */
class EmailFactory {
 function getBody($text)
 {
 // Abstract Factory Method
 }
}
/**
 * Factory for plain text emails
 */
class TextEmailFactory extends EmailFactory {
 function getBody($text)
 {
 return new TextBody($text);
 }
}
/**
 * Factory for HTML emails
 */
class HtmlEmailFactory extends EmailFactory {
 function getBody($text)
 {
 return new HtmlBody($text);
 }
}

Next, come the two classes that are created by the factory classes. The design

pattern allows me to avoid identifying them by name outside of the factory classes.

File: 2.php (excerpt)

/**
 * The class created by TextEmailFactory::getBody()
 */
class TextBody {
 var $text;
 function TextBody($text)
 {

Chapter 7: Design Patterns

320

 $this->text = $text;
 }
}
/**
 * The class created by HtmlEmailFactory::getBody()
 */
class HtmlBody {
 var $text;
 function HtmlBody($text)
 {
 $this->text = $text;
 }
}

Next, we define the EmailSender class, which deals with sending the email to

the recipient. Note that these classes don’t do anything real (for instance, send

an email); I’m just using them here to demonstrate a strict factory method. With

EmailSender in place, we’ve set up some variables to demonstrate the factory

methods in action.

File: 2.php (excerpt)

/**
 * Class which "sends" and email
 */
class EmailSender {
 function sendMessage($email, $body)
 {
 echo "Sending email to $email with a " . get_class($body) .
 '
';
 }
}

// A dummy array of customers to send emails to
$customers = array(
 array('email' => 'jbloggs@yahoo.com',
 'emailpreferred' => 'html'),
 array('email' => 'jleno@cnn.com',
 'emailpreferred' => 'text'),
 array('email' => 'aleegator@reptiles.com',
 'emailpreferred' => 'html')
);

// The HTML and plain text versions of the email
$htmltext = 'This is an HTML Message';
$plaintext = 'This is plain text';

321

The Factory Method

mailto:jbloggs@yahoo.com',
mailto:jleno@cnn.com',
mailto:aleegator@reptiles.com',

Finally, we loop through the array of customers, using a switch statement to first
decide which factory class to use, then, secondly, to call the addBody method

that’s defined in whichever factory class has been created. Once we’ve stored an

instance of either HtmlBody or TextBody in the $body reference, we simply pass

it to the $sender to have the email sent to the customer.

File: 2.php (excerpt)

// Create the sender
$sender = &new EmailSender();

// Loop through the customers
foreach ($customers as $customer) {
 // Decide which factory class to create
 switch ($customer['emailpreferred']) {
 case 'html':
 // Create the factory
 $factory = &new HtmlEmailFactory();
 // Call the factory method
 $body = &$factory->getBody($htmltext);
 break;
 case 'text':
 default:
 // Create the factory
 $factory = &new TextEmailFactory();
 // Call the factory method
 $body = &$factory->getBody($plaintext);
 break;
 }
 // "Send" the message
 $sender->sendMessage($customer['email'], $body);
}

Viewed as UML, this implementation of a factory method is as shown in Fig-

ure 7.2.

Chapter 7: Design Patterns

322

Figure 7.2. The Spam Factory

That should give you a feel for the types of problems factory methods can help

you deal with, as well as the different approaches you can take to apply them.

You should also have a better idea about what the concept of Design Patterns

actually means; it’s really nothing mysterious—just good sense.

The Iterator Pattern
Iterate, v. t. To utter or to do a second time or many times; to repeat.
—Webster’s 1913 Dictionary

An iterator is an API (a group of methods) that makes it possible to access col-

lections in a uniform manner. By collections, I mean data sets such as arrays,

query result sets from MySQL, the lines in a file, or any other data structure that

can be thought of as a group of data items. The common way to talk about an

iterator in action is to say you’re iterating over a collection.

What an iterator allows you to do is write code that accesses a collection in such

a way that it doesn’t actually matter what that collection contains. This description

323

The Iterator Pattern

may sound vague, but think of it this way: imagine that you had a class that was

able to build HTML tables from a database result set, an XML document, a text

file, a directory, or just a plain old array without needing to modify the code of the

table-generating class. Using iterators, such a thing is possible. Iterators allow

you to write a table-generating class that could be reused to display many different

types of data from different sources.

To begin with, let’s consider the normal process of looping through an array:

File: 3.php

<?php
$colors = array('red', 'green', 'blue');

echo 'First iteration:
';
foreach ($colors as $color) {
 echo $color . '
';
}

echo 'Second iteration:
';
foreach ($colors as $color) {
 echo $color . '
';
}
?>

The foreach construct, which is built into PHP, effectively acts as a simple iter-

ator. It steps through an array element by element, and, when it reaches the end

of the array, it automatically returns to the start. This explains why it’s possible

to use foreach twice without needing to use PHP’s reset function to reset the

array pointer in the above example. Unfortunately, this won’t work for an object

for which you’ve defined your own data accessing methods.3

Here’s an example that allows me to achieve the same result using a method that

will perform the iteration for me:

File: 4.php (excerpt)

<?php
class Colors {
 // An array where the colors are stored
 var $colors;
 function Colors()
 {

3At least, not with PHP 4; with PHP 5, a new extension, known as the Standard PHP Library (SPL),

will make it possible to access objects with foreach.

Chapter 7: Design Patterns

324

 $this->colors = array('red', 'green', 'blue');
 }
 // This method iterates over the colors array
 function fetch()
 {
 // Use the each() function to get the current value and step
 // forward
 $color = each($this->colors);

 // If $color wasn't false...
 if ($color) {
 // return the value
 return $color['value'];

 // $color is false (reached the end of the array)...
 } else {
 // Reset the colors array
 reset($this->colors);
 // Return false
 return FALSE;
 }
 }
}

Now, although the class doesn’t do anything useful, as we’ll see momentarily,

the fetch method makes it possible to iterate over the contents of the $colors
array in a very similar manner to a foreach loop.

Let’s take a closer look at the fetch method. The first thing we do is use PHP’s

each function to pull the current element from the $colors array. The each
function automatically moves an array pointer forward after it’s returned the

current value, which makes it a very handy function for iterating over arrays. The

value returned from each is a little unusual, though; it’s both an associative array

with the keys 'key' and 'value', and an indexed array in which element 0 is

the key name and element 1 is the value. Here’s what each returns for the first

element of the $colors array:

Array
(
 [0] => 0
 [1] => red
 [key] => 0
 [value] => red
)

325

The Iterator Pattern

Note that if each finds itself at the end of the array, it returns FALSE, which ex-

plains this part of the fetch method:

 // If $color wasn't false...
 if ($color) {
 // return the value
 return $color['value'];

Then, if we find that each has returned FALSE, we use PHP’s reset function to

set the array pointer back to the start, while returning FALSE so that the code

that’s using the fetch method knows it has come to an end:

 // $color is false (reached the end of the array)...
 } else {
 // Reset the colors array
 reset($this->colors);
 // Return false
 return FALSE;
 }

Here’s how we can use the fetch method of the Colors class in a script:

File: 4.php (excerpt)

// Instantiate the Colors class
$colors = new Colors();

// Iterate over it twice using a while loop and the fetch() method
echo 'First iteration:
';
while ($color = $colors->fetch()) {
 echo $color . '
';
}

echo 'Second iteration:
';
while ($color = $colors->fetch()) {
 echo $color . '
';
}
?>

Although we’re using a while loop here, you can see that using the fetch method

is very similar to using the foreach construct.

But, What’s the Point?
That example gives you a rough idea of how a particular iterator functions. But

you’re probably wondering, “why bother?” Well, bear with me here. In this next

Chapter 7: Design Patterns

326

example, we’re going to start with a class that builds HTML tables and, bit by

bit, all should become clear. One trick we’re going to use here is to keep the table

HTML itself very simple and rely on CSS to do the more complex parts of

formatting the look and feel.

The table-generating class is shown here:

File: UI/HTMLTable.php (in SPLIB) (excerpt)

<?php
// Class for building a table using an iterator
class HTMLTable {
 var $collection;
 var $idPre;
 var $table;
 function HTMLTable(&$collection, $idPre = '')
 {
 $this->collection = &$collection;
 $this->idPre = $idPre;
 $this->table = "<table id=\"" . $idPre . "Table\">\n";
 }

The constructor for the table takes two arguments; the first is a collection, which

can be any object you want—a database query result, an array iterator, or a class

for reading from a file—as long as it conforms to the iterator API that HTMLTable
expects (see below). The other argument is a prefix for HTML id attributes,

which helps me identify in the table elements for formatting through my CSS

code.

The addHeadings method takes either a string or a one dimensional array and

uses it to build the headings for the columns:

File: UI/HTMLTable.php (in SPLIB) (excerpt)

 function addHeadings($headings)
 {
 $this->table .= " <tr id=\"" . $this->idPre .
 "HeaderRow\">\n";
 if (is_array($headings)) {
 foreach ($headings as $heading) {
 $this->table .= " <th id=\"" . $this->idPre .
 "HeaderCol\">" . $heading . "</th>\n";
 }
 } else {
 $this->table .= " <th id=\"" . $this->idPre .
 "HeaderCol\">" . $headings . "</th>\n";
 }

327

But, What’s the Point?

 $this->table .= " </tr>\n";
 }

It’s in the buildRows method that the iteration occurs:

File: UI/HTMLTable.php (in SPLIB) (excerpt)

 function buildRows()
 {
 $alt = '1';
 while ($row = $this->collection->fetch()) {
 $this->table .= " <tr id=\"" . $this->idPre . "Row" .
 $alt . "\">\n";
 if (is_array($row)) {
 foreach ($row as $col) {
 $this->table .= " <td id=\"" . $this->idPre .
 "Col\">" . $col . "</td>\n";
 }
 } else {
 $this->table .= " <td id=\"" . $this->idPre .
 "Col\">" . $row . "</td>\n";
 }
 $this->table .= " </tr>\n";
 $alt = ($alt == 1) ? 1 : 2;
 }
 }

Note the while loop (displayed here in bold). It expects that the collection I

passed to the constructor will have a fetch method. The result returned from

fetch can be either a string or a one dimensional array.

File: UI/HTMLTable.php (in SPLIB) (excerpt)

 function render()
 {
 return $this->table . "</table>\n";
 }
}
?>

Finally, the render method completes the table and returns the HTML.

Now, obviously this class will work just fine if we pass it an instance of the Colors
class above (try it yourself, if you like). But, let’s see now how it bears up when

we give it a database result set instead:

Chapter 7: Design Patterns

328

File: 5.php (excerpt)

<?php
// Include MySQL class
require_once 'Database/MySQL.php';
// Include HTMLTable class
require_once 'UI/HTMLTable.php';

// Instantiate MySQL
$db = &new MySQL('localhost', 'harryf', 'secret', 'sitepoint');
$sql = "SELECT title, author FROM articles LIMIT 0,5";

// Get a query result via factory method
$result = $db->query($sql);

// Pass result to HTMLTable on instantiation
$table = &new HTMLTable($result, 'Iterator_');

// Add the headings to the table
$table->addHeadings(array('Title', 'Author'));

// Build the rows
$table->buildRows();
?>

Essentially, all we’ve done here is perform a query as normal, before passing the

result to the HTMLTable class for display.

The rest of the script displays the generated table in a simple HTML page, along

with a little CSS code to format the table.

File: 5.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Iterator </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
 …CSS code omitted…
</style>
</head>
<body>
<?php echo $table->render(); ?>

329

But, What’s the Point?

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

</body>
</html>

Figure 7.3 shows the table that results.

Figure 7.3. Iterated Database Result

Still not impressed? Well, how about an iterator that lists directories?

File: Iterators/DirIterator.php (in SPLIB)

<?php
class DirIterator {
 var $directory;
 var $dir;
 function DirIterator($directory)
 {
 $this->directory = $directory;
 }
 function fetch()
 {
 if (!$this->dir) {
 $this->dir = dir($this->directory);
 }
 if (($entry = $this->dir->read()) !== FALSE) {
 return $entry;
 } else {
 $this->dir->close();
 $this->dir = NULL;
 return FALSE;
 }
 }

Chapter 7: Design Patterns

330

}
?>

Again, this iterator has a fetch method that uses the in-built dir class that PHP

provides.

Let’s put this to the test:

File: 6.php

<?php
// Include MySQL class
require_once 'Iterators/DirIterator.php';
// Include HTMLTable class
require_once 'UI/HTMLTable.php';

// Instantiate the Directory Iterator
$iterator = &new DirIterator('c:/htdocs/phpanth/');

// Pass result to HTMLTable on instantiation
$table = &new HTMLTable($iterator, 'Iterator_');

// Add the headings to the table
$table->addHeadings('c:/htdocs/phpanth/');

// Build the rows
$table->buildRows();
?>

Skipping the HTML/CSS you’ve already seen, Figure 7.4 shows the output that

results when I pass the DirIterator object to the HTMLTable class on my system.

331

But, What’s the Point?

Figure 7.4. Iterated Directory Listing

What else? How about an iterator that reads lines from a file?

