
Inhoud
What You Should Know About HTML Email ... 1

Coding HTML Email Can be a Challenge ... 2

Email Standards Don’t Exist ... 2

How to Approach Your Work .. 4

Work Structurally First .. 4

Test Often .. 4

Validate Often .. 4

Sending Your Email .. 5

Content, Development and SPAM Scores .. 5

Diving into Development .. 5

Tools of the Trade ... 5

Starting With a Good Base .. 5

!DOCTYPE... 6

Email is All About Nesting Tables .. 6

Paragraphs or Cells? ... 7

Inline Styles or Stylesheets? ... 7

Image Names and SPAM Scores .. 8

Image Size ... 8

Other Gotchas ... 8

Conclusion ... 8

Useful Links ... 8

What You Should Know About HTML Email

Email is an awesome medium. It goes straight into the inbox and its ROI is widely reported
as being through the roof at 4000%. It’s also perpetually misunderstood and too often it’s
done badly. With the recent explosion of smartphones, we’re more often reading our mail on
our iPhone or Galaxy, but unfortunately a lot of email marketing has failed to keep up. I see
this as a huge missed opportunity because a well executed email can be enjoyable to open
and hugely successful.

Coding HTML Email Can be a Challenge

If you've already tried your hand at HTML email design and development, you've
probably already established that it can be pretty difficult. And you're not imagining it
— it is quite hard. Here's why:

Email Standards Don’t Exist

[We will] continue to use Word for creating e-mail messages because we believe it’s
the best e-mail authoring experience around.

The Outlook Team

When you code for the web, you can at least count on the fact that all of the major
browsers (Chrome, Firefox, Internet Explorer, Safari and Opera) are trying to adhere
to web standards for rendering HTML and CSS.

When it comes to email clients, you're testing on a huge bunch of old and new
programs. They range from new phones running on Android and iOS to IBM’s Lotus
Notes or Microsoft Office 2007 (which infamously renders your lovingly-created
HTML with the Word HTML rendering engine. The previous versions of Outlook used
a browser to render their HTML — which is actually logical. Why switch to a word
processor to render HTML you ask? Well, for "security reasons", they say). And none
of these programs have to adhere to any standards. They basically all just make it
up. You can see what standards support looks like for some of the most popular
email clients at the Email Standards Project.

If that isn’t bad enough, couple that with the next fact: there are about a million
different combinations of ways that email can render on desktop and mobile.

http://en.wikipedia.org/wiki/Return_on_investment
http://blogs.office.com/b/microsoft-outlook/archive/2009/06/24/the-power-of-word-in-outlook.aspx
https://litmus.com/blog/outlook-2013-still-powered-by-word-now-available-for-email-testing
http://www.email-standards.org/blog/entry/microsoft-respond-to-our-call-for-standards-support/
http://www.email-standards.org/

The rendering possibilities are (almost) endless.

Here’s a list of some of the most common email clients:

Mobile clients:

 Android 2.3 & 4.0
 iPhone 5 iOS 6
 iPhone 4S iOS 6
 iPhone 3GS iOS 5
 iPad 2 iOS 6
 BlackBerry OS 4 & 5
 Symbian S60
 Windows Phone 7.5

Desktop clients:

 Apple Mail 4, 5, 6
 Lotus Notes 8.5
 Lotus Notes 8
 Thunderbird
 Windows Live Mail
 Outlook 2013
 Outlook 2011 for Mac
 Outlook 2010
 Outlook 2007
 Outlook 2003
 Outlook 2002/XP
 Outlook 2000

Webmail clients:

 AOL Mail (on any browser)
 Gmail (on any browser)
 Outlook.com (on any browser)
 Yahoo! (on any browser)

That’s a lot of devices!

If you are already familiar with web development, forget everything you know about it.

To compound all of this, conditional styling isn’t much of an option either. There are
some things that you can do with conditional comments, but it’s limited to targeting
certain versions of Outlook, or everything except certain versions of Outlook.

If you are already familiar with web development, forget everything you know about it.
The single biggest obstacle to you is expecting things to work like ‘normal’ web
development. This will frustrate you and hold you back. The worst thing you can do is
get angry that you can’t use DIVs or that margin isn’t fully supported. So forget
everything you know about semantic HTML and the latest CSS spec. Trust me, it will
help.

How to Approach Your Work

Let's take a look at some email-building workflow suggestions.

