
● Getting Started with Requests
● The GET Request
● Processing Responses

○ Status Codes
○ Content and Header

Python’s Requests Library (Guide)
Section 1 of 3

● Created by Kenneth Reitz
● http://docs.python-requests.org/en/master/

A Few Details About Requests
HTTP for HumansTM

● De facto standard for making HTTP requests in Python
● Beautifully Simple API
● Abstracts the complicated parts of HTTP
● Focuses on Interaction with Services

About Python’s Requests Library
Why learn about requests?

● A general knowledge of HTTP (Hypertext Transfer Protocol)
○ https://www.w3schools.com/tags/ref_httpmethods.asp

About Python’s Requests Library
What do I need for this tutorial?

The GET Request
Indicates you are trying to retrieve data from a specified resource

● Testing it with GitHub’s Root Rest API
○ https://api.github.com

● Returns a Response
○ An object containing results of the request

https://api.github.com

● 1xx Information
● 2xx Success - request was received, understood and accepted
● 3xx Redirection
● 4xx Client Errors
● 5xx Server Errors

More info at https://en.wikipedia.org/wiki/List_of_HTTP_status_code

Status Codes
Issued by a server in response to a client request.
A few examples.

https://en.wikipedia.org/wiki/List_of_HTTP_status_code

1. Getting Started with Requests
2. The GET Request
3. Processing Responses
4. Query String Parameters
5. Request Headers
6. Other HTTP Methods
7. The Message Body
8. Inspecting Your Request

End of Section 1 of 3

1. Getting Started with Requests
2. The GET Request
3. Processing Responses
4. Query String Parameters
5. Request Headers
6. Other HTTP Methods
7. The Message Body
8. Inspecting Your Request

Welcome to Section 2 of 3

The Query String Parameters
Part of a URL which assigns values to specified parameters

● Commonly added to the base URL
○ https://api.github.com/search/repositories?q={query}

Other examples

● commit_search_url :
https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}

● user_search_url :
https://api.github.com/search/users?q={query}{&page,per_page,sort,order}

https://api.github.com/search/commits?q=%7Bquery%7D%7B&page,per_page,sort,order
https://api.github.com/search/users?q=%7Bquery%7D%7B&page,per_page,sort,order

The Query String Parameters
Can be composed of a series of arguments

● The series is separated by a plus sign
○ argument1+argument2+argument3...

The Request Headers
Further customize your requests

● Pass a dictionary of HTTP headers to get()
● Accept

○ Specify what is acceptable for the response
■ Limit to only certain media/types

● Authorization - discussed in the section 3

Other HTTP Methods
Requests provides methods for each of these

● POST
● PUT
● DELETE
● HEAD
● PATCH
● OPTIONS

We will be testing these using Kenneth Reitz httpbin service
https://httpbin.org/(name of method)

https://httpbin.org/get

The Message Body
How POST, PUT and PATCH pass data

● Different from query string parameters
● Payload is passed through the parameter, data=
● data= can take

○ Dictionary
○ List of tuples
○ Bytes / file-like objects

● For JSON use the parameter, json=
○ Requests will serialize the data, and add the Content-Type header

Inspecting Your Request
The requests library prepares the request before sending

● Examples of items prepared
○ Validates headers
○ Serializes JSON content

● To view the PreparedRequest use the method .request
○ response.request.url
○ response.request.body

1. Getting Started with Requests
2. The GET Request
3. Processing Responses
4. Query String Parameters
5. Request Headers
6. Other HTTP Methods
7. The Message Body
8. Inspecting Your Request
9. Authentication

10. SSL Certificate Verification
11. Performance

End of Section 2 of 3

1. Getting Started with Requests
2. The GET Request
3. Processing Responses
4. Query String Parameters
5. Request Headers
6. Other HTTP Methods
7. The Message Body
8. Inspecting Your Request
9. Authentication

10. SSL Certificate Verification
11. Performance

Welcome to Section 3 of 3

Authentication
Passing credentials to a server

● Passed through the Authorization: header
● Requests parameter is auth=

○ username and password are passed as a tuple
○ Defaults to HTTP Basic authentication scheme
○ https://en.wikipedia.org/wiki/Basic_access_authentication

https://en.wikipedia.org/wiki/Basic_access_authentication

SSL Certificate Verification
Requests verifies the target server’s SSL Certificate by default

● A package is included when installing requests called certifi

11. Performance
a. Timeouts
b. The Session Object
c. Max Retries

Performance
Keeping your application running smoothly

Timeouts
How long to wait for a response before moving on

● Default - wait indefinitely
● Timeout parameter timeout=

○ Amount of time in seconds
○ Value can be an integer or float

● A tuple can be used
○ First value is how long to establish connection
○ Second value is how long to wait for the response

The Session Object
Allows certain parameters to persist across multiple requests

● The underlying TCP connection will be reused = Performance!
● A session object has all the same methods as the main Requests API

Max Retries
By default requests will not retry after a failed request

● A Transport Adapters can be mounted to a session
○ Allows a set of custom configurations per service
○ Parameter for max_retries=

1. Getting Started with Requests
2. The GET Request
3. Processing Responses
4. Query String Parameters
5. Request Headers
6. Other HTTP Methods
7. The Message Body
8. Inspecting Your Request
9. Authentication

10. SSL Certificate Verification
11. Performance
12. Conclusion

End of Section 3 of 3