File: Iterators/FileIterator.php (in SPLIB)

<?php
class FileIterator {
 var $filename;
 var $fp;
 function FileIterator($filename)
 {
 $this->filename = $filename;
 }
 function fetch()
 {
 if (!$this->fp) {
 $this->fp = fopen($this->filename, 'r');
 }
 if (!feof($this->fp)) {
 return fgets($this->fp, 4096);
 } else {
 fclose($this->fp);
 return FALSE;
 }
 }
}
?>

Using this requires only a minor modification to the class names we instantiate:

Chapter 7: Design Patterns

332

File: 7.php

<?php
// Include MySQL class
require_once 'Iterators/FileIterator.php';
// Include HTMLTable class
require_once 'UI/HTMLTable.php';

// Instantiate the File Iterator
$iterator = &new FileIterator('3.php');

// Pass result to HTMLTable on instantiation
$table = &new HTMLTable($iterator, 'Iterator_');

// Add the headings to the table
$table->addHeadings('PHP Source Code');

// Build the rows
$table->buildRows();
?>

Iterators make it all so easy. For typical PHP problems, the type of data you need

to display in some form of HTML list (e.g. a table or a select menu) will usually

be an array of strings, an array of arrays, or an array of objects. Our HTMLTable
class is already prepared for the first two, so we can use it again and again with

many different data sources.

The most important aspect of deciding when to apply iterators to your classes

involves choosing the method naming scheme. In the examples above, we called

all the iterator methods fetch. In the classes that use your iterators, you must

also plan for the data types your iterators might return. With practice, you can

make iterators one of your development habits and save yourself a considerable

amount of time reproducing HTML-related code to output collections of data.

Iterator APIs
As anyone who’s worked with Java will know, the iterator API we’ve proposed

here—namely a single method called fetch—is very simple. I’d estimate that for

around 90% of situations in which you need to iterate over a collection in PHP,

this single-method iterator will be all you’ll need. Be warned though—it’s only

intended for use with particular data structures. In particular, if you use this API

to iterate over an array, some elements of which evaluate to false, the code using

the iterator will stop prematurely, believing that it has come to the end of the

collection.

333

Iterator APIs

This shortcoming, along with other requirements, such as being able to move

backward and forward through the collection or performing multiple iterations

over a collection simultaneously, creates the need for a more complex API. A

general “profile” of a more advanced iterator looks like this:

<?php
class Iterator {
 function Iterator() {…}

 // Resets the collection
 function reset() {…}

 // Moves the collection point forward one
 // (but typically returns no value)
 function next() {…}

 // Sometimes called isFinal() or isValid();
 // used to check for the end of the collection
 function hasMore() {…}

 // Gets the current value from the collection
 function current() {…}
}
?>

The above class shows the methods commonly provided by more advanced iter-

ators. The detail (i.e. what actually happens inside the class) will vary between

iterators, depending on the problem each is intended to solve.

If you’re interested in exploring other types of iterators in PHP, the best approach

is to examine open source class libraries that use them, such as Eclipse[1] and

eXtremePHP[2].

The Strategy Pattern
The strategy pattern is used in situations in which there is a common problem

that can be solved by one of many algorithms. It can help eliminate long-winded

if-else or switch structures and, if the problem to be solved repeats itself

within an application, also removes the need to reproduce the same code for each

solution.

[1] http://www.students.cs.uu.nl/people/voostind/eclipse/

[2] https://sourceforge.net/projects/extremephp/

Chapter 7: Design Patterns

334

http://www.students.cs.uu.nl/people/voostind/eclipse/
https://sourceforge.net/projects/extremephp/
http://www.students.cs.uu.nl/people/voostind/eclipse/
http://www.https://sourceforge.net/projects/extremephp/

The real meaning of this explanation becomes clear when we consider a very

common problem in PHP applications—validating the input from a form. Consider

the following script:

File: 8.php (excerpt)

<?php
// Validate the form
if (isset($_POST['submit'])) {
 // A array to store errors
 $errors = array();

 // Check the incoming data
 if ($_POST['user'] < '6') {
 $errors[] = 'Username is too short';
 }
 if ($_POST['pass'] < '6') {
 $errors[] = 'Password is too short';
 }
 if ($_POST['pass'] != $_POST['conf']) {
 $errors[] = 'Passwords do not match';
 }
 if (!preg_match(
 '/^[a-z0-9._-]+@[a-z0-9.-]+\.[a-z]{2,4}$/i',
 $_POST['email'])) {
 $errors[] = 'Invalid Email address';
 }
}
?>

The above code is the validation routine for the form below, which represents a

fairly typical PHP script.

File: 8.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Form </title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
Please enter your details:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
Username: <input type="text" name="user" />

335

The Strategy Pattern

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
http://xmlns="http://www.w3.org/1999/xhtml"

Password: <input type="password" name="pass" />

Confirm: <input type="password" name="conf" />

Email: <input type="text" name="email" />

<input type="submit" name="submit" value="Submit Form" />
</form>
<?php
if (isset($errors) && count($errors) > 0) {
 echo "The following errors occurred:
\n";
 echo "\n";
 foreach ($errors as $error) {
 echo "" . $error . "\n";
 }
 echo "\n";
}
?>
</body>
</html>

A “common problem” to which we can apply the strategy pattern occurs in this

script. The problem is that we need to validate the data in the form by taking a

detailed look at the submitted values. There are a number of algorithms being

used here to solve the problem—so this is a prime target for a strategy pattern!

To begin implementing the pattern, we need a base class that defines the basic

behavior of all validation algorithms:

File: Validators/Validator.php (in SPLIB)

<?php
/**
 * Validator base class for form validation
 * @abstract
 */
class Validator {
 /**
 * Stores validation error messages
 * @access private
 * @var array
 */
 var $errors;

 /**
 * Constucts a new Validator object
 */
 function Validator($validateThis)
 {

Chapter 7: Design Patterns

336

 $this->errors = array();
 $this->validate($validateThis);
 }

 /**
 * Validation method for subclasses to provide
 * @abstract
 * @return void
 */
 function validate($validateThis) {}

 /**
 * Adds an error message to the array
 * @return void
 */
 function setError($msg)
 {
 $this->errors[] = $msg;
 }

 /**
 * Returns true if string valid, false if not
 * @return boolean
 */
 function isValid()
 {
 if (count($this->errors) > 0) {
 return FALSE;
 } else {
 return TRUE;
 }
 }

 /**
 * Iterator for fetching error messages
 * @return mixed
 */
 function fetch()
 {
 $error = each($this->errors);
 if ($error) {
 return $error['value'];
 } else {
 reset($this->errors);
 return FALSE;
 }

337

The Strategy Pattern

 }
}
?>

The general approach we’ve used here is to have an array of errors. To determine

whether a particular piece of data is valid, the isValid method looks at the size

of the errors array to ascertain whether any errors have been placed there. The

fetch method provides an iterator to extract messages, which can then be dis-

played to a user.

With this foundation in place, we can extend the class using subclasses that deal

with validating particular types of data. Here’s how we’d validate user names:

File: Validators/ValidateUser.php (in SPLIB)

<?php
require_once 'Validators/Validator.php';
/**
 * Validates a username
 */
class ValidateUser extends Validator {
 /**
 * Validates a username
 * @access private
 * @return void
 */
 function validate($user)
 {
 if (!preg_match('/^[a-zA-Z0-9_]+$/', $user)) {
 $this->setError('Username contains invalid characters');
 }
 if (strlen($user) < 6) {
 $this->setError('Username is too short');
 }
 if (strlen($user) > 20) {
 $this->setError('Username is too long');
 }
 }
}
?>

When Validator is instantiated, it expects to be given a value to test for validity;

it passes this value to the validate method. The work involved in writing sub-

classes like ValidateUser therefore focuses purely on the validate method, al-

lowing you to concentrate on the problem at hand, while easily extending your

set of validation classes to cater to new data types.

Chapter 7: Design Patterns

338

Here’s another subclass for password validation:

File: Validators/ValidatePassword.php (in SPLIB)

<?php
require_once 'Validators/Validator.php';
/**
 * Validates a password
 */
class ValidatePassword extends Validator {
 /**
 * Validates a password
 * @access private
 * @return void
 */
 function validate($passwords)
 {
 $pass = $passwords[0];
 $conf = $passwords[1];
 if ($pass != $conf) {
 $this->setError('Passwords do not match');
 }
 if (!preg_match('/^[a-zA-Z0-9_]+$/', $pass)) {
 $this->setError('Password contains invalid characters');
 }
 if (strlen($pass) < 6) {
 $this->setError('Password is too short');
 }
 if (strlen($pass) > 20) {
 $this->setError('Password is too long');
 }
 }
}
?>

Here we have an additional issue. We must accept two fields: the password, and

a value against which to confirm it. In order to preserve the API defined by the

Validator class, the class accepts these two values in the form of an array.

One final validator deals with email addresses:

File: Validators/ValidateEmail.php (in SPLIB)

<?php
require_once 'Validators/Validator.php';
/**
 * Validates an email address

339

The Strategy Pattern

 */
class ValidateEmail extends Validator {
 /**
 * Validates an email address
 * Note that the regular expression used here will not allow
 * certain valid email addresses, such as
 * someone@195.11.25.34
 * @access private
 * @return void
 */
 function validate($email)
 {
 $pattern = '/^[a-z0-9._-]+@[a-z0-9.-]+\.[a-z]{2,4}$/i';
 if (!preg_match($pattern, $email)) {
 $this->setError('Invalid email address');
 }
 if (strlen($email) > 100) {
 $this->setError('Address is too long');
 }
 }
}
?>

Be warned that the regular expression for validating an email addresses will reject

some valid addresses (in particular, addresses that include an IP address). The

code here is meant as a simple example, rather than production-level script.

Mastering Regular Expressions (O’Reilly, ISBN: 0596002890) defines a regular ex-

pression that’s more than 6KB long (!), and which correctly validates every pos-

sible email address.

We’ve now defined all our validation classes, as shown in the UML diagram in

Figure 7.5.

Chapter 7: Design Patterns

340

mailto:someone@195.11.25.34

Figure 7.5. Validation Strategy

Using the validators to deal with the form submission we saw before, the code

becomes:

File: 9.php (excerpt)

<?php

require_once 'Validators/ValidateUser.php';
require_once 'Validators/ValidatePassword.php';
require_once 'Validators/ValidateEmail.php';

// Validate the form
if (isset($_POST['submit'])) {
 // A array to store errors
 $errors = array();

 // Collection of validators
 $validators = array();
 $validators[] = new ValidateUser($_POST['user']);
 $validators[] = new ValidatePassword(array(
 $_POST['pass'], $_POST['conf']));
 $validators[] = new ValidateEmail($_POST['email']);

 // Iterate over the validators, validating as we go

341

The Strategy Pattern

 foreach ($validators as $validator) {
 if (!$validator->isValid()) {
 while ($error = $validator->fetch()) {
 $errors[] = $error;
 }
 }
 }
}
?>

The rest of the page remains unchanged, but we’ve made the code that handles

validation far more flexible and modular. If we wanted to add a Validator to

check a credit card number, for example, all we’d need to do would be to plug it

into the $validators array:

 $validators[] = new ValidateCreditCard($_POST['creditcard']);

The rest happens automatically!

The Adapter Pattern
One of PHP’s greatest advantages as a language for building Web-based applica-

tions is the size and strength of its community—in particular, the wealth of open

source code available as examples, and for use in your own projects. Developers

simply need to head over to PHP Classes[3] to find examples of the solutions

others have created to overcome the problem we’re dealing with—perhaps the

solution even slots neatly into our existing code, preventing us from having to

reinvent the wheel.

While this is a big plus for PHP, it comes with a downside. Companies such as

Sun and Microsoft are able to put together cohesive libraries of classes that integ-

rate well, the whole being much greater than the sum of the parts. As it’s not

backed by any large software house, PHP lacks a library of components that

compare with the likes of the Java or .NET class libraries. Much of the freely

available PHP code was designed by developers working in a vacuum; a class may

have been designed to work either alone or as part of a small library of classes

that a particular developer uses. As such, attempting to slot someone else’s class

into your application may well highlight its incompatibility with your existing

design.

[3] http://www.phpclasses.org/

Chapter 7: Design Patterns

342

http://www.phpclasses.org/
http://www.phpclasses.org/

Thankfully, that’s where the adapter pattern comes in very handy. The essential

purpose of the adapter pattern is to provide on top of an existing class API, an

additional API that makes it compatible with other environments.

For example, we have a class for accessing MySQL; within this class, the method

that executes a query is called query. All the code that uses the class expects to

find the query method available for running SQL statements. Then one day,

your application has to be ported at short notice to a PostgreSQL database; you

need classes that are capable of dealing with PostgreSQL—fast! And you happen

to know of a very solid open source library that offers just what you need. Unfor-

tunately, instead of using a method called query, the library in question provides

a method called execute for performing SQL statements. What can you do?

Rewrite all your existing code to use execute instead of query?

The answer is an adapter class, which uses the PostgreSQL class but provides

an API that’s the same as your existing MySQL class. In other words, it maps

the execute method to your query method.

Taking a specific example along the same lines, the MySQL and MySQLResult
classes we developed in Volume I, Chapter 3 obviously tie you to using a MySQL

database. This won’t cause many issues if you’re happy with MySQL, but, should

your application be required to run on a different database server, you may run

into difficulties. PHP has two well known database abstraction libraries,

PEAR::DB[4] and ADOdb[5], with another, PEAR::MDB[6] in progress; this may

become a successor to PEAR::DB eventually.

Let’s take PEAR::DB as the example. How can we adapt it (without modifying

the source code, of course—a bad idea, unless you fancy supporting your own

hybrid version of PEAR::DB) to make it usable with the code that’s currently

geared to our MySQL class?

I’ll assume here that you’ve used the PEAR::DB API before (and if you haven’t,

see the section called “Further Reading”).