Work Structurally First

Building the structure of your email first can help you avoid many bugs and issues
later down the track. Never build the whole thing and then test — you can often end
up with too many bugs to deal with, and they may all be influencing each other.

Test Often

Work until you reach a minor development milestone (for example, when you finish
the basic structure) and then run a test. The best way to test is using Litmus or Email
on Acid. I recommend taking out an unlimited plan with either of these companies
because being able to test frequently is really important.

I also really like leaving in all my table borders so that I can see what I am creating,
then I turn them all off at the end. You can also perhaps color the background of
certain cells to help see which sections are where. My ideal workflow is to create a
skeleton, test, then add my content, test, style the colors and fonts, test again and
finally remove my borders and test again before sending.

Validate Often

Validate it using the W3C Validator as often as you possibly can. This will help you
iron out small details and it will pick up on mistakes like missing or open tags.

https://litmus.com/
http://www.emailonacid.com/
http://www.emailonacid.com/
http://validator.w3.org/

Sending Your Email

There are a huge number of options when it comes to sending your email. The two
services that I use the most are MailChimp and Campaign Monitor. They offer
competitive pricing and they are very easy to use. There are loads of commercial
platforms, too — it all depends on your needs. Sign up for a free account with either
of these and have a tinker in their systems to see which one you like. Make sure you
utilize the useful data that both services collect about your emails, such as open
times and email client usage. This can really help you focus your efforts in the right
area the next time you send.

Content, Development and SPAM Scores

When it comes to SPAM; content, design and development all go hand in hand. It’s
important to avoid typical spammy tactics like using all-caps and lots of exclamation
points in your subject line. There are certain words that are likely to trigger SPAM
filters too (like ‘free’ and ‘invest’). The cleaner your code, the less likely your email is
to be marked as SPAM, and the ratio of images to text also has an effect. Image-
reliant emails with no text are more likely to be marked as SPAM and so are emails
with really long image filenames.

The world of SPAM scores is a tricky one and it’s important to run a SPAM test
through your testing account with Litmus or Email on Acid before you send your
email, to make sure all your hard work isn’t headed straight for the Junk folder.

Diving into Development

Now, for the nitty-gritty of email development..

Tools of the Trade

You’ll need a text editor that you like (I use Sublime Text) and a test account with
Litmus or Email on Acid. I highly recommend having an unlimited test account with
either of these companies as it will make your life so much easier. If you don’t pay a
monthly fee, you will end up paying between $3 and $5 per test which can add up
pretty quickly.

Starting With a Good Base

I think that it’s good to start with a blank slate. Frameworks like the HTML Email
Boilerplate are full of wonderful tricks and snippets that you can implement piece by
piece. However, if you are just starting out I don’t recommend using it as a starting
point as it contains a lot of elements that you won’t need. Boilerplates can often make
it more difficult to troubleshoot any issues if there is a lot of unused code in your file.

Note: Because it can be very precarious to use any kind of editor (especially when
it's time to troubleshoot), you should never use a WYSIWYG editor, or any kind of
editor that promises to take your formatted design and magically turn it into valid
HTML for emailing. This stuff just never works.

http://mailchimp.com/
http://www.campaignmonitor.com/
http://www.sublimetext.com/
http://hub.tutsplus.com/tutorials/say-hello-to-the-html-email-boilerplate--webdesign-5143
http://hub.tutsplus.com/tutorials/say-hello-to-the-html-email-boilerplate--webdesign-5143

!DOCTYPE

This might seem like a technical detail to start with, but you need a blank template to
start working with, and that template needs a Doctype. A doctype is essentially a line
of code which informs the program reading it which HTML tags to expect and which
set of rules the HTML and CSS adhere to. Quite a few clients strip your Doctype out,
and some even apply their own. Many clients do honor your doctype and it can make
things much easier if you can validate constantly against a Doctype.

Using an XHTML doctype generally has the fewest quirks and inconsistencies
between documents. I use XHTML 1.0 Transitional because it has proven itself to be
the most reliable doctype in my experience. In the following tutorial, during which
we'll build a complete HTML email template, we’ll use the following code to start off
our document:

1

2

3

4

5

6

7

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Demystifying Email Design</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0"/>

</head>

The Content-Type meta tag is for telling the destination rendering engine how to
process text and special characters. In reality, you need to encode all of your special
characters anyway (e.g., & becomes & for ampersand) to be safe, but it’s worth
keeping this line in there anyway.