We’re lucky in the way our MySQL class is implemented, as PEAR::DB also has a

query method from which it returns a result object. Unfortunately, our

MySQLResult class provides a fetch method, while, in PEAR::DB, the equivalent

method is fetchRow. To deal with this, we need two adapter classes. The first

wraps the main PEAR::DB class and provides a query method that “catches” the

[4] http://pear.php.net/package/DB

[5] http://php.weblogs.com/ADOdb

[6] http://pear.php.net/package/MDB

343

The Adapter Pattern

http://pear.php.net/package/DB
http://php.weblogs.com/ADOdb
http://pear.php.net/package/MDB
http://pear.php.net/package/DB
http://php.weblogs.com/ADOdb
http://pear.php.net/package/MDB

PEAR::DB result object and wraps it in the second class, which adapts fetch to

fetchRow.

File: Database/PEARDBAdapter.php (in SPLIB) (excerpt)

// Include PEAR::DB
require 'DB.php';

// Adapter for PEAR::DB MySQL connections
class PEARDBAdapter {
 // Instance of PEAR::DB
 var $db;

 function PEARDBAdapter($host, $dbUser, $dbPass, $dbName)
 {
 $dsn = "mysql://$dbUser:$dbPass@$host/$dbName";
 $this->db = &DB::connect($dsn);
 }

 // Query factory method
 function &query($sql)
 {
 // Call the PEAR::DB query() method
 $result = &$this->db->query($sql);

 // Wrap the result in a PEARDBResultAdapter
 return new PEARDBResultAdapter($result);
 }
}

The PEARDBAdapter class acts as a wrapper for the main PEAR::DB class, most

importantly, providing a query method that catches the DB_Result object created

by a query, and placing it inside a PEARDBResultAdapter (see below).

Here’s the PEARDBResultAdapter class:

File: Database/PEARDBAdapter.php (in SPLIB) (excerpt)

// Adapater for PEAR::DB Result
class PEARDBResultAdapter {
 // Instance of PEAR::DB Result
 var $result;

 function PEARDBResultAdapter(&$result)
 {
 $this->result = &$result;
 }

Chapter 7: Design Patterns

344

 // Adapts the PEAR::DB Result fetchRow() method
 function &fetch()
 {
 // Call the PEAR::DB Result fetchRow() method
 if ($row = &$this->result->fetchRow(DB_FETCHMODE_ASSOC)) {
 return $row;
 } else {
 return FALSE;
 }
 }
}
?>

The DB_Result fetchRow method is adapted within the fetch method to the

API we require.

Compatibility Note

My own MySQL class automatically resets the result resource, allowing me

to iterate over the result multiple times. PEAR::DB doesn’t support this

functionality, because some of the databases it supports provide no mechan-

ism by which developers can perform multiple iterations over the same results.

The code of this example will ignore this subtlety.

For full compatibility, we could modify fetch so that it re-executed the

query to obtain a fresh result set for each new iteration, or we could cache

the results in an array.

Now, let me show you how this adapter class works. First, here’s a simple example

that shows what I usually do with my own MySQL class:

File: 10.php

<?php
// Include MySQL class
require_once 'Database/MySQL.php';

// Instantiate MySQL connection
$db = &new MySQL('localhost', 'harryf', 'secret', 'sitepoint');

// Perform query
$sql = "SELECT title, author FROM articles LIMIT 0,5";
$result = &$db->query($sql);

// Display some results
while ($row = $result->fetch()) {

345

The Adapter Pattern

 echo '' . $row['title'] . ' by ' . $row['author'] .
 "
\n";
}
?>

Here’s the same thing, using the PEARDBAdapter class:

File: 11.php

<?php
// Include the adapter classes
require_once 'Database/PEARDBAdapter.php';

// Instantiate PEARDBAdapter connection
$db = &new PEARDBAdapter('localhost', 'harryf', 'secret',
 'sitepoint');

// Perform query
$sql = "SELECT title, author FROM articles LIMIT 0,5";
$result = &$db->query($sql);

// Display some results
while ($row = $result->fetch()) {
 echo '' . $row['title'] . ' by ' . $row['author'] .
 "
\n";
}
?>

Notice that all the code that appears after the PEARDBAdapter is instantiated is

exactly the same as it was when I used my own MySQL class—even the constructor

arguments are the same! All I needed to do was modify two lines of code (the

include and the object creation); the rest of my application could happily keep

on running. Now, with the power of PEAR::DB at my disposal, I can modify my

application to run on any database it supports.4.

As you can see, the adapter pattern offers a powerful technique to help you mould

third party libraries for use in your own code—without your needing to rewrite

anything. Adapters can even be useful if you’re writing brand new code that uses

a third party library, as they allow you to customize the API to your needs. The

trick to using an adapter pattern is to find the commonalities between the API

your code expects (or needs), and the API that the third party library provides,

then use your adapter class as a translator between the two.

4The practical extent of this portability can depend on other factors. For example, different databases

support different forms of SQL. For example, the LIMIT 0,5 in the query is not supported by most

databases, although recent versions of PostgreSQL do allow it.

Chapter 7: Design Patterns

346

The Observer Pattern
The observer pattern is a useful solution for triggering events upon a specified

occurrence within your application.

For example, you may have a back end administration tool that allows authorized

users to add articles to your Website. When an article is published, a number of

things may need to happen in addition to storing the content in the database;

for instance, you may need to refresh the site’s cached HTML files, send an email

to subscribers to inform them of the new content, and perhaps update a static

XML document that contains your site’s RSS feed, which others use to stay up-

to-date about the content you publish. The observer pattern makes triggering

these additional features easy and modular.

The terminology of the observer pattern is that the object doing the work (in this

case, perhaps it’s a class called Article) is the observable, while the objects that

respond to changes in the observable (i.e. the cache-, email-, and RSS-related

classes) are known as observers. The general process of using the observer pattern

is to attach the observers to the observable. Then, when changes occur in the

observable, it notifies the observers, leaving them to take further action.

Understanding how the observer pattern works in practice can be a little confusing.

Let’s look at the base classes required to implement it, but don’t worry if this

doesn’t make sense at first glance; using the observer pattern is a lot easier that

understanding it!

First, let’s look at the base Observable class:

File: Observer/Observable.php (in SPLIB)

<?php
/**
 * Base Observerable class
 * @abstract
 */
class Observable {
 /**
 * Array of Observers
 * @access private
 * @var array
 */
 var $observers;

 /**

347

The Observer Pattern

 * Constructs the Observerable object
 */
 function Observable()
 {
 $this->observers = array();
 }

 /**
 * Calls the update() function using the reference to each
 * registered observer, passing an optional argument for the
 * event - used by children of Observable
 * @return void
 */
 function notifyObservers($arg = NULL)
 {
 $keys = array_keys($this->observers);
 foreach ($keys as $key) {
 $this->observers[$key]->update($this, $arg);
 }
 }

 /**
 * Attaches an observer to the observable
 * @return void
 */
 function addObserver(&$observer)
 {
 $this->observers[] = &$observer;
 }
}
?>

Let’s take a moment to review the methods here. addObserver is used to register

an observer object with the observable, and add it to the internal array of observ-

ers. This is used before the observable class does anything, and sets the scene for

the observers to respond to events.

The notifyObservers method is used by the observable to tell all the observers

that something has happened. It takes an optional argument, so that, if need be,

the observable can tell observers something about the event efficiently. This

method calls the update method for each observer, passing a reference to the

observable along with the argument:

 $this->observers[$key]->update($this, $arg);

Chapter 7: Design Patterns

348

The update method is part of the Observer base class, which all observers must

extend:

File: Observer/Observer.php (in SPLIB)

<?php
/**
 * Base Observer class
 */
class Observer {
 /**
 * Abstract function implemented by children to respond to
 * to changes in Observable subject
 * @abstract
 * @return void
 */
 function update(&$source, $arg) {}
}
?>

The update method doesn’t do anything for the base class, but in subclasses it

should be overridden to respond to events.

With the base classes in place, let’s see how the pattern works with some skeleton

classes that would allow articles to be published, and deal with cache, email noti-

fication and RSS issues.

File: 12.php (excerpt)

<?php
// Include the Observable and Observer base classes
require_once 'Observer/Observable.php';
require_once 'Observer/Observer.php';

class Article extends Observable {
 // To publish an article
 function publish()
 {
 echo 'Publishing article.
';
 // Perform query here that updates the database
 $this->notifyObservers('published');
 }
 // To delete an article
 function delete()
 {
 echo 'Deleting article.
';
 // Perform query here that deletes an article

349

The Observer Pattern

 $this->notifyObservers('deleted');
 }
}

The Article class is the observable, inheriting from the Observable class. It

provides two (skeleton) methods, which publish and delete an article. After the

database update has been performed, each of these methods calls the

notifyObservers method, passing an argument to indicate to the observers the

nature of the event.

Here are the observer classes:

File: 12.php (excerpt)

class Cache extends Observer {
 function update(&$source, $arg)
 {
 switch ($arg) {
 case 'published':
 case 'deleted':
 echo 'Refreshing cache
';
 break;
 }
 }
}

class Subscribers extends Observer {
 function update(&$source, $arg)
 {
 switch ($arg) {
 case 'published':
 echo 'Notifying subscribers by email
';
 break;
 }
 }
}

class RSSFeed extends Observer {
 function update(&$source, $arg)
 {
 switch ($arg) {
 case 'published':
 case 'deleted':
 echo 'Updating the RSS Feed
';
 break;
 }

Chapter 7: Design Patterns

350

 }
}

Each observer provides an update method that’s called by the observable when

the notifyObservers method is used. Within each update method, the observer

decides what to do next based on the argument received from the observable.

Note that the Subscribers class reacts only to the 'published' argument, be-

cause we don’t want subscribers notified if an article is deleted. RSSFeed and

Cache, however, respond to both the 'published' and 'deleted' states.

To clarify, the UML class structure in this example is shown in Figure 7.6.

Figure 7.6. Article Observers

With the classes ready, we instantiate them before adding all three observers to

the observable object, $article:

File: 12.php (excerpt)

// Create the observers
$cache = &new Cache();

351

The Observer Pattern

$subscribers = &new Subscribers();
$rssfeed = &new RSSFeed();

// Create the observable
$article = &new Article();

// Add the observers to the observable
$article->addObserver($cache);
$article->addObserver($subscribers);
$article->addObserver($rssfeed);

A simple form demonstrates the interaction of the objects:

File: 12.php (excerpt)

if (isset($_POST['publish'])) {
 $article->publish();
} else if (isset($_POST['delete'])) {
 $article->delete();
} else {
?>
<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
<textarea cols="50" rows="5">
This is a sample article
</textarea>

<input type="submit" name="publish" value="Publish Article">

<input type="submit" name="delete" value="Delete Article">

</form>
<?php
}
?>

If we click the Publish button, our code executes the Article class’s publish
method; behind the scenes, the observers respond to the event, displaying:

Publishing article.
Refreshing cache
Notifying subscribers by email
Updating the RSS Feed

The observer pattern is a powerful but easy-to-use mechanism for executing

multiple routines without specifically calling them in our code. We can add or

remove observers easily, without making serious modifications to the main logic

of the application. More importantly, it’s easy to reuse the observers on other

observables, and add their capabilities to other parts of our site, such as a forum.

Chapter 7: Design Patterns

352

You can even register a single observer with multiple observables, so that it reacts

to events from any of them!

A hybrid form of the observer pattern is commonly used when parsing XML

documents with SAX. Rather than a single update method, the observer classes

have multiple methods, such as startElementHandler and endElementHandler,

which are called on the basis of their context within the XML document.

PEAR::Log[7] also uses a form of observer pattern to allow the triggering of events

on log updates.

It’s likely that the observer pattern will become more widely used in PHP applic-

ations. Much like Java, PHP 5 provides interface classes, which can be imple-

mented by a class that already has a parent it extends. This allows the observable

and observer APIs to be implemented without disturbing an existing class hier-

archy.

Further Reading
� Applied OO PHP: http://www.horde.org/papers/kongress2002-design_patterns/

This paper reports a presentation from the 2002 International PHP Confer-

ence, discussing the design of APIs and design patterns related to PHP.

� Design Patterns in the Real World:

http://www.phpconference.com/downloader/downloader.php?CatID=0&NewsID=367

This presentation from the 2003 International PHP Conference (Spring Edi-

tion) provided an introduction to design patterns. From this URL you can

download the slides from the presentation.

� PHP Iterator: http://www.phpbuilder.com/columns/bosanac20030225.php3

This tutorial looks at a fairly complex iterator that’s demonstrated iterating

over a collection of objects.

� Quick Start Guide to PEAR::DB: http://vulcanonet.com/soft/?pack=pear_tut

This article explains the use of PEAR’s primary database abstraction library.

[7] http://pear.php.net/package/Log

353

Further Reading

http://pear.php.net/package/Log
http://www.horde.org/papers/kongress2002-design_patterns/
http://www.phpconference.com/downloader/downloader.php?CatID=0&NewsID=367
http://www.phpbuilder.com/columns/bosanac20030225.php3
http://vulcanonet.com/soft/?pack=pear_tut
http://www.horde.org/papers/kongress2002-design_patterns/
http://www.phpconference.com/downloader/downloader.php?CatID=0&NewsID=367
http://www.phpbuilder.com/columns/bosanac20030225.php3
http://vulcanonet.com/soft/?pack=pear_tut
http://pear.php.net/package/Log

354

Appendix A: PHP Configuration
This is a quick reference to configuring PHP that covers the most important

general settings you need to be aware of, either when running applications in a

live environment, or because they impact security or the way you write code.

Configuration Mechanisms
The primary mechanism for configuring PHP is the php.ini file. As the master

file, this provides you with control over all configuration settings. Entries generally

take the format:

setting = value

Be sure to read the comments provided in the file before making changes, though.

There are a few tricks, such as include_path using a colon (:) as a seperator on

Unix, and a semicolon (;) on Windows.

Most Web hosts will not provide you access to your php.ini file unless you have

root access to the system (which is typically not the case if you’re using a cheap

virtual hosting service). Your next alternative is to use .htaccess files to configure

PHP (assuming the Web server is Apache).

An .htaccess file is a plain text file that you place in a public Web directory to

determine the behavior of Apache when it comes to serving pages from that dir-

ectory; for instance, you might identify which pages you’ll allow public access to.

Note that the effect of an .htaccess file is recursive—it applies to subdirectories

as well.

To configure PHP with .htaccess files, your hosting provider must have the

Apache setting AllowOverride Options or AllowOverride All applied to your

Web directory in Apache’s main httpd.conf configuration file. Assuming that

is done, there are two Apache directives you can use to modify PHP’s configura-

tion:

php_flag
used for settings that have boolean values (i.e. on/off or 1/0) such as re-
gister_globals

php_value
used to specify a string value for settings, such as you might have with the

include_path setting

Here’s an example .htaccess file:

Switch off register globals
php_flag register_globals off

Set the include path
php_value include_path ".;/home/username/pear"

The final mechanism controlling PHP’s configuration is the group of functions

ini_set and ini_alter, which let you modify configuration settings, as well as

ini_get, which allows you to check configuration settings, and ini_restore,

which resets PHP’s configuration to the default value as defined by php.ini and

any .htaccess files. Using ini_set, here’s an example which allows us to avoid

having to define our host, user name and password when connecting to MySQL:

ini_set('mysql.default_host', 'localhost');
ini_set('mysql.default_user', 'harryf');
ini_set('mysql.default_password', 'secret');

if (!mysql_connect()) {
 echo mysql_error();
} else {
 echo 'Success';
}

Be aware that PHP provides for some settings, such as error_reporting, altern-

ative functions that perform effectively the same job as ini_set. Which you

prefer is a matter of taste.

Note that certain settings, such as register_globals, can only be usefully

modified by php.ini or .htaccess, because such settings influence PHP’s beha-

vior before it begins executing your scripts.

Furthermore, some configuration settings can be changed only in php.ini, such

as extension_dir, which tells PHP the directory in which PHP extensions can

be found. For a complete reference on controlling settings, refer to the PHP

Manual[1].

[1] http://www.php.net/ini_set

Appendix A: PHP Configuration

356

http://www.php.net/ini_set
http://www.php.net/ini_set
http://www.php.net/ini_set

Key Security and Portability Settings
Table A.1 shows the most important PHP settings that relate to the security and

portability of your PHP scripts.

357

Key Security and Portability Settings

Table A.1. Key Security and Portability Settings

NotesSetting

Automatically creates global variables from in-

coming HTTP request variables, such as GET

register_globals
(default: off)

and POST. For security and portability, it is

highly recommended that you switch this off.

See http://www.php.net/register_globals for more

details.

Automatically escapes quotes in incoming HTTP

request variables with a backslash, helping pre-

magic_quotes_gpc
(default: off)

vent SQL injection attacks. If you know what

you’re doing, it’s usually better to switch this

functionality off and handle this escaping your-

self when inserting into a database, given the

problems this feature can cause you with forms,

as well as the performance overhead they intro-

duce. See Volume I, Chapter 1 for information

on making your scripts compatible with this

feature.

Allows you to use variable references at call time

(e.g. htmlentities(&$string)). To keep code

call_time_pass_reference
(default: off)

clean and understandable, and to ensure portab-

ility, keep this functionality switched off.

Allows you to start a block of PHP code with

just <? instead of the longer <?php. Also lets you

short_open_tag
(default: on)

write out PHP expressions with <?=, which is

identical to <?php echo. While convenient,

these shortcuts are not XML compliant, and can

cause the PHP processor to become confused

when it encounters XML processing instructions

such as <?xml version="1.0"?>. Many people

have short_open_tag switched off, so, for

maximum portability, avoid the shortcuts and

switch this feature off during development.

Appendix A: PHP Configuration

358

http://www.php.net/register_globals
http://www.php.net/register_globals

NotesSetting

Allows ASP style tags (<% … %>) as an alternat-

ive to the PHP open and close tags

(<?php … ?>). Few people use these, so, for

maximum portability, it’s best to avoid them,

and switch this feature off during development.

asp_tags
(default: off)

When developing, and for maximum portability,

it’s best to set this to E_ALL, so that PHP will

inform you of situations where, for example, a

$_GET variable your code relies upon has not

been initialized. This forces you to write code

that is more secure and contains fewer logic er-

rors, in order to avoid warnings. This also en-

sures that your code will run neatly on other

servers configured this way.

error_reporting
(default: E_ALL & ~E_NOTICE)

Determines whether PHP sends error messages

to the Web browser. When running your applic-

ation in a live environment, it’s generally better

to switch this off, instead using PHP’s logging

mechanism to capture errors to a file, for ex-

ample.

display_errors
(default: on)

Allows you to restrict all PHP file operations to

a given directory or below. This can be a good

idea to prevent a script that is used to display

the contents of files, for example, from being

used to access sensitive files elsewhere on your

server.

open_basedir
(default: not set)

Allows you to specify remote file locations for

use with functions like fopen (e.g.

fopen('http://www.sitepoint.com/','r');).

It’s a handy tool but is also potentially a security

risk for a badly written script. Switch it off if

you know you don’t need it.

allow_url_fopen
(default: on)

Includes and Execution Settings
Table A.2 shows the most important PHP settings that relate to includes, and

how well your PHP scripts run.

359

Includes and Execution Settings

http://fopen('http://www.sitepoint.com/','

Table A.2. Includes and Execution Settings

NotesSetting

Allows you to specify relative and absolute paths that

PHP should search when you use one of the include
include_path
(default: '.')

related commands. Make sure you have at least the

current directory (.) specified, or most third party scripts

will fail to work. On Unix systems, the list of directories

is separated by colons (:), while on Windows the separ-

ator is a semi colon (;).

PHP will execute the file(s) specified before executing

any requested script. Useful for performing site-wide

auto_prepend_file
(default: not set)

operations such as security, logging, defining error

handlers, stripping backslashes added by the magic

quotes feature, and so on. Useful for applications that

you’re sure you will only use yourself, but unsuitable

for use in code you intend to distribute. Those unable

to modify php.ini settings with .htaccess files will be

unable to use such code. The list separator is the same

as that used for the include_path setting.

The twin of auto_prepend_file, executed after a reques-

ted script is executed.

auto_append_file
(default: not set)

Specifies the maximum execution time (in seconds) for

which a PHP script run via a Web server may be allowed

max_execution_time
(default: 30)

to execute. Generally, it’s best to leave this as the default

setting and use the set_time_limit function to extend

the limit on a per-script basis. A value of 0 for either

removes any limitations on script execution time.

The amount of memory PHP has available to it at

runtime. Usually, the default is fine, but when handling

memory_limit
(default: 8M)

very large XML documents, for example, or dealing with

images, you may need to increase it. The bigger this

value, and the more memory a script actually uses, the

less memory is available for other applications running

on your server.

Appendix A: PHP Configuration

360

NotesSetting

The maximum amount of data that PHP will accept via

an HTTP POST (e.g. a form that uploads an image).

You may need to increase this if you have an application

that will allow users to upload bigger files.

post_max_size
(default: 8M)

Error-Related Settings
Table A.3 shows the most important PHP settings that relate to the way PHP

handles errors, in addition to display_errors and error_reporting, which are

described in Table A.1.

Table A.3. Error-Related Settings

NotesSetting

Allows you to log errors to a text file, in conjunction

with error_log (below). Useful for a live site where

you’ve switched off the display of errors to visitors.

log_errors
(default: off)

A filename to which errors are logged when log_errors
is switched on.

error_log
(default: not set)

Using this, if the same error occurs from the same PHP

script on the same line, the error will only be reported

once per script execution. Helps prevent massive log

files resulting from errors that occur in loops, when log-

ging to a text file.

ignore_repeated_errors
(default: off)

Similar to ignore_repeated_errors, but, in this case,

it suppresses repeated errors of the same type throughout
a PHP script.

ignore_repeated_source
(default: 30)

Make sure this is switched on, especially if you’re using

experimental versions or non-stable releases of PHP,

otherwise you may end up crashing your server once

leaked memory has eaten up all available space.

error_reporting must be set to report warnings for

this setting to apply.

report_memleaks
(default: on)

361

Error-Related Settings

Miscellaneous Settings
Table A.4 shows additional important settings that you should be aware of in

your PHP configuration.

Table A.4. Miscellaneous Settings

NotesSetting

If storing sessions in files on a Windows-based system,

you will need to modify this setting to an available dir-

ectory to which PHP can write session files.

session.save_path
(default: /tmp)

Use cookies to store the session ID on the client, rather

than placing the session ID in the URL (which can

present a greater risk to security).

session.use_cookies
(default: 1)

The path under which compiled PHP extensions can be

found. On Windows-based systems, it might be some-

thing like this:

extension_dir = C:\php-4.3.2\extensions\

extension_dir
(default: './')

On Windows based systems only, this is used to identify

all the extensions which should be loaded. The exten-

sions specified should reside in the extension_dir path

(above). For example:

extension = php_xslt.dll

extension

Appendix A: PHP Configuration

362

http://C:\php-4.3.2\extensions\

Appendix B: Hosting Provider
Checklist

PHP, and, more generally, the LAMP combination of Linux, Apache, MySQL

and PHP/Perl/Python, is widely available via literally thousands of Web hosts at

very affordable prices. You can easily get quality Web hosting that will suit 90%

of your needs for under $10 a month per site. That said, all PHP installations

are not created equal, and depend largely on the configuration settings defined

in php.ini as well as the extensions the host has installed for you. There are also

a number of general issues relating to the amount of control you’re given over

your own environment, and these are important if you don’t want big trouble

later on.

This is a summary of the key issues you should investigate before paying for a

hosting service. Contact potential providers and have them respond on each of

these points. Follow up by asking for opinions from other people who know/have

used the service in question. There are many online forums where you’ll find

people who are able to offer advice. Be aware, though, that the ratio of “know-

ledgable” to “ignorant” is stacked highly in favor of ignorance; gem up on tech-

nical detail so you’re able to verify that the answers you were given were actually

well-informed.

Some of the points I’ve provided here may seem a little extreme, but once you’ve

been around the block a few times, you’ll probably want to get value for your

money, rather than spending your Saturday mornings fixing the problems your

host made for you on Friday night.

General Issues
� Require Linux and Apache (1.3)

From the point of view of performance and reliability, this is the best combin-

ation. Avoid any host using Apache 2.x (it’s not yet completely stable with

PHP). Ask for details of the Linux distribution. Although Red Hat and Suse

are popular, you may find hosts using Debian (or, better yet, Rock Linux)

know more about what they’re doing.

� Does the host provide you with SSH access to the server?

SSH gives you a secure connection to the server to perform tasks from the

Linux command line or transfer files with SCP (secure copy). Avoid any host

who allows you to use telnet (a fundamentally insecure way to connect to a

server over the Internet). For Windows users, Putty[1] makes an excellent

command line tool over SSH, while WinSCP[2] provides a secure file transfer

mechanism using an SSH connection. Oh, and don’t transfer files with ftp—it’s

as insecure as telnet.

� Is the host a reseller or do they maintain the server themselves?

Resellers can provide significant value if you need help at a basic technical

level (if, for example, you call yourself a newbie), but they generally have the

same level of control over the server as you. Going “straight to the source”

means you won’t have to deal with delays when there are system problems,

as you’ll likely be dealing directly with those who maintain the server. The

down side is that they tend to be less “newbie tolerant” so you may get an-

swers—but not ones you can understand

� To what degree does the host “overload” the server?

Many Web hosting companies create far more accounts on a server than the

maximum for which the system is specified. The best metric is the uptime

command (to which you require access); this will tell you the server load av-

erages over 1, 5 and 15 minutes. Ideally, the server should never have load

averages above 1. Obviously, the problem isn’t as simple as this, but once you

see your server hit averages in excess of 5, you’ll begin to experience significant

delays in your PHP-based applications.

� What is the hosting provider’s policy on running scripts and programs

from the command line?

MySQLDump is a very handy tool for backing up your database, but it’s no

good if you can’t run it. Some hosts automatically kill any command line ap-

plication that executes for longer than a given time.

� Does the host provide you access to cron, the Unix utility that allows

you to schedule batch jobs?

If so, make sure the host allows command line scripts to be executed. Some

hosts have taken to implementing cron so that it executes scripts via a Web

[1] http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

[2] http://winscp.sourceforge.net/eng/

Appendix B: Hosting Provider Checklist

364

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.sourceforge.net/eng/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.sourceforge.net/eng/

URL. This is no use if the script in question uses the MySQLDump application

to back up your database—a PHP script executed via Apache will typically

run as a user, which will not have the correct permissions required for the job.

PHP-Related Issues
� Can you see the output of phpinfo on the server you will actually be

assigned to?

Some hosts may claim this is a security risk, but expert hosts know that secur-

ity by obscurity is no substitute for real security. The information provided

by phpinfo is not a security risk to hosting providers that know what they’re

doing, and have Linux, Apache, and firewalls correctly set up. What phpinfo
tells you is the best way to confirm the facts.

� Is PHP installed as an Apache module (not the CGI variant)?