The viewport meta tag is telling the device to set the viewable area to the width of the
device’s screen. It also sets the initial scale to ‘normal’ which is neither zoomed in nor
out. If you don’t specify this, many smartphones may scale your content down so that
the content fits within the viewable area, but not any of its padding or margins. This
can result in text and images butting right up against the edge of the screen.

Finally, always enter a meaningful title because this is what people will see when
they view the email in a browser, or share it with their friends.

Email is All About Nesting Tables

Due to the lack of standards support in email, it’s not possible to use divs, sections or
articles — instead you have to use tables. Moreover, you need to use lots and lots of
nested tables because neither the colspan nor rowspan attributes are properly
supported.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://hub.tutsplus.com/tutorials/quick-tip-dont-forget-the-viewport-meta-tag--webdesign-5972

Paragraphs or Cells?

Again, because of the lack of standards support, it’s not a great idea to use standard
tags like h1, h2, h3 or p. I find that these can render really inconsistently across email
clients and can create some pretty big headaches.

Your best bet is to place every block of text into its own cell and apply inline styling to
that cell, for example:

1

2

3

4

5

<tr>

 <td style=“font-size: 12px; font-family: Arial, sans-serif; color: #666666;”>

 Text

 </td>

</tr>

Inline Styles or Stylesheets?

This one is more of a personal choice. I prefer to keep all my styles inline (ie: within
the HTML tags themselves) because I like to know exactly where everything is and
what is affecting what. You can code using styles and then pull them all inline at the
end (Campaign Monitor and MailChimp can do this for you automatically, you can
also use Premailer or something similar) but the reason I don’t like this is because
you get to know your code, run it through an inliner, and then your code can become
somewhat unrecognizable. I find that this makes it more difficult to troubleshoot.
Saying that, if this is the way you want to work, that’s fine; there is no technical
reason why you shouldn’t do it.

Don’t forget: You can’t apply multiple classes to things in HTML email because it is
not supported. Every element can have a maximum of one class.

Also don’t forget: You can’t use shorthand for things like font size (i.e. style="font:
8px/14px Arial, sans-serif;") because it is not supported.

http://premailer.dialect.ca/

Image Names and SPAM Scores

When saving out images remember that it’s good to give your images names that are
short and meaningful because it will improve your spam score. Names like
"campaign_054_design_0x0_v6_email-link.gif" are likely to have a much higher
SPAM score than "email.gif".

Image Size

It’s also a really great idea to try to keep your entire email as small as humanly
possible: under 100kb is ideal but not always possible, under 250kb is pretty
standard. Use a compression app like JPEGmini or tinyPNG to cut all your images
down to size as much as possible before you send. Slower load times, especially on
mobile, can make or break your email if the overall file size is too large.

Other Gotchas

Don’t leave anything up to the email client. Specify all your widths, because
otherwise you could end up with unexpected results. For your main container
elements always set the size in pixels. You can then use percentages inside your
containing element if you wish.

Conclusion

There's a lot to take into account when designing and developing HTML email, most
of which involves "un-learning" standards you've been encouraged to practice for
web design over the years. However, this tutorial should have given you a solid base
to work from, and you're now ready to jump into the actual build process. Onwards!

Useful Links

I referenced a few things during this tutorial - so here they are again, all in one place.

 Litmus testing tools
 Email on Acid testing tools
 The Outlook Team Blog
 The Litmus Team Blog
 The Email Standards Project
 W3C Validator
 MailChimp
 Campaign Monitor
 Premailer, preflight check for emails
 JPEGmini image compression tool
 tinyPNG image compression tool
 Sublime Text, my preferred editor
 Say Hello to the HTML Email Boilerplate
 Don't Forget the Viewport Meta Tag
 Thumbnail icon by Pierre Borodin

http://www.jpegmini.com/
http://tinypng.org/
https://litmus.com/
http://www.emailonacid.com/
http://blogs.office.com/b/microsoft-outlook/
https://litmus.com/blog/
http://www.email-standards.org/
http://validator.w3.org/
http://mailchimp.com/
http://www.campaignmonitor.com/
http://premailer.dialect.ca/
http://www.jpegmini.com/
http://tinypng.org/
http://www.sublimetext.com/
http://hub.tutsplus.com/tutorials/say-hello-to-the-html-email-boilerplate--webdesign-5143
http://hub.tutsplus.com/tutorials/quick-tip-dont-forget-the-viewport-meta-tag--webdesign-5972
http://dribbble.com/shots/1029199-Flat-icons-PSD-3-Dribbble-invites