This provides much better performance.

� Is the Apache setting AllowOverride set to Options or All?

This will let you modify php.ini settings with .htaccess files.

� Is PHP Safe Mode disabled?

The safe_mode option in php.ini is, in theory, a way to make PHP secure,

and prevent users from performing certain tasks or using certain functions

that are security-sensitive. Safe Mode is nothing but a large headache if you’re

doing any serious work in PHP.

� Check the upgrade policy of your host.

Ask the host how much warning you will get before upgrades are performed.

Check that they will provide you with a copy of the php.ini file they’ll be

using for the upgrade (before it happens). The number of hosts that, overnight,

switch from register_globals = on to register_globals = off is consid-

erable. Make sure you test your applications on your development system

against the new version before the host performs the upgrade.

� Ask for a list of installed PHP extensions.

Confirm that these extensions match the requirements of your applications.

Few hosts, for example, bother to provide the XSLT extension. Confirm also

365

PHP-Related Issues

that the host guarantees all extensions will remain available between PHP

upgrades.

� Will PHP be available for use from the command line?

If not, you might alternately require access to Perl or Python, or the ability

to run shell scripts, if you’re happy with those languages. Usually, running a

serious Website will require that you have the ability to run routine batch

jobs (with cron), for tasks like backups, mailing you the PHP error log, and

so on.

� Last but not least, throw in one or two questions that will test your hosting

providers’ knowledge of PHP. Although it may not be their job to write PHP

code, when you find yourself in the position of knowing a lot more about

PHP than your host, the end result is depressing. It’s important to have a

host that understands your needs.

Appendix B: Hosting Provider Checklist

366

Appendix C: Security Checklist
Given that online PHP applications are exposed to essentially anyone and

everyone, security should be one of, if not the top concern as you develop your

applications. To some extent, the ease with which PHP applications can be de-

veloped is also one of its greatest weaknesses, in that, for beginners who aren’t

aware of the possible dangers, it’s very easy to deploy an application for which

the line of security resembles swiss cheese.

Make sure you’re informed, and, if in any doubt, ask. The Open Web Application

Security Project (OWASP)[1] is a corporate-sponsored community focused on

raising awareness of Web security, and is an excellent source of information on

potential dangers. They recently published a “Top 10” list of common security

flaws in Web applications, the relevant points of which I’ve summarized here.

The Top Security Vulnerabilities
� Unvalidated data

Never trust anything you get from a Web browser. The browser is completely

outside of your control, and it’s easy to fake values like the HTTP referrer.

It’s also easy to fake a hidden field in a form.

More importantly, when dealing with forms, for example, validate the data

carefully. Use a “deny all, permit a little” policy. For example, if a registration

form has a field for the user name, allow only alphabetical characters and

perhaps the numbers 0–9, rather than simply rejecting particular special

characters. Use regular expressions to limit data to exactly what you require.

Packages like PEAR::QuickForm, as you saw in Volume I, Chapter 9, provide

built-in mechanisms for validating forms and do a lot to help cover weaknesses

you might otherwise neglect.

Also, where things like include files are concerned, watch out for logic like

this:

include($_GET['page']);

Make sure you check the value of $_GET['page'] against a list of files your

code is designed to include:

[1] http://www.owasp.org/

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/

$pages = array(
 'news.php', 'downloads.php', 'links.php'
);

if (in_array($_GET['page'], $pages)) {
 include $_GET['page'];
} else {
 include 'not_found.php';
}

Without such checks, it’s very easy for an attacker to use code similar to this

to execute other PHP scripts—even ones you didn’t write.

� Broken access control

Fundamental logic of this form is easy to get wrong if you don’t know what

you’re doing. For example, often, developers check a user name/password

combination against a database using logic like this:

if ($numRows != 0) {
 // allow access ...
}

That means they let users in even if they found more than one matching entry

in the database, which, if your site also has security holes like command injec-

tion flaws (see below), may provide attackers access to a lot more than you

were expecting. It’s easy to make mistakes in situations you think are secure

when, in fact, the logic can be bypassed easily. In general, use respected third

party libraries such as PEAR::Auth[2] and PEAR::LiveUser[3] wherever pos-

sible. Also, investigate Web testing frameworks such as SimpleTest[4], which

provide the ability to test your site from the point of view of a Web browser.

� Session and Cookie Vulnerabilities

Watch out for session hijacking possibilities. On sites where you really need

secure authentication (e.g. ecommerce sites), use SSL to serve the site to the

browser, to ensure the conversation is encrypted and that no one is listening

in. If you’re passing session IDs via the URL, as you will for WML-based sites,

make sure that you’re not placing the session ID in URLs that point to remote

sites. Also, when passing visitors to a remote site, forward them via an inter-

mediate script that strips out any possible HTTP referrer information that

[2] http://pear.php.net/package/Auth

[3] http://pear.php.net/package/LiveUser

[4] http://www.lastcraft.com/simple_test.php

Appendix C: Security Checklist

368

http://pear.php.net/package/Auth
http://pear.php.net/package/LiveUser
http://www.lastcraft.com/simple_test.php
http://pear.php.net/package/Auth
http://pear.php.net/package/LiveUser
http://www.lastcraft.com/simple_test.php

contains the session ID. In general, it’s better to handle sessions with cookies.

If you’re working with your own cookie-based authentication, store an

identifying session ID in the cookie only, not the user name and password.

� Cross Site Scripting (XSS)

By using the legitimate mechanisms your site provides, it’s possible for attack-

ers to post on your site, for example, JavaScript that results in other users

giving away their session IDs, thereby allowing the attacker to hijack their

session. Less serious, but equally embarrassing, is simply posting HTML that

“scrambles” the layout of your page, perhaps closing a table tag prematurely.

Use a “deny all, permit a little” approach, or, better yet, employ a separate

markup language such as BBCode (see Volume I, Chapter 5), while eliminating

HTML with PHP functions like strip_tags and htmlentities. If you really

want to allow HTML to be posted, consider building a filter based on

PEAR::XML_HTMLSax[5] (see Chapter 2).

� Command Injection

Command injection occurs when an attacker is able to influence the way PHP

interacts with external systems, such as the file system or a database. An SQL

injection is a prime example, which occurs when an attacker uses a form or

URL to modify a database query. This was discussed in some detail in Volume

I, Chapter 3. The bottom line is: escape all data you receive from a user before

you use it in a query.

� Error Handling

An experienced attacker will be able to gain a lot of important information

about your system from your error messages. Although this comes under the

heading of “security by obscurity” (which is no substitute for having a really
secure application), for a live site, it’s a good idea to instruct PHP to log error

messages to a file, rather than display them to the browser. See Volume I,

Appendix A for details.

� Insecure Use of Cryptography

First of all, when it comes to cryptography, don’t roll your own. Second, re-

member that if it’s an algorithm that’s meant to be decoded, then someone

(other than you) is also capable of decoding it. Remember that, strictly

speaking, MD5 is not an encryption algorithm (i.e. you cannot decrypt an

[5] http://pear.php.net/package/XML_HTMLSax

369

The Top Security Vulnerabilities

http://pear.php.net/package/XML_HTMLSax
http://pear.php.net/package/XML_HTMLSax

MD5 string to obtain the original data); it’s a message digest algorithm. But

if you don’t need to decrypt a value then use MD5, which is available through

PHP’s md5 function. This allows you to compare the encrypted versions of

two pieces of data (e.g. a stored password and that entered by a user), which

avoids the risks involved in working with encrypted values that could possibly

be decrypted by an attacker.

� Administration Flaws

Allowing an attacker to gain the same access you have to your site is clearly

bad news. Avoid FTP and telnet in favor of SCP/SFTP and SSH, respectively.

Linux distributions usually have the required client tools pre-installed. For

Windows, check out putty[6] for SSH access and WinSCP[7] for SCP/SFTP.

FTP and telnet expose your password to network sniffers. Make sure that any

Web administration tools your host provides are used only over an SSL con-

nection. If you’re using third party software, such as phpBB, change the default

administrator password immediately, and stay informed about potential se-

curity flaws.

� Configuration and Patching

When installing PHP, the configuration file php.ini-recommended makes

the best starting point to make sure you’ve got the package configured cor-

rectly.

If you’re using a hosting company, they should take care of most of the issues

for you, such as patching software as vulnerabilities are announced. Still, it’s

worth staying up to date on your own, using sites like Security Focus[8] and

others listed at DMOZ[9].

More information is available at PHP Advisory[10] although, sadly, the site is

no longer being maintained.

[6] http://www.chiark.greenend.org.uk/~sgtatham/putty/

[7] http://winscp.sourceforge.net/eng/

[8] http://www.securityfocus.com/incidents/

[9] http://dmoz.org/Computers/Security/Mailing_Lists/

[10] http://www.phpadvisory.com/

Appendix C: Security Checklist

370

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.sourceforge.net/eng/
http://www.securityfocus.com/incidents/
http://dmoz.org/Computers/Security/Mailing_Lists/
http://www.phpadvisory.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.sourceforge.net/eng/
http://www.securityfocus.com/incidents/
http://dmoz.org/Computers/Security/Mailing_Lists/
http://www.phpadvisory.com/

Appendix D: Working with PEAR
PEAR[1], the PHP Extension and Application Repository, is the brainchild

of Stig Bakken, and was inspired by Perl’s CPAN[2].

As a project, it was originally conceived in 1999 and reached its first stable release

in January 2003. It serves two purposes. First, it provides a library of PHP classes

for solving common “architectural” problems, a number of which you’ve seen in

this book. Second, under the title “PECL” (PHP Extension Code Library), PEAR

provides a repository for extensions to PHP. PECL was originally intended to

store “non standard” extensions that lay more on the fringes of PHP, but it has

since evolved into the default repository for all extensions not included in the

core PHP distribution. Here, I’ll be concentrating on the PHP classes that PEAR

provides.

Those who submit work and maintain the PEAR repository are all volunteers.

Originally a small community of developers, the release of the first stable version

of PEAR has seen their numbers grow significantly, and receive a greater focus

from the PHP community as a whole. There’s still a lot of work to be done to

raise the standards to that of PHP itself, documentation being a key area in which

there’s still much room for improvement. If you’re struggling, a good place to

start is PHPKitchen’s list of PEAR Tutorials[3]. That said, PEAR already offers

significant value in terms of reducing the effort required in developing PHP ap-

plications.

But what does PEAR actually mean to you? Considering the capabilities of

PEAR::SOAP, which was covered in Chapter 2, attempting to write your own

SOAP implementation first, then writing the “application” code that will use it

is clearly a waste of time. Browsing the list of packages[4], you’ll see that PEAR

provides you many more classes, categorized by subject, to help prevent you

having to reinvent wheels. It’s important to understand the focus of PEAR classes

is architectural issues, not application-level classes. In other words, PEAR is not

Hotscripts; you won’t find complete applications there; rather, you’ll find code

that can be reused in many different applications. Also important is that the

PEAR developer community does its best to maintain and support the library,

compared to, say, projects available via SourceForge[5], which are often individual

[1] http://pear.php.net/

[2] http://www.cpan.org/

[3] http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962

[4] http://pear.php.net/packages.php

[5] http://www.sourceforge.net/

http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962
http://pear.php.net/packages.php
http://www.sourceforge.net/
http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/staticpages/index.php?page=2003041204203962
http://pear.php.net/packages.php
http://www.sourceforge.net/

endeavours and come to a sudden end once the individuals in question stop

contributing their time. Otherwise, there is some emphasis on maintaining a degree

of standardization throughout the library. For example, all error handling should

be performed using PEAR::Error, and the code should be documented using the

PHPDoc standard, which means you should be able to extract the API document-

ation using PHPDocumentor[6] (see Chapter 6) if you can’t find it on the PEAR

Website.

Be warned: the degree of integration between the packages within PEAR is cur-

rently fairly low when compared to, say, the Java class library. This means, in

some cases, that you’ll be confronted with decisions like whether to use

PEAR::HTML_QuickForm’s validation functionality, or PEAR::Validate, or both.

It’s a good idea to invest some time investigating which fits your development

style up-front, rather than jumping straight in and using a PEAR class for a crit-

ical part of your application, only to discover later that it wasn’t the best fit for

the problem.

One important point to be clear on is that referring to “PEAR” can actually mean

one of two things: the repository as a whole, or the PEAR front end (also known

as the package manager), which provides tools for installing and upgrading the

PEAR packages you use.

Note that it’s not a requirement that you use the PEAR package manager to install

PEAR packages. If you need to, you can download them directly from the PEAR

Website and manually extract them to your PHP’s include path. Make sure you

check the dependencies listed on the site (these being other required packages)

and be aware that most packages implicitly require PEAR “base” package[7] for

tasks like error handling.

Installing PEAR
These days, the foundations of PEAR are provided with PHP distribution itself,

but Web hosts typically fail to provide customers with their own default PEAR

installation, so it’s worth knowing how to go about doing this from scratch. The

process can differ slightly between Unix and Windows based systems.

Step one is to make sure you can run PHP scripts via the command line. This is

always possible if you type the full path to the PHP binary. For a Unix based

system, you’d use the following:

[6] http://www.phpdoc.org/

[7] http://pear.php.net/package/PEAR

Appendix D: Working with PEAR

372

http://www.phpdoc.org/
http://pear.php.net/package/PEAR
http://www.phpdoc.org/
http://pear.php.net/package/PEAR

/usr/local/bin/php /home/username/scripts/my_script.php

For Windows, you’d use something like this:

c:\php\cli\php.exe c:\scripts\my_script.php

Note that in the Windows path above, we used the executable in the cli (com-

mand line interface) subdirectory of the PHP installation, this executable behaving

slightly differently from that used by Apache to handle Web pages. PHP binary

releases for Windows since 4.3.0 place the cli version of the PHP executable in

this directory.

It’s possible to make PHP much easier to use from the command line, though,

by making some changes to your system’s environment variables. For an in-depth

discussion see Replacing Perl Scripts with PHP Scripts[8] on PHPBuilder[9].

Next, point your browser at http://pear.php.net/go-pear, where you’ll see a PHP

script. This script is used to install the PEAR package manager—the basis you’ll

need in order to install other PEAR packages. Download this to your computer

(File, Save As) as go-pear.php. From here, you have a number of options.

Storing go-pear.php somewhere under your Web server’s document root directory

will allow you to run the script as a Web page. This behavior is still experimental,

though, so there are no guarantees it’ll work correctly. If you do use this approach,

make sure that the script is not publicly available!

Better is to execute the go-pear.php script via the command line, for example:

/usr/local/bin/php /home/username/pear/go-pear.php

Or, on Windows:

c:\php\cli\php c:\pear\go-pear.php

This will start an interactive command line interface, which will ask you questions

about how you would like PEAR installed. Note that the “installation prefix” is

the directory in which PEAR (as well as any packages you install later) will be

installed, and is referred to as $prefix, while $php_dir is the path to your PHP

installation (in which go-pear.php will put PEAR-related documentation by

default, unless you specify otherwise). Windows users should be aware that

[8] http://www.phpbuilder.com/columns/jayesh20021111.php3

[9] http://www.phpbuilder.com/

373

Installing PEAR

http://www.phpbuilder.com/columns/jayesh20021111.php3
http://www.phpbuilder.com/
http://pear.php.net/go-pear
http://pear.php.net/go-pear,
http://www.phpbuilder.com/columns/jayesh20021111.php3
http://www.phpbuilder.com/

changing the installation prefix pops up a Windows “Browse” dialog box, through

which you can specify the required directory.

With the installation options set to your requirements, the go-pear.php script

will connect to the PEAR Website, and download all the packages required to

set up the package manager (it also asks if you require additional packages, which

are well worth having). Packages are installed in a subdirectory pear of the dir-

ectory you specified as the installation prefix (so, in the above examples you’d

end up with c:\pear\pear or /home/username/pear/pear).

Finally, if you let it, the go-pear.php installer will attempt to modify your in-
clude_path in php.ini. To do this manually, assuming you used the directories

above, you’d specify the following:

include_path = ".:/home/username/pear/pear"

For Windows users, the path is as follows:

include_path = ".;c:\pear\pear"

Finally, to use the PEAR package manager from the command line, you need to

set up some environment variables. For Windows users these can be automatically

added to your Windows registry by right clicking on the file PEAR_ENV.reg and

choosing Run. They may also be manually configured as environment variables

via the Windows Control Panel. Users with Unix-based systems can configure

them to be set up every time you log in, by editing the file .profile in your

home directory (/home/username):

Envinment variables
export PHP_PEAR_SYSCONF_DIR=/home/username/pear
export PHP_PEAR_INSTALL_DIR=/home/username/pear/pear
export PHP_PEAR_DOC_DIR=/home/username/pear/pear/docs
export PHP_PEAR_BIN_DIR=/home/username/pear
export PHP_PEAR_DATA_DIR=/home/username/pear/pear/data
export PHP_PEAR_TEST_DIR=/home/username/pear/pear/tests
export PHP_PEAR_PHP_BIN=/usr/local/bin/php

Finally, you need to add the PEAR command line script to your system path,

which, on Windows, can be achieved through the System Control Panel applica-

tion (on the Advanced tab, click Environment Variables), by appending ;c:\pear
to the PATH variable.

On Unix-based systems, add the following to your .profile script:

export PATH=$PATH;/home/username/pear

Appendix D: Working with PEAR

374

Once you’ve done all that, you’re ready to move on and use the package manager

in one of its many incarnations.

The PEAR Package Manager
Assuming you set PEAR up correctly, you can now use the command line interface

to the PEAR package manager to install packages. For example, from the command

line, type:

pear install HTML_Common

That will install the package HTML_Common from the PEAR Website. The

package names for the command line are the same as those on the Website.

The PEAR Package Manager uses XML_RPC to communicate with the PEAR

Website. If you’re behind a proxy server or firewall, you will need to tell PEAR

the domain name of the proxy server with:

pear config-set http_proxy proxy.your-isp.com

To unset the variable at some later stage, simply use:

pear config-set http_proxy ""

Now to add QuickForm to the installed PEAR packages, you simply need to type:

pear install HTML_QuickForm

Should another release of QuickForm be made after you’ve installed it, you can

upgrade the version with:

pear upgrade HTML_QuickForm

If, for some reason, you later decide you don’t need QuickForm any more, you

can remove it using:

pear uninstall HTML_QuickForm

For a list of all PEAR commands, simply type pear.

Now, if you don’t like command lines, there’s also an (experimental) Web-based

front end to PEAR (as well as a PHP-GTK front end, which is beyond the scope

of this discussion). To use it, you first need to install it from the command line

375

The PEAR Package Manager

http://proxy.your-isp.com

(note that if you executed go-pear.php through your Web server, the Web-based

front end is also installed for you). Type the following commands:

pear install Net_UserAgent_Detect
pear install Pager
pear install HTML_Template_IT
pear install PEAR_Frontend_Web

Note the first three packages are required by PEAR_Frontend_Web. With that

done, you can launch the front end from your Web server using the following

simple script:

<?php
// Optional if include path not set
ini_set('include_path', 'c:\htdocs\PEAR');

require_once 'PEAR.php';

// For Windows users
$pear_user_config = 'c:\windows\pear.ini';
// For Unix users
$pear_user_config = '/home/username/pear/pear/PEAR/pear.conf';

$useDHTML = TRUE; // Switch off for older browsers

require_once 'PEAR/WebInstaller.php';
?>

Installing Packages Manually
It’s possible to install packages manually (although this involves more work), but

it’s important to watch the include paths carefully when doing so. First of all,

create a directory that will be the base of all the PEAR classes you install. This

directory must be in your include path. Next, install the main PEAR pack-

age[11]—download the latest stable version and extract it directly to the directory

you’ve created, so that PEAR.php is in the root of this directory.

Installing further packages can be completed in more or less the same fashion,

but you need to be careful which directory you extract to. For example, looking

at PEAR::DB, the main DB.php file goes alongside the PEAR.php file in the root

of the PEAR class directory, while further PEAR::DB-related files go in the sub-

directory DB. The best way to check is to look at the package.xml file that comes

[11] http://pear.php.net/package/PEAR

Appendix D: Working with PEAR

376

http://pear.php.net/package/PEAR
http://pear.php.net/package/PEAR
http://pear.php.net/package/PEAR

with every PEAR package. This contains an element called filelist, which lists

all the files contained in the package and the location at which they should be

installed. For each file, check the baseinstalldir attribute which, if specified,

tells you where, relative to the root PEAR class directory, the file should be placed.

The name attribute specifies the path and filename relative to the baseinstalldir
(or just the root PEAR class directory if there’s no baseinstalldir attribute),

where each file should be placed.

377

Installing Packages Manually

378

Index
This index covers both volumes of The
PHP Anthology. Page references in anoth-

er volume are prefixed with the volume

number and appear in italics (e.g. I-123
refers to page 123 of Volume I).

Symbols
$_FILES array, I-280
$GLOBALS array, 91

$this variable, I-31, I-37, 97

% (wildcard character), I-95
& (reference) operator, I-42, I-69, 124

(see also references)

-> (arrow) operator, I-32
.= (string append) operator, 309

.forward files, I-248

.htaccess files, I-16, I-18, I-20, I-118,

I-128, I-204, I-311, I-322, 72, 81, 229

:: operator, I-29
= (assignment) operator, 309

@ (error suppression) operator, I-163,

I-322, I-324
@ doc tags, 285, 293

__clone method, I-48

A
abstract classes, I-60, 84

acceptance testing, 298

access control, 1, 13, 21

(see also methods, access control)

(see also permissions)

security concerns, 1, 24

adjacency list model, I-288
aggregation, I-56, I-59
aliases (see SELECT queries, aliases)

allow_call_time_pass_reference direct-

ive, I-20, I-47
alpha blending, I-223

alternative content types, 169

Apache, I-308, I-310
API documentation, xiii, 283

generating, 291

reading, 287

apostrophes

escaping (see magic quotes)

in SQL statements (see quotes in

SQL statements)

application programming interfaces

(APIs), I-25, I-35, I-78
Application Programming Interfaces

(APIs)

(see also API documentation)

applications, I-314
archives (see compressed files)

arguments, I-5
array pointers, 324

arrays, I-256
converting to strings, I-151
creating from strings, I-150
strings as, I-152

ASP tags (<% %>), I-18
asp_tags directive, I-18
authentication (see access control)

authentication headers (see HTTP au-

thentication)

auto log ins, 232

auto sign ups

protecting against, 37

auto_append_file directive, I-204
AUTO_INCREMENT columns, I-94
auto_prepend_file directive, I-203, I-204,

72, 260

automated testing (see unit testing)

AWStats, 225

B
backing up MySQL databases, I-98

BACKUP TABLE queries, I-101, I-102
bad word filters (see censoring bad

words)

bar graphs (see graphs, bar graphs)

base64 encoding, 6

BBCode, I-153
binary files

reading in Windows, I-116
bitwise operators, I-321
black box testing, 299

bread crumb (see crumb trail naviga-

tion)

buffered queries (see unbuffered quer-

ies)

buffering (see output buffering)

bzip2, I-100

C
caching, I-202, I-293, 156, 175, 241

(see also template caching)

chunked, 248, 255

client side, 242, 262

downloads, 244

function calls, 260

preventing, 243

security concerns, 256

server side, 242, 247, 254

Web services, 260

calendars, I-190
daily schedule, I-198
days in a month, I-195
months in a year, I-194

call-time pass-by-references, I-20, I-47
callback functions, I-326, 87, 90, 93

cascading constructors, I-52
censoring bad words, I-157
charts (see graphs)

CHECK TABLE queries, I-103
child classes, I-48
chunked buffering (see output buffer-

ing, chunked)

class declarations, I-28
class scope (see scope)

classes, I-25, I-26, I-29, I-154
(see also output in classes)

click path analysis, 223, 225, 238

code archive, I-xii, xv

code optimization

lazy includes, 275

quotes, 276

references, 276

SQL queries, 275

collections, 323

composition, I-58, I-59, 158

compressed files

(see also PEAR, PEAR::Archive_Tar)

creating, I-138
extracting, I-139

concrete classes, I-60
conditional GET, 264

configuration information

methods for storing, I-17
storing in files, I-127

constants, 13, 228

constructors, I-31
not cascaded in PHP, I-52

context menus, I-292, I-297
cookies, 8, 214, 232

vs. sessions, 232

corrupt databases (see repairing corrupt

MySQL databases)

COUNT (see MySQL functions,

COUNT)

cron, I-205, I-206
(see also crontab)

(see also pseudo-cron)

crontab, I-101
cross-site scripting (XSS) attacks, I-148,

I-163, 10

crumb trail navigation, I-53, I-288, I-293
custom error handlers (see errors,

handling)

Index

380

custom error pages, I-333
custom session handlers, 10

custom tags (see BBCode)

D
Data Access Objects (DAO), I-104
database indexes, I-96
database persistence layers (see persist-

ence layers)

databases, I-65, I-216
(see also MySQL)

backing up (see backing up MySQL

databases)

storing dates in, I-172
dates

day of the week, I-182
day of the year, I-186
days in month, I-183
first day in the month, I-187
leap years, I-185
number suffix, I-188
storing in MySQL, I-172
week of the year, I-183

dates and times

in HTTP, 264

DELETE queries

counting rows affected, I-93
derived data, 226

design patterns, I-21, xiii, 311

adapter pattern, 190, 342

factory method, 313

iterator pattern, 323, 333

(see also iterators)

observer pattern, 25, 347

strategy pattern, 334

development techniques, xiii

directories

reading, I-123
dispatch maps, 160

doc tags (see @ doc tags)

DocBlocks, 294

Document Object Model (DOM), 80,

102, 110, 112, 114

(see also XPath)

DOM (see Document Object Model

(DOM))

DOM inspector, 79

downloads (see files, downloads)

drop-down menus, I-299

E
echo statements, 201, 245, 246

Eclipse PHP library, 290, 334

ECMAScript (see JavaScript)

email, I-237, 29

attachments, I-239
complex messages, I-238
embedded images, I-240, I-243
HTML, I-243
mailing lists, I-251
multipart, I-245
multiple recipients, I-245
PHP setup, I-237
receiving, I-247

email addresses

temporary, 25

encapsulation, 286

encryption, I-275, 46, 51

(see also MD5 digests)

enctype attribute, I-280
enterprise application architecture, I-21
entity references (see XML entity refer-

ences)

environment errors, I-10, I-319
error reporting levels, I-321, I-322

(see also errors, levels)

error_reporting directive, I-321, I-322
(see also error reporting levels)

errors, I-320, I-324, I-325
(see also environment errors)

(see also logic errors)

(see also semantic errors)

381

(see also syntax errors)

displaying, I-333
generating, I-324, I-325
handling, I-11, I-320, I-326, I-329, I-331,

31, 139

in PHP 5, I-320
levels, I-320, I-324

(see also notices)

(see also warnings)

logging, I-331
suppressing, I-322

(see also @ (error suppression)

operator)

types of, I-8, I-319
escape characters, I-19, I-84

(see also magic quotes)

event handlers, 80, 87

exception handling, I-331
(see also try-catch statements)

execution time limits, I-132, 195

(see also PHP functions,

set_time_limit)

exit statements, 20

extends keyword, I-49
Extensible Markup Language (see

XML)

extensions (see PHP extensions)

Extreme Programming, I-11, 298

eXtremePHP, 334

F
fatal errors (see errors)

fields (see member variables)

file handles, I-116
file pointers (see file handles)

File Transfer Protocol (FTP), I-131
(see also PEAR, PEAR::NET_FTP)

security concerns, I-131
files, I-111

(see also compressed files)

(see also directories)

accessing remotely, I-129, I-130
appending to, I-119
as a database replacement, I-118
downloads, I-135

caching issues, 244

security concerns, I-136
getting information about, I-121
permissions, I-120, 10

security concerns, I-120
reading, I-112, I-116, I-117
security concerns, I-111
transferring (see File Transfer Pro-

tocol (FTP))

uploads, I-280
(see also maximum upload size)

displaying, I-286
security concerns, I-283
with QuickForm, I-283

writing, I-119
folders (see directories)

fonts

.afm, 175

in PDF documents, 175

using in dynamic images, I-224, 41

for statements, I-263, 274

ForceType directive, I-310
foreach statements, I-10, I-107, I-247, 88,

125, 129, 324

forgotten passwords (see passwords,

retrieving)

form field values, I-145
escaping (see special characters)

formatting values for output, I-152
forms, I-268

generating with QuickForm, I-269
guidelines, I-269
security concerns, I-269
validating (see validating submitted

data)

FPDF, 170, 190

FTP (see File Transfer Protocol (FTP))

Index

382

FULLTEXT searches, I-96, 280

function reference, I-4
function scope (see scope)

functions

(see also arguments)

(see also PHP functions)

(see also return values)

signatures, I-5, 286

G
GD image library, I-209, I-225
GET (see HTTP request methods)

GIF files

patent issues, I-210
global keyword, I-275
global scope (see scope)

global variables (see superglobal vari-

ables)

graphs, I-225
bar graphs, I-226
pie charts, I-228

gray box testing, 299

groups (see user groups)

gzip, I-100
GZIP files (see compressed files)

H
HAWHAW, 208, 289

HDML, 208

heredoc syntax, I-27
hierarchical data, I-288, I-289
hierarchical menus (see tree menus)

HTML

converting to PDF, 177

in email (see email, HTML)

parsing, 81, 177

HTML tags

replacing with BBCode, I-153
stripping out of text, I-147, I-163

HTML2FO, 200

HTTP authentication, 3, 5, 6

HTTP headers, I-135, I-288, 175, 215, 242,

243, 262

and output buffering, 246

authorization, 6

cache-control, 243, 263

content-disposition, I-136, 244

content-length, I-136
content-type, I-136, I-210, I-217, 120, 201

etag, 263

expires, 243, 263, 264

if-modified-since, 263, 264, 266

last-modified, 175, 244, 263, 264, 266

location, 20, 234

pragma, 243

referrer, 10

when to send, 7

www-authenticate, 5

HTTP request headers, 4

HTTP request methods, I-268, 163

HTTP response headers, 4, 9

httpd.conf, I-312
hyperlink URLs

URL encoding, I-143

I
if-else statements, I-9, I-68, I-277, 132,

148, 195, 271, 282, 334

ignore_repeated_errors directive, I-333,

I-333
images

getting dimensions of, I-212
getting type of, I-214
overlaying with text, I-224, 40

palette-based, I-213
preventing “hot linking”, I-230
resampling, I-213
resizing, I-213
scaling proportionally, I-214
true color, I-213
watermarking, I-223

include, I-12, I-15, I-69

383

(see also require)

include files (see includes)

include_once, I-12, I-14
(see also require_once)

include_path directive, I-16, 171

includes, I-12, I-15, I-127
(see also code optimization, lazy in-

cludes)

(see also include_path directive)

across directories, I-15
incoming mail (see email, receiving)

indexes (see database indexes)

inheritance, I-48, I-52, I-190, I-264, 84

deep structures, I-55
ini files (see configuration information,

storing in files)

INSERT queries, I-80, I-81, I-96
counting rows affected, I-93
retrieving new row ID, I-94

instances (see instantiation)

instantiation, I-30
interfaces, I-60, 353

(see also application programming

interfaces (APIs))

IP addresses, 24, 224, 232

iterators, I-296, 98, 108, 183, 323, 338

J
JavaScript, 10

form validation with, I-269, I-270, I-271
interaction with SVG, 203

JpGraph library, I-225

L
language filters (see censoring bad

words)

layered application design (see N-Tier

design)

lazy fetching, 69

LIKE operator, I-95
LIMIT clauses, I-89, I-91, I-259, 280

line breaks

preserving in HTML, I-146
link identifiers, I-68
link URLs (see URL encoding)

LiveHttpHeaders, 262

logging errors (see errors, logging)

logic errors, I-11, I-319
lookup tables, 61

M
magic quotes, I-19, I-84, I-269, 17, 31

(see also quotes in SQL statements)

magic_quotes_gpc directive, I-19, I-84,

I-85, 17

(see also magic quotes)

mailing lists (see email, mailing lists)

maximum upload size, I-280
MD5 digests, 16

member functions (see methods)

member variables, I-31
access control, 286

meta tags, 242, 243

expires, 243

pragma, 243

problems with, 243

methods, I-28
(see also static methods)

access control, 286

accessing member variables, I-32
calling other methods, I-37
signatures, 286

MIME (see Multipurpose Internet Mail

Extensions (MIME))

MML, 208

mock objects, 306

mod_rewrite, I-231, I-312, I-314
Mozilla, 79, 215

Multipurpose Internet Mail Extensions

(MIME), I-210

Index

384

MIME types, I-211, I-215, I-216, I-239,

I-284 (see application/vnd.moz-

illa.xul+xml)

image/bmp, I-211
image/gif, I-211
image/jpeg, I-211
image/png, I-211
image/xml+svg, I-211
text/html, I-211

myisamchk, I-103
MySQL, I-17, I-24, I-66, I-66, I-78,

I-290, 2, 254, 279, 343

(see also unbuffered queries)

backing up (see backing up MySQL

databases)

connecting to, I-67, I-69
displaying data from, I-255
fetching data from, I-73, I-75
inserting rows of data, I-80
storing dates in, I-172
updating rows of data, I-80

MySQL column types

DATE, I-174
DATETIME, I-174
TIME, I-174

MySQL functions

COUNT, I-90, I-260
DATE_FORMAT, I-178
UTC_TIMESTAMP, I-178

MySQL manual, I-103
MySQL timestamps, I-174, I-177
mysqldump, I-98, I-100, I-101

N
N-Tier design, xiii, 200, 277

namespaces (see XML namespaces)

navigation systems, I-288
nested buffers (see output buffering,

nested)

nested sets, I-288
new keyword, I-33

new lines (see line breaks)

notices, I-321, I-323, I-324, I-325
number suffixes, I-188
NuSOAP, 157

O
object oriented programming, I-x,
I-21, I-23, 311

basics, I-26
Object Oriented Programming

performance concerns, 271

objects, I-25, I-29
interaction, I-56

optimizing code, 269

for loops, 274

most probable first, 271

ORDER BY clauses, I-256
output buffering, I-333, 245, 247

chunked, 248

(see also caching, chunked)

nested, 254

output in classes, I-33
overriding, I-50

calling overridden methods, I-51

P
packet sniffers, 1

paged results, I-259
parameters (see arguments)

parent classes, I-49
calling methods of, I-51

parent keyword, I-51
parse errors, I-9
passing by reference, I-42

(see also references)

passing by value, I-42
passwords

changing, 55

generating, 51

retrieving, 46

pausing script execution, I-247, 24

385

PDF (see Portable Document Format

(PDF))

PEAR, I-ix, I-16, I-23, I-253
(see also phpOpenTracker)

Auth_HTTP, 8

PEAR::Archive_Tar, I-138
PEAR::Cache, 261

PEAR::Cache_Lite, 156, 254, 257, 259,

260, 264

PEAR::DB, I-89, I-105, 262, 280, 343

PEAR::DB_DataObject, I-89, I-104
PEAR::Error, I-331
PEAR::File, I-118, I-119
PEAR::HTML_QuickForm, I-241,

I-269, 22, 26, 31, 37, 48, 55, 218

PEAR::HTML_Table, I-201, I-255
PEAR::HTML_TreeMenu, I-304
PEAR::Image_GraphViz, 238

PEAR::Log, I-333
PEAR::Mail_Mime, I-247, I-249
PEAR::mailparse, I-249
PEAR::NET_FTP, I-133
PEAR::Pager_Sliding, I-263
PEAR::PHPUnit, 301

PEAR::SOAP, 152, 157, 160

PEAR::Tree, I-288
PEAR::Validate, I-159, I-163, I-167
PEAR::XML_fo2pdf, 200

PEAR::XML_HTMLSax, I-149, 81,

177, 187, 191

PEAR::XML_SaxFilters, 102

PEAR::XML_Tree, 238

PEAR::DB, 319

performance

measuring, I-204
permissions, 61

(see also files, permissions)

perror, I-103
persistence layers, I-89, I-104, I-104
PHP

language features, I-4

language fundamentals, I-3
mailing lists, I-7
related Websites, I-7
usage statistics, I-2

PHP Classes, I-23, I-154, 342

PHP extensions, I-4
ClibPDF, 170

DOM XML, 82, 83, 102, 112

IMAP, I-247
Java, 200

Mailparse, I-247
Msession, 262, 280

PDFlib, 170

Xdebug, 270, 277

XML, 82, 87

XML-RPC, 142

XSLT, 82, 135

PHP function

mysql_num_fields, I-90
PHP functions

addslashes, I-85, I-85, 144

apache_request_headers, 262

apache_response_headers, 262

array_map, I-19
base64_encode, 235

checkdnsrr, I-161
clearstatcache, I-123
closedir, I-123
count, 274

date, I-122, I-176, I-182, I-185, I-186,

I-188, I-194, I-202, I-203, 250, 264

define, 13

die function, I-68
dir, I-124, I-220, 83, 331

domxml_new_doc, 102

domxml_open_file, 102

domxml_open_mem, 102

each, 273, 325

error_log, I-331
error_reporting, I-321, 102, 171

eval, 153

Index

386

explode, I-150
fclose, I-123
feof, I-117
fgets, I-117
fgetss, I-118
file, I-112, I-117, 87

file_exists, I-121
file_get_contents, I-113, I-116, I-117,

I-284
fileatime, I-122
filemtime, I-122
filesize, I-117, I-121, I-129
flush, 227

fopen, I-116, I-119, I-123, I-130
fread, I-116, I-117, I-123
fscanf, I-118
fsockopen, I-130, 87

ftp_chdir, I-133
ftp_connect, I-132
ftp_login, I-132
ftp_nlist, I-133
ftp_pwd, I-133
get_magic_quotes_gpc, I-19, I-85
getallheaders, 262, 266

gethostbyaddr, 223

getimagesize, I-212, I-213, I-233
gmdate, 264

header, I-211, I-288, 7, 243, 246

highlight_file, I-125
highlight_string, I-125
htmlspecialchars, I-145, I-156, I-269
imagecolorallocate, I-224
imagecopy, I-224
imagecopyresampled, I-213
imagecopyresized, I-213
imagecreatefromjpeg, I-212
imagecreatetruecolor, I-212, I-213
imagefontload, I-224
imagejpeg, I-213, 43

imageloadfont, 41

imagestring, I-224, 41

implode, I-151
ini_set, I-16, 72

is_dir, I-122
is_file, I-122
is_readable, I-122
is_string, 304

is_uploaded_file, I-283
is_writable, I-122
mail, I-237, I-238, 287

md5, 16, 51, 258

microtime, I-204
mktime, I-176, I-176
mysql_affected_rows, I-93
mysql_close, I-68
mysql_connect, I-24, I-68, I-323
mysql_error, I-78
mysql_escape_string, I-85, 17

mysql_fetch_array, I-24, I-73, I-74,

I-75
mysql_fetch_object, I-75
mysql_insert_id, I-94
mysql_num_rows, I-89, I-93

with unbuffered queries, I-75
mysql_query, I-24, I-73, I-74, I-80,

I-86
mysql_real_escape_string, I-85
mysql_result, I-75
mysql_select_db, I-24, I-68
mysql_unbuffered_query, I-75
nl2br, I-146
ob_clean, 250

ob_end_clean, 246, 254

ob_end_flush, 246, 248, 254

ob_get_contents, 246, 250

ob_start, 246, 254

opendir, I-123
parse_ini_file, I-17, I-107, I-128
preg_quote, I-158
print_r, I-249, I-281
printf, I-118, I-152
pspell_suggest, 54

387

putenv, I-203
and IIS, I-203

rawurldecode, I-144
rawurlencode, I-144
readdir, I-123
readfile, I-115, I-117, 227

session_register, 11

session_start, 7, 9, 11, 246

session_unregister, 11

set_cookie, 246

set_error_handler, I-326, I-328
set_time_limit, I-132, I-207, I-247
sleep, I-247, 24

sprintf, I-152
str_replace, I-150
strip_tags, I-118, I-147, I-153, I-156, I-163,

I-167, 210

stripslashes, I-19, I-84
strpos, I-5, I-149
strtotime, 266

substr, I-149
system, I-98, I-138
time, I-176, I-202, I-203
trigger_error, I-79, I-320, I-324, I-325,

97

trim, I-151
urldecode, I-144
urlencode, I-144
warning, I-324
wordwrap, I-149
xml_parse_into_struct, 87, 88

xml_parser_create, 87

xml_parser_free, 88

xml_parser_set_option, 87

xml_set_character_data_handler, 93

xml_set_element_handler, 93

xml_set_object, 97, 101

xslt_create, 137

xslt_errno, 137

xslt_error, 137

xslt_process, 137

PHP license, I-154
PHP manual, I-2

searching, I-4
short cuts, I-5

PHP source code

displaying online, I-125
security concerns, I-125

php.ini, I-3, I-11, I-16, I-18, I-20,

I-47, I-84, I-105, I-125, I-128, I-203, I-204,

I-205, I-226, I-237, I-280, I-321, I-322, 72, 81,

82, 260, 270

PHPDoc, 284

PHPDocumentor, I-159
phpDocumentor, 293

PHPMailer, I-238, I-243, I-245, 26, 48, 287

phpOpenTracker, 221, 227, 234, 238

API, 231

installation, 228

search engine plug-in, 236

PHPSESSID variable, 214

phpSniff, 222

PhpUnit, 300

pie charts (see graphs, pie charts)

PNG (see Portable Network Graphics

(PNG))

points, 172

polymorphism, I-35, I-60, I-63
Portable Document Format (PDF), 169

from HTML, 177

generating, 176, 196

page origin, 173

rendering, 169

Portable Network Graphics (PNG), I-210
portable PHP code, I-16
POST (see HTTP request methods)

post_max_size directive, I-280
PostgreSQL, I-66, I-78, 343

print statements, 245

private methods, I-39
procedural programming, I-23

Index

388

processing instructions (see XML pro-

cessing instructions)

proxy servers, 224

pseudo-cron, I-205
(see also cron)

public methods, I-39

Q
QuickForm (see PEAR,

PEAR::HTML_QuickForm)

quotes (see code optimization, quotes)

quotes in SQL statements, I-83, I-84

R
R&OS PDF, 170

raw data, 226

RDF (see RSS)

realms, 6

redirection, 20

(see also HTTP headers, location)

refactoring, I-28
reference counting, I-48
references, I-20, I-39, I-45, 276

(see also call-time pass-by-references)

(see also passing by reference)

improving performance with, I-47
in PHP 5, I-48
returning from functions/methods,

I-46
to new objects, I-46

register_globals directive, I-18, 11, 18

registering users (see user registration

systems)

regular expressions, I-153, I-158, 44, 340

REPAIR TABLE queries, I-103
repairing corrupt MySQL databases,

I-103
require, I-12

(see also include)

require_once, I-12, I-14, I-17, 276, 283

(see also include_once)

reserved characters, I-144
resource identifiers, I-74
RESTORE TABLE queries, I-101
result pagers (see paged results)

return commands

in constructors, I-31
return values, I-5

for constructors, I-31
reusable code, I-20, I-23
rich clients, 215

RLIKE operator, I-96
robots (see visitor statistics, excluding

search engines)

RSS, 79, 85, 102

aggregation, 122

generating, 114

validation, 122

RTFM, I-2
(see also PHP manual)

S
SAX (see Simple API for XML (SAX))

Scalable Vector Graphics (SVG), 169,

200

rendering with PHP, 205

scope, I-34
script execution time (see timing PHP

scripts)

search engine friendly URLs, I-307
search engine queries, 236

searching and replacing text in strings,

I-149
searching MySQL databases, I-95

(see also FULLTEXT searches)

Secure Socket Layer (SSL), 1

security, I-3
SELECT queries, I-80

aliases, I-91, 62

counting rows returned, I-89, I-92
with MySQL, I-90
with PHP, I-89

389

optimizing, 275

searching with, I-95
sorting results, I-256

semantic errors, I-10, I-319
sendmail, I-237
session variables, 45

session.save_path directive, 10, 72

sessions, I-231, 8, 11, 12, 55, 154, 214

(see also custom session handlers)

(see also tracking online users)

on multiple servers, 280

security concerns, 9, 57

storing in MySQL, 71, 73

vs. cookies, 232

short tags (<? ?>), I-18, 81

short_open_tag directive, I-18, I-205, 81

SHOW TABLES queries, I-101
Simple API for XML (SAX), I-163, 80,

82, 87, 88, 110, 177

Simple Mail Transfer Protocol (SMTP),

I-237
Simple Object Access Protocol (see

SOAP)

SimpleTest, 301

sliding page numbers, I-263
SMTP (see Simple Mail Transfer Pro-

tocol (SMTP))

SOAP, xiii, 141, 150, 226

(see also WSDL)

(see also XML-RPC)

building a client, 152, 164

building a server, 157

vs. XML-RPC, 142

source code (see PHP source code)

special characters, I-145, I-145, I-156
(see also reserved characters)

(see also unsafe characters)

spiders (see visitor statistics, excluding

search engines)

SQL injection attackes, I-275

SQL injection attacks, I-19, I-20, I-81,

I-86, 144

standalone PHP scripts, I-249
standard input, I-249
static methods, I-29, I-159
statistics (see visitor statistics)

stdClass, 100

string functions, I-149
(see also PHP functions)

strings

converting to arrays, I-150
creating from arrays, I-151
treating as arrays, I-152
trimming whitespace, I-151
writing formatted values to, I-152

Structured Query Language (SQL),

I-73, 134

(see also DELETE queries)

(see also INSERT queries)

(see also quotes in SQL statements)

(see also SELECT queries)

(see also UPDATE queries)

(see also variables, in SQL queries)

generating automatically, I-104
generating from XML, 138

resolving problems with, I-78
subclasses (see child classes)

superclasses (see parent classes)

superglobal variables, I-18
SVG (see Scalable Vector Graphics

(SVG))

switch statements, I-88, I-256, I-327, 58,

60, 89, 130, 322, 334

syntax errors, I-9, I-319
syntax highlighting (see PHP source

code, displaying online)

system integration testing, 298

T
table relationships, I-66, I-94
tables

Index

390

alternating row colors, I-257
generating with PHP, I-255

TAR files (see compressed files)

template caching, 245

text content

in HTML documents, I-143
thumbnail images

creating, I-211, I-214
time limits (see execution time limits)

time zones, I-202
timestamps, I-172

(see also MySQL timestamps)

(see also Unix timestamps)

timing PHP scripts, I-204
tokenizer extension, I-9
tokens, I-9
tracking online users, 73

tree menus, I-289, I-301, I-303
try-catch statements, I-320

U
unbuffered queries, I-74, I-89
Unified Modelling Language (UML),

I-26, I-38, I-57, I-59, I-63, I-190, 84, 318,

322, 340, 351

generating code from, 293

unit testing, I-11, xiii, 298, 300

Unix timestamps, I-173, I-175, 186

generating, I-176
storing in MySQL, I-174

unsafe characters, I-144
UPDATE queries, I-80, I-81

counting rows affected, I-93
importance of WHERE clause, I-81

upload_max_filesize directive, I-280
URL encoding, I-144
URL rewriting (see mod_rewrite)

URLs (see search engine friendly URLs)

designing, I-314
user agent string, 223

user groups, 61

user registration systems, 25, 37

V
validating submitted data, I-159, 335

with QuickForm, I-270, I-272, I-274
var command, I-31
variable functions, I-62
variables, I-40

(see also passing by value)

(see also passing by reference)

formatting for output, I-152
in SQL queries, I-87
nonexistent, I-163
session variables, I-231

views, I-315
visitor statistics

excluding search engines, 237

exit links, 234

gathering, 225

logging, 226

reports, 238

returning visitors, 232

search engine queries, 236

W
WAP (see Wireless Application Pro-

tocol (WAP))

warnings, I-320, I-324, I-325
watermarks, I-223
Web bug, 230

Web services, xiii, 79, 141, 150, 202

caching, 260

consuming, 150

deploying, 150

security concerns, 165

Web Services Description Language

(see WSDL)

Webalizer, 238

WHERE clauses, I-89, I-91, 275

while statements, I-9, I-74, I-117, I-193,

I-257, 212, 248, 326, 328

391

white box testing, 299

whitespace

trimming, I-151
Wireless Application Protocol (WAP),

205

Wireless Markup Language (WML),

135, 169, 205, 279, 289

(see also HAWHAW)

cards, 206

generating, 208

viewing with Opera, 205

WML (see Wireless Markup Language

(WML))

word wrap (see wrapping text)

wrapping text, I-149
WSDL, 142, 150, 157, 160

editor, 151

X
Xdebug (see PHP extensions, Xdebug)

XML, I-17, I-18, I-290, 79, 205, 238

(see also XPath)

(see also XSLT)

converting to SQL, 138

generating, 80, 111, 112

XML entity references, 93

XML namespaces, 81, 127

default namespace, 127

XML processing instructions, I-18, 81,

93, 201

XML Schema, 81, 142

XML User interface Language (XUL),

169, 215

XML-RPC, xiii, 141

(see also SOAP)

building a client, 146

building a server, 142

fault codes, 144

vs. SOAP, 142

XP (see Extreme Programming)

XPath, 81, 123, 128, 134, 139

predicates, 136

XQuery, 134

XSL Formatting Objects (XSL-FO), 200

XSLT, 79, 135, 138

error handling, 139

XSS (see cross-site scripting (XSS) at-

tacks)

XUL (see XML User interface Language

(XUL))

Z
ZIP files (see compressed files)

Index

392

	The PHP Anthology, Volume II: Applications
	Summary of Contents
	Cover Page - Volume II: Applications
	Copyright
	About The Author
	About SitePoint
	Dedication

	Summary of Contents (linked)
	Table of Contents (linked)
	Preface
	Who should read this book?
	What’s covered in this book?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	1. Access Control
	How do I use HTTP authentication with PHP?
	Heads Up
	Not by the Hairs of my Chin…

	How do I authenticate users with sessions?
	Session Security
	Getting Started
	Authentication in Action
	Room for Improvement

	How do I build a user registration system?
	More Classes!
	Missing Pieces

	How do I protect my site from auto sign ups?
	Here’s One I Wrote Earlier

	How do I deal with members who forget their passwords?
	Password Reminder
	New Password

	How do I let users change their passwords?
	How do I build a permissions system?
	How do I store sessions in MySQL?
	How do I track who is online?
	Further Reading

	2. XML
	SAX, DOM and PHP
	Installation Issues
	About DOM

	How do I parse an RSS feed with PHP and SAX?
	How do I parse an RSS feed with PHP and DOM?
	How do I generate an RSS document with PHP and DOM?
	RSS Generated

	How do I perform XPath queries with PHP?
	A Note on Default Namespaces
	Dynamic Content with XPath

	How do I transform XML with PHP?
	XML to SQL

	How do I build an XML-RPC service with PHP?
	The Server
	The Client

	How do I consume SOAP Web services with PHP?
	How do I build a SOAP server with PHP?
	Security and Authentication in Web Services

	Further Reading

	3. Alternative Content Types
	How do I render PDF documents with PHP?
	PDF To Go…
	PDF Strategy

	How do I convert HTML to PDF?
	Parsing HTML with SAX?!?
	Laying the Foundations
	Putting it Together

	How do I render SVG with PHP?
	SVG Network Clock

	How do I render WML with PHP?
	HAWHAW
	WML, Sessions and Security

	How do I render XUL with PHP?
	Further Reading

	4. Stats and Tracking
	What information can I gather about my site’s visitors?
	IP Addresses

	How do I store visitor statistics with PHP?
	Logging Strategy
	Installing phpOpenTracker
	The phpOpenTracker API

	How do I recognize returning visitors?
	How do I track exit links?
	How do I record search engine queries?
	Installing the phpOpenTracker Search Engine Plug-in

	How do I exclude search engines from my logs?
	How do I get reports on my site’s statistics?
	Further Reading

	5. Caching
	How do I prevent Web browsers caching a page?
	How do I capture server side output for caching?
	Using Output Buffering for Server Side Caching
	Chunked Buffering

	How do I implement a simple server side caching system?
	Cache_Lite Options
	Purging the Cache
	Caching Function Calls

	How do I control client side caching with PHP?
	Page Expiry
	Page Modification Time

	Further Reading

	6. Development Technique
	How do I optimize my code?
	Most Probable First
	The for Loop
	Don’t Be Greedy
	Lazy Inclusion
	Quotes
	Reference or Copy?
	Xdebug

	How do I structure my application into layers?
	The Principles of N-Tier
	But What’s the point?

	How do I read API documentation?
	Private, Protected and Public
	Practice Makes Perfect

	How do I generate API documentation?
	Choose your Weapons

	How do I set up automated tests of my code?
	Test Infected
	Test Drive
	Mock Objects

	Further Reading

	7. Design Patterns
	The Factory Method
	The Iterator Pattern
	But, What’s the Point?
	Iterator APIs

	The Strategy Pattern
	The Adapter Pattern
	The Observer Pattern
	Further Reading

	Appendix A: PHP Configuration
	Configuration Mechanisms
	Key Security and Portability Settings
	Includes and Execution Settings
	Error-Related Settings
	Miscellaneous Settings

	Appendix B: Hosting Provider Checklist
	General Issues
	PHP-Related Issues

	Appendix C: Security Checklist
	The Top Security Vulnerabilities

	Appendix D: Working with PEAR
	Installing PEAR
	The PEAR Package Manager
	Installing Packages Manually

	Index (only Volume II links work)
	Back cover
	Errata at www.sitepoint.com
	RR

